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Abstract. For a parametric class of “reciprocal gamma diffusion processes”, certain ex-
ponential bounds for β-mixing and rate of convergence to stationary distribution are es-
tablished.
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1. Introduction

In our recent paper [1] we considered a parametric class of 1D diffusion processes
called Student diffusions. The reason for studying this class was a demand from
stochastic financial applications; this study was initiated in [5]. The class of recipro-
cal gamma diffusions is another particular class which is interesting from the same
point of view, [8]. Namely, in applied stochastic finance theory there is a need to
have a description of parametric classes of processes with certain special properties,
in particular, with heavy or light tails, “short” or “long” memory, and exponential
or some other rate of mixing and convergence towards stationary distributions. For
applications it is also highly desirable that the latter are known exactly. Hence, in
this paper we investigate certain mixing properties and convergence rate to equilib-
rium distribution for this new particular class suggested in [8]. It turns out that the
processes from this class possess polynomial tails and exponential mixing.

Although the model under consideration is rather specific, we apply the theory
developed for general possibly non-symmetric and non-stationary processes. Notice
that for strictly stationary symmetric processes there are other methods to study
some other mixing coefficients, see, e.g., [4, section 2] about alpha-mixing; in parti-
cular, cf. examples in the end of that section. Our model here is symmetric; however,
we establish an exponential decay of stronger and non-stationary beta-mixing, so
there are various reasons why formally our results cannot be derived directly from
[4].

The organisation of the paper is as follows. Section 2 relates to the definition of
the gamma and reciprocal gamma density distribution.
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Section 3 is devoted to the presentation of the parametric class of ergodic stationary
reciprocal gamma diffusions with a marginal inverse gamma distribution. Section 4
presents main results, section 5 contains auxiliary lemmae. Main results are proved
briefly in section 6.

2. Gamma and reciprocal gamma distribution

Let random variable Y have a gamma distribution with probability density function
of the form

g(x) =


αβ

Γ(β)
xβ−1e−αx, x > 0,

0, x ≤ 0,
(1)

where α > 0 is a scale parameter and β > 1 is a shape parameter. Then ran-

dom variable X =
1
Y

has a reciprocal gamma distribution with probability density
function,

rg(x) =


αβ

Γ(β)
x−β−1e−α/x, x > 0,

0, x ≤ 0,
(2)

with the same parameters α and β. In literature those distributions are denoted as
Y ∼ G(α, β) and X ∼ RG(α, β). The moments of k-th order of a reciprocal gamma
random variable are given by the following expression

E[Xk] =
αk∏k

j=1(β − j)
= αk

Γ(β − k)
Γ(β)

, k < β. (3)

In particular, expectation and variance of random variable X ∼ RG(α, β) read

E[X] =
α

β − 1
, V ar(X) =

α2

(β − 1)2(β − 2)
. (4)

An important feature of a reciprocal gamma distribution is a scaling property, i.e.,
if G(α, β) and RG(α, β) are gamma and reciprocal gamma random variables, re-
spectively, with the same parameters α and β, then – a bit abusing notations – it is
known that

RG(α, β) =
1

G(α, β)
=

α

G(1, β)
= αRG(1, β). (5)

For references see [8].

3. Reciprocal gamma diffusion

Consider a stochastic differential diffusion equation

dXt = −θ(Xt −
α

β − 1
) dt+

√
2θ

β − 1
X2
t dWt, t ≥ 0, (6)
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with some initial data X0. Here θ > 0, α > 0, β > 1, and (Wt, t ≥ 0) is a standard
Brownian motion (BM). Equivalently,

Xt = X0 − θ
∫ t

0

(Xs −
α

β − 1
) ds+

∫ t

0

√
2θ

β − 1
X2
s dWs, t ≥ 0,

where X0 is a random variable independent of Brownian motion Wt; in particular a
non-random value is, of course, allowed. Due to a global Lipschitz condition on both
coefficients, the stochastic differential equation above has a unique strong solution
which is a strong Markov process. Moreover, solution X = {Xt, t ≥ 0} is ergodic
with invariant reciprocal gamma probability density function (2), see [8]. Notice
that this invariant density, of course, does not depend on θ > 0.

