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Abstract. In this paper we obtain some sufficient conditions for the existence of common
fixed points of multivalued mappings satisfying generalized contractive conditions in non
normal cone metric spaces. These results establish some of the most general common fixed
point theorems for two multivalued maps in cone metric spaces.
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1. Introduction and premilinaries

The study of fixed points for multivalued contractions and nonexpansive maps using
the Hausdorff metric was initiated by Markin [9]. Later, an interesting and rich
fixed point theory for such maps was developed. The theory of multivalued maps
has application in control theory, convex optimization, differential equations and
economics. Recently, Huang and Zhang [4] introduced the concept of a cone metric
space, replacing the set of positive real numbers by an ordered Banach space. They
obtained some fixed point theorems in cone metric spaces using the normality of
the cone, which induces an order in Banach spaces (see also, [1], [2]). Rezapour
and Hamlbarani Haghi [10] showed the existence of a non normal cone metric space
and also obtained some fixed point theorems in cone metric spaces (see also [5],
[7], [11], [12], [13] and [16]). Wardowski [15] introduced the concept of multivalued
contractions in cone metric spaces and, using the notion of normal cones, obtained
fixed point theorems for such mappings. The aim of this paper is to prove some
common fixed points results for multivalued mappings taking closed values in cone
metric spaces. It is worth mentioning that our results do not require the assumption
of a normal cone. Our results extend and unify various comparable results in the
literature ([6], [8] and [14]).

Let E be a topological vector space. A subset P of E is called a cone if and only
if:
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(a) P is closed, nonempty and P 6= {0};

(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;

(c) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if
and only if y − x ∈ P. A cone P is said to be normal in a normed space E if there
is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal con-
stant of P, while x� y stands for y − x ∈ intP (interior of P ).
Rezapour and Hamlbarani Haghi [10] proved that there is no normal cone with
normal constant K < 1 and for each k > 1 there is a cone with normal constant
K > k.

Definition 1. Let X be a nonempty set. Suppose that the mapping d : X ×X → E
satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

Definition 2. Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X.
For every c ∈ E with 0� c, we say that {xn} is

(i) a Cauchy sequence if there is a natural number N such that for all n,m > N,
d(xn, xm)� c.

(ii) a convergent sequence if there is a natural number N such that for all n > N,
d(xn, x)� c for some x in X.

Remark 1. If a ≤ ha, for some a ∈ P and h ∈ (0, 1) , then a = 0. A cone metric
space X is said to be complete if every Cauchy sequence in X is convergent in X.
It is known that {xn} converges to x ∈ X if and only if d(xn, x) → 0 as n → ∞.
A set A in a cone metric space X is closed if for every sequence {xn} in A which
converges to some x in X implies that x ∈ A.

Let X be a cone metric space. We denote by P (X) the family of all nonempty
subsets of X, and by Pcl (X) the family of all nonempty closed subsets of X. A point
x in X is called a fixed point of a multivalued mapping T : X → Pcl(X) provided
x ∈ Tx. The collection of all fixed points of T is denoted by F (T ).
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2. Common fixed point results

Kannan [6] proved a fixed point theorem for a single valued self mapping T of a
metric space X satisfying the property

d(Tx, Ty) ≤ h{d(x, Tx) + d(y, Ty)}

for all x, y in X and for a fixed h ∈ [0, 1
2 ). Latif and Beg [8] introduced the notion

of a K− multivalued mapping, which is the extension of Kannan mappings to mul-
tivalued mappings. Recently, Rus [14] coined the term R− multivalued mapping,
which is a generalization of a K− multivalued mapping.
In this section we obtain common fixed point theorems for two multivalued mappings
on a cone metric space without using the condition of a normal cone.
Given the fact that in a cone one has only a partial ordering, it is doubtful whether
the following theorem can be further generalized.

Theorem 1. Let (X, d) be a complete cone metric space and T1, T2 : X → Pcl(X)
two multivalued mappings such that for i, j ∈ {1, 2} with i 6= j and for each x, y ∈ X,
ux ∈ Ti(x), there exists uy ∈ Tj(y) such that

d(ux, uy) ≤ hu(x, y;ux, uy), (1)

where h ∈ (0, 1) is a constant and

u(x, y;ux, uy) ∈ {d(x, y), d(x, ux), d(y, uy),
d(x, ux) + d(y, uy)

2
,
d (x, uy) + d (y, ux)

2
}.

Then F (T1) = F (T2) 6= ∅. Also F (T1) = F (T2) ∈ Pcl(X).

Proof. Let x∗ ∈ T1(x∗). Then there exists an x ∈ T2 (x∗) such that

d(x∗, x) ≤ hu(x∗, x∗;x∗, x)

where

u(x∗, x∗;x∗, x) ∈ {d(x∗, x∗), d(x∗, x∗), d(x, x∗),
d(x∗, x∗) + d(x∗, x)

2
,
d(x∗, x) + d(x∗, x∗)

2
}

= {0, d(x, x∗),
d(x∗, x)

2
}.