4. Main results

Let FX≤s = σ(Xu, u ≤ s). Notations Ex and Px (Est and Pst) are used for the
processes with initial data x (stationary distribution as initial data, independent of
the BM). We recollect the definition of two mixing coefficients, α(t) and β(t):
Strong mixing coefficient or the Rosenblatt coefficient

αx(t) = sup
s≥0

sup
A∈FX≤s,B∈F

X
≥t+s

|Px(AB)− Px(A)P (B)|;

Complete regularity condition or the Kolmogorov coefficient

βx(t) = sup
s≥0

Ex var
B∈F≥t+sX

(P (B|Fs)− P (B)).

Denote αst(t) and βst(t) the versions of both coefficients for stationary distributed
initial data X0, respectively. Denote by µx(t) the distribution of Xt with initial data
x, and by µst the invariant measure for X.

Theorem 1. For any β > 1 and m < β, there exist constants C, c, λ > 0 such that

βx(t) ≤ K(x)e−ct, K(x) = C

(
1
|x|λ

+ |x|m
)
, t ≥ 0, (7)

and for stationary regime,

βst(t) ≤ Ce−ct, t ≥ 0. (8)

Theorem 2. Under the assumptions of Theorem 1,

var(µx(t)− µst) ≤ K(x) e−ct, t ≥ 0. (9)

Notice that the bounds obtained above allow us to apply the Central Limit
Theorem for functionals of the process, see e.g., [6]. We do not pursue this goal
here, see e.g., [1, Corollary 1] and [10]. In particular, the latter references contain
hints as to how apply the method from [6] to non-stationary processes.
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5. Preliminary results

For any R > 1, let τ1 := inf(t ≥ 0 : Xt ≤ R), τ2 := inf(t ≥ 0 : Xt ≥ R−1).

Lemma 1. For any α, θ > 0, β > 1 and any m < β, there exists a constant α1 > 0
such that for any R large enough and x > R,

Ex exp(α1τ1) ≤ |x|m.

Proof. Consider a Lyapunov function f(t, x) = exp (α1t)xm. Then, the stochastic
differentiation of this function along the trajectory X reads

df(t,Xt) = α1e
α1tXm

t dt+mXm−1
t eα1t(dXt) +

1
2
m (m− 1)Xm−2

t eα1t(dXt)2

= α1e
α1tXm

t dt+
1
2
eα1t

2θ
β − 1

m (m− 1)Xm
t dt− θmXm−1

t eα1tXtdt

+
αθm

β − 1
Xm−1
t eα1tdt+

√
2θ

β − 1
X2
t dWt

= eα1tXm
t

[
α1 +

θ

β − 1
m (m− 1) +

αθm

β − 1
X−1
t − θm

]
dt

+

√
2θ

β − 1
X2
t dWt.

Due to the assumption we have mθ − m(m−1)θ
β−1 > 0. Let 0 < α1 < mθ − m(m−1)θ

β−1 .
Then, for R large enough,[

α1 +
θ

β − 1
m (m− 1) +

αθm

β − 1
X−1
t − θm

]
< c ≤ 0.

Hence, taking expectations, we obtain,

Exf(t ∧ τ1, Xt∧τ1)− f(0, x) ≤ cEx
∫ t∧τ1

0

eα1sXm
s ds ≤ 0.

Due to the Fatou Lemma, as t→∞, Lemma 1 follows.

Notice that to avoid any question about expectations of the stochastic integral above,
as usual, we can apply a standard localization procedure.

Lemma 2. For any α, θ > 0, β > 1 and any λ > 0, there exists a constant α2 > 0,

such that for any R large enough and x <
1
R

,

Ex exp(α2τ2) ≤ 1
xλ
.

Proof. Here the initial condition is very near to the origin. Notice that our diffu-
sion can never reach zero if it starts from positive values. Hence, it is convenient
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to transform the space and consider another process Yt := λ lnXt ≡ lnXλ
t . Its

stochastic differential reads

1
λ
dYt = d(lnXt) =

dXt

Xt
− 1

2
dX2

t

X2
t

=
(
−(θ +

θ

β − 1
) +

αθ

β − 1
exp (−Yt)

)
dt

+

√
2θ

β − 1
dWt

=
[
− θβ

β − 1
+

αθ

β − 1
exp (−Yt)

]
dt+

√
2θ

β − 1
dWt.

Let us consider a Lyapunov function f(t, y) = exp (−y + α2t). We have

df(t, Yt) = α2f(t, Yt)dt − f(t, Yt)dYt +
1
2
f(t, Yt)(dYt)2

= α2f(t, Yt)dt − f(t, Yt)λ
[
− θβ

β − 1
+

αθ

β − 1
exp (−Yt)

]
dt

−f(t, Yt)λ
[

2θ
β − 1

]1/2
dWt +

1
2
f(t, Yt)

2λ2θ

β − 1
dt

= f(t, Yt)
[
α2 +

λ2θ

β − 1
+

λθβ

β − 1
− λαθ

β − 1
exp (−Yt)

]
dt

−λf(t, Yt)

√
2θ

β − 1
dWt.

For R large enough and t < τ2, we have[
α2 +

θ(λβ + λ2)
β − 1

− λαθ

β − 1
exp (−Yt)

]
≤ κ ≤ 0.

Hence, taking expectation, we get Ef(t ∧ τ2, Yt∧τ2) − f(Y0, 0) ≤ 0. So, using the
Fatou Lemma as t→∞, we get Ex exp (α2τ2) ≤ 1

xλ
. Lemma 2 is proved.

Lemma 3. For any α, θ > 0, β > 1, any λ > 0 and any m < β,

EstX
m + Est

1
Xλ

<∞.

Proof. This is straightforward due to the convergence,∫ ∞
0

xmx−β−1e−
α
x dx+

∫ ∞
0

1
xλ
x−β−1e−

α
x dx <∞.

In what follows, we shall consider recurrence properties of a couple of independent
Markov processes satisfying the same equation (6). Consider a direct product of two
identical probability spaces where two independent copies of our Markov process are
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defined, say (Zt, t ≥ 0) and (Z ′t, t ≥ 0), with the initial values Z0 = z, Z ′0 = z′,
respectively. Define a new function φR(z) ∈ C2 as follows:

φR(z) =


zm, if z ≥ R,

any C2 function, if
1
R
≤ z ≤ R,

λ ln z, if z ≤ 1
R

.

For R1 ≥ R, define a stopping time γ,

γ := inf(t ≥ 0 : Zt ∈ [
1
R1

, R1] &Z ′t ∈ [
1
R1

, R1]).

Lemma 4. For any α, θ > 0, any λ > 0 and any m < β, there exist C,α3 > 0 such
that for R1(≥ R) large enough and for any z, z′ > 0 as initial starting points for Z
and Z ′,

Ez,z′ exp(α3γ) ≤ C (φR1(z) + φR1(z′)) .

Proof. Consider a Lyapunov function with α3 > 0,

f(t, φ(z), φ(z′)) = exp(α3 t)(φ(z) + φ(z′)).

Due to Itô’s formula, we have

df(t, φ(Zt), φ(Z ′t)) = α3 exp (α3t)(φ(Zt) + φ(Z ′t))dt+ exp (α3t)Lφ(Zt)dt

+ exp (α3t)L(φ(Z ′t))dt+

√
2θ

β − 1
Z2
t φ
′(Zt)dWt

+

√
2θ

β − 1
Z2
t φ
′(Z ′t)dW

′
t .

Notice that

sup
1
R≤z≤R

LφR(z) ∨ 0 := C∗ <∞,

and also

sup
z 6∈[ 1

R ,R]

LφR(z) ≤ 0.