Now u(x∗, x∗;x∗, x) = 0 implies that x∗ = x and, u(x∗, x∗;x∗, x) = d(x∗, x) gives
d(x∗, x) ≤ hd(x∗, x), which by Remark 1 implies that x∗ = x. Similarly, for
u(x∗, x∗;x∗, x) = d(x∗, x)/2, we obtain x∗ = x. Thus F (T1) ⊆ F (T2). Also, F (T2) ⊆
F (T1) and therefore F (T1) = F (T2).
Suppose that x0 is an arbitrary point of X. For i, j ∈ {1, 2} with i 6= j and x1 ∈
Ti(x0), there exists x2 ∈ Tj(x1) such that

d(x1, x2) ≤ hu(x0, x1;x1, x2),
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where

u(x0, x1;x1, x2) ∈ {d(x0, x1), d(x0, x1), d(x1, x2),
d(x0, x1) + d(x1, x2)

2
,

d(x0, x2) + d(x1, x1)
2

}

= {d(x0, x1), d(x1, x2),
d(x0, x1) + d(x1, x2)

2
,
d(x0, x2)

2
}.

Now, u(x0, x1;x1, x2) = d(x0, x1) implies that d(x1, x2) ≤ hd(x0, x1). If

u(x0, x1;x1, x2) = d(x1, x2)

then d(x1, x2) ≤ hd(x1, x2), which by Remark 1, implies that x1 = x2. Also, if

u(x0, x1;x1, x2) =
d(x0, x1) + d(x1, x2)

2
,

then we obtain

d(x1, x2) ≤ h

2
d(x0, x1) +

h

2
d(x1, x2)

≤ h

2
d(x0, x1) +

1
2
d(x1, x2)

and d(x1, x2) ≤ hd(x0, x1). Finally, for u(x0, x1;x1, x2) =
d(x0, x2)

2
we get

d(x1, x2) ≤ h

2
d(x0, x2) ≤ h

2
d(x0, x1) +

h

2
d(x1, x2)

≤ h

2
d(x0, x1) +

1
2
d(x1, x2),

which also implies that d(x1, x2) ≤ hd(x0, x1). Continuing this process, for x2n ∈
Tj(x2n−1), there exists x2n+1 ∈ Ti (x2n) such that

d(x2n, x2n+1) ≤ hu(x2n−1, x2n;x2n, x2n+1),

where

u(x2n−1, x2n;x2n, x2n+1) ∈ {d(x2n−1, x2n), d(x2n−1, x2n),

d(x2n, x2n+1),
d(x2n−1, x2n) + d(x2n, x2n+1)

2
,

d(x2n−1, x2n+1) + d(x2n, x2n)
2

}

= {d(x2n−1, x2n), d(x2n, x2n+1),
d(x2n−1, x2n) + d(x2n, x2n+1)

2
,
d(x2n−1, x2n+1)

2
}.

If u(x2n−1, x2n;x2n, x2n+1) = d(x2n−1, x2n), then d(x2n, x2n+1) ≤ h d(x2n−1, x2n).
For u(x2n−1, x2n;x2n, x2n+1) = d(x2n, x2n+1), d(x2n, x2n+1) ≤ h d(x2n, x2n+1),
which by Remark 1 gives x2n = x2n+1. When

u(x2n−1, x2n;x2n, x2n+1) =
d(x2n−1, x2n) + d(x2n, x2n+1)

2
,
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we obtain

d(x2n, x2n+1) ≤ h

2
[d(x2n−1, x2n) + d(x2n, x2n+1)]

≤ h

2
d(x2n−1, x2n) +

1
2
d(x2n, x2n+1)

and
d(x2n, x2n+1) ≤ hd(x2n−1, x2n).

Finally, u(x2n−1, x2n;x2n, x2n+1) = d(x2n−1, x2n+1)/2 gives that

d(x2n, x2n+1) ≤ h

2
d(x2n−1, x2n+1) ≤ h

2
[d(x2n−1, x2n) + d(x2n, x2n+1)]

≤ h

2
d(x2n−1, x2n) +

1
2
d(x2n, x2n+1)

and
d(x2n, x2n+1) ≤ hd(x2n−1, x2n).

In a similar manner, for x2n+1 ∈ Ti(x2n), there exists x2n+2 ∈ Ti (x2n+1) so that

d(x2n+1, x2n+2) ≤ hd(x2n, x2n+1).