Define S+ := {z : LφR(z) > 0}. Then in the integration
∫ t∧γ
0

(. . .) ds, for every s,
there are two main cases to be considered:

I: At time s, one process is either (≥ R1) or (≤ 1/R1), while the other process
is in (R1 \ S+). Then the contribution from both processes in the ds term are
negative, and one of them provides a large negative value, ≤ −KR1 such that
−KR1 + α3 < 0 for any chosen α3 > 0, if R1 is large enough.



Exponential mixing for reciprocal Gamma diffusions 337

II: At time s, one process is either (≥ R1) or (≤ 1/R1), but the other process
is in the domain (S+). Then again the first process provides a large negative
contribution ≤ −KR1 , so that −KR1 + C∗ + α3 < 0 for any chosen α3 > 0, if
R1 is large enough.

Here a brief mathematical representation of the above description is given:

E f(Zt∧γ , Z ′t∧γ , t ∧ γ)− f(z, z′, 0)

≤ E

∫ t∧γ

0

(....Zs + ....Z ′s).1
(

(|Zs| > R1 ∨ |Zs| <
1
R1

) and (
1
R
< |Z ′s| < R)

)
︸ ︷︷ ︸

≤−KR1+C∗+α3≤0

ds

+E

∫ t∧γ

0

(....Zs + ....Z ′s).1
(

(|Zs| > R ∨ |Zs| <
1
R

) and (
1
R
< |Z ′s| < R)

)
︸ ︷︷ ︸

≤(−KR1+C∗≤0)

ds

+E

∫ t∧γ

0

(....Z̃s + ....Z ′s).1(
1
R1

< |Zs| < R1 and
1
R1

< |Z ′s| < R1︸ ︷︷ ︸
(≡0 since γ=0)

ds.

In both cases the term with ds is negative for s ≤ γ. Hence, we can finish the proof
similarly to the proofs of Lemmae 1 and 2. Lemma 4 is proved.

Lemma 5. For any α, θ > 0 and for every m < β, there exist λ > 0 and C > 0
such that for every x > 0,

sup
t≥0

Ex

(
Xm
t +

1
Xλ
t

)
≤ C

(
1 + xm +

1
xλ

)
. (10)

Notice that the unit on the right-hand side here has been added just for simplicity:
clearly it may be dropped. This is the only place were λ > 0 is to be chosen. Perhaps,
by some improvement of the method one can show (10) with any λ > 0. Nevertheless,
for our purposes some lambda is sufficient.

Proof. Proof of
sup
t≥0

ExX
m
t ≤ C(1 + xm) (11)

follows similarly to the proof of Lemma 2 from [1]. Hence, it suffices to show that
there exists λ > 0 such that

sup
t≥0

ExX
−λ
t ≤ C

(
1 + x−λ

)
(12)

holds true for any x > 0. Consider transformation Yt = lnXt (it does not involve
λ). In the new scale, the equation has a constant diffusion coefficient and the drift,
say, b̃(y), satisfying

yb̃(y) ≤ −c < 0, |y| ≥ c1.
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It was shown in [9] that under such condition, there exists λ > 0 and C > 0 such
that for any initial y ∈ R,

Ey exp(λ|Yt|) ≤ C exp(λ|y|), ∀ t ≥ 0. (13)

Strictly speaking, only bounded coefficients were considered in [9]. However, our
drift here is “better” in the domain of negative y values in the sense that this drift
is not just positive, but even it goes to +∞ as y → −∞. Hence, e.g. a simple
comparison theorem reduces our case to that considered in [9]. Finally, (13) implies
(12). Lemma 5 is proved.

6. Proof of Theorem 1 and 2

The proofs follow from Lemmae 4 and 5 similarly to the calculus in the proof of [1,
Theorem 1], via a Harnack inequality. Notice that, of course, instead of using Har-
nack, it is possible to apply the intersection idea, similarly to [1, Proof of Theorem
1, step 3]. Theorems 1 and 2 are proved.
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