Therefore

d(xn, xn+1) ≤ hd(xn−1, xn) ≤ h2d(xn−2, xn−2)
≤ .... ≤ hnd(x0, x1)

for all n ≥ 1 and so for m > n we have d(xn, xm) ≤ hnd(x0, x1)/(1− h).
Let 0 � c be given. Choose a symmetric open neighborhood V of 0 such that

c + V ⊆ P. Also, choose a natural number N1 such that hnd(x0, x1)/(1 − h) ∈ V
for all n ≥ N1 which implies that hnd(x0, x1)/(1 − h) � c for all n > N1. Hence
d(xn, xm) � c for all n,m > N1. Therefore {xn} is a Cauchy sequence in X. Since
X is complete, there exists an element x∗ ∈ X such that xn → x∗ as n → ∞. Let
0 � c be given and 0 < δ < min{ 1

4 , 1 − h}. Choose a natural number N such that
d(xm, x

∗) � δc for all m ≥ N. Let n ≥ N be given. Then, for x2n ∈ Tj(x2n−1),
there exists un ∈ Ti(x∗) such that

d(x2n, un) ≤ hu(x2n−1, x
∗;x2n, un),

where

u(x2n, x
∗;x2n+1, un) ∈ {d(x2n−1,x

∗), d(x2n−1, x2n), d(x∗, un),
d(x2n−1, x2n) + d(x∗, un)

2
,
d(x2n−1, un) + d(x∗, x2n)

2
}.

Note that

d(un, x
∗) ≤ d(un, x2n) + d(x2n, x

∗)
≤ hu(x2n, x

∗;x2n+1, un) + d(x2n, x
∗).
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Now, u(x2n, x
∗;x2n+1, un) = d(x2n−1, x

∗) implies that

d(un, x
∗) ≤ hd(x2n−1, x

∗) + d(x2n, x
∗)

� h(
c

2h
) +

c

2
= c.

If u(x2n, x
∗;x2n+1, un) = d(x2n−1, x2n), then

d(un, x
∗) ≤ hd(x2n−1, x2n) + d(x2n, x

∗)
≤ hd(x2n−1, x

∗) + hd(x∗, x2n) + d(x2n, x
∗)

≤ h(
c

3h
) + h(

c

3h
) +

c

3
= c.

In case u(x2n, x
∗;x2n+1, un) = d(x∗, un), then

d(un, x
∗) ≤ hd(x∗, un) + d(x2n, x

∗)

and so
d(un, x

∗) ≤ 1
1− h

d(x2n, x
∗)� c.

If u(x2n, x
∗;x2n+1, un) =

d(x2n−1, x2n) + d(x∗, un)
2

, we get

d(un, x
∗) ≤ h

2
[d(x2n−1, x2n) + d(x∗, un)] + d(x2n, x

∗)

≤ h

2
[d(x2n−1, x

∗) + d(x∗, x2n)] +
1
2
d(x∗, un) + d(x2n, x

∗)

and so

d(un, x
∗) ≤ h[d(x2n−1, x

∗) + d(x∗, x2n)] + 2d(x∗, x2n)
� c.

Finally, if u(x2n, x
∗;x2n+1, un) =

d(x2n−1, un) + d(x∗, x2n)
2

, then

d(un, x
∗) ≤ h

2
[d(x2n−1, un) + d(x∗, x2n)] + d(x2n, x

∗)

≤ h

2
[d(x2n−1, x

∗) + d(x∗, un)] +
h

2
d(x∗, x2n) + d(x2n, x

∗)

≤ 1
2
d(x2n−1, x

∗) +
1
2
d(x∗, un) +

3
2
d(x2n, x

∗)

and so

d(un, x
∗) ≤ d(x2n−1, x

∗) + 3d(x2n, x
∗)

� c.

Thus un → x∗ as n→∞. Since Ti(x∗) is closed, x∗ ∈ F (Tj) = F (Ti).
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Now, we prove that F (Ti) is closed. Let {pn} be a sequence in F (Tj) = F (Ti) such
that pn → p as n→∞. Since pn ∈ Ti(pn), there exists qn ∈ Tj(p) such that

d(pn, qn) ≤ hu(pn, p; pn, qn),

where

u(pn, p; pn, qn) ∈ {d(pn, p), d(pn, pn), d(p, qn),
d(pn, pn) + d(p, qn)

2
,

d(pn, qn) + d(p, pn)
2

}

= {d(pn, p), 0, d(p, qn),
d(p, qn)

2
,
d(pn, qn) + d(p, pn)

2
}.

Now we show that qn → p as n→∞. Let 0� c be given and 0 < δ < min{ 1
4 , 1−h}.

Choose a natural number N2 such that d(pm, p) � δc for all m ≥ N2 is given. If
u(pn, p; pn, qn) = d(pn, p) for some n, then

d(qn, p) ≤ d(qn, pn) + d(pn, p)
≤ hd(pn, p) + d(pn, p)
� c.

If u(pn, p; pn, qn)=0, then our claim follows immediately. If u(pn, p; pn, qn)= d(p, qn),
then

d(qn, p) ≤ d(qn, pn) + d(pn, p)
≤ hd(p, qn) + d(pn, p)

and so
d(qn, p) ≤

1
1− h

d(pn, p)� c.

If u(pn, p; pn, qn) = d(p, qn)/2, then

d(qn, p) ≤ d(qn, pn) + d(pn, p)

≤ h

2
d(p, qn) + d(pn, p)

≤ d(p, qn)
2

+ d(pn, p)

and so
d(qn, p) ≤ 2d(pn, p)� c.

If u(pn, p; pn, qn) = [d(pn, qn) + d(p, pn)]/2, then

d(qn, p) ≤ d(qn, pn) + d(pn, p)

≤ h

2
[d(pn, qn) + d(p, pn)] + d(pn, p)

≤ h

2
[d(pn, p) + d(p, qn) + d(p, pn)] + d(pn, p)

≤ 1
2
d(p, qn) + 2d(p, pn)
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and so
d(qn, p) ≤ 4d(pn, p)� c.

Thus qn → p as n → ∞. Since qn ∈ Tj(p) for each n ≥ 1 and Tj(p) is closed,
p ∈ Tj (p) . Therefore, F (Tj) = F (Ti) ∈ Pcl(X).

The following theorem generalizes [14, Theorem 3.4] to cone metric spaces.

Theorem 2. Let (X, d) be a complete cone metric space and T1, T2 : X → Pcl(X)
two multivalued mappings such that for i, j ∈ {1, 2} with i 6= j and for each x, y ∈ X,
ux ∈ Ti(x), there exists uy ∈ Tj(y) such that

d(ux, uy) ≤ αd(x, y) + βd(x, ux) + γd(y, uy), (2)

where α, β, γ ≥ 0 and α+β+γ < 1. Then F (T1) = F (T2) 6= φ and F (T1) = F (T2) ∈
Pcl (X).

Proof. Suppose that x0 is an arbitrary point of X. For i, j ∈ {1, 2} with i 6= j, take
x1 ∈ Ti(x0). Then there exists x2 ∈ Tj(x1) such that

d(x1, x2) ≤ αd(x0, x1) + βd(x0, x1) + γd(x1, x2),

which implies that
d(x1, x2) ≤ kd(x0, x1),

where 0 < k = (α + β)/(1 − γ) < 1. Now for x2 ∈ Tj(x1) there exists x3 ∈ Ti(x2)
such that d(x2, x3) ≤ kd(x1, x2). Continuing this process we obtain a sequence {xn}
in X with x2n−1 ∈ Ti(x2n−2), x2n ∈ Tj (x2n−1) such that d(xn, xn+1) ≤ kd(xn−1,
xn) which further implies that d(xn, xn+1) ≤ knd(x0,x1) for all n ≥ 1 Then, for
m > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm+1, xm)
≤ [k

n

+ kn+1 + ...+ km−1]d(x1, x0)
≤ knd(x0, x1)/ (1− k) .

Let 0 � c be given. Choose a symmetric open neighborhood V of 0 such that
c + V ⊆ P. Also, choose a natural number N1 such that knd(x0, x1)/(1 − k) ∈ V
for all n ≥ N1 which implies that knd(x0, x1)/(1− k)� c for all n > N1 and hence
d(xn, xm) � c for all n,m > N1. Therefore {xn} is a Cauchy sequence in X. Since
X is complete, there exists an element x∗ ∈ X such that xn → x∗ as n → ∞. Let
0� c be given. Now for x2n ∈ Tj(x2n−1), there exists un ∈ Ti(x∗) such that

d(x2n, un) ≤ αd(x2n−1, x
∗) + βd(x2n−1, x2n) + γd(x∗, un),

which further gives

d(x∗, un) ≤ d(x∗, x2n) + αd(x2n−1, x
∗) + βd(x2n−1, x2n) + γd(x∗, un),

and so

d(x∗, un) ≤ 1
1− γ

[d(x∗, x2n) + αd(x2n−1, x
∗) + βd(x2n−1, x2n)]� c
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for a sufficiently large n which shows that un → x∗ as n → ∞. Since Ti(x∗) is
closed, x∗ ∈ F (Ti) and so F (Ti) 6= φ. Let x∗ ∈ X be a fixed point of T1. Then, by
hypothesis, there exists x ∈ T2x

∗ such that

d(x∗, x) ≤ αd(x∗, x∗) + βd(x∗, x∗) + γd(x, x∗)
= γd(x, x∗),

which by using Remark1, implies that d(x∗, x) = 0, and so x∗ = x. Thus, F (T1) ⊆
F (T2). Similarly, F (T2) ⊆ F (T1).
Now we prove that F (Ti) is closed. Let {xn} be a sequence in F (Tj) = F (Ti) such
that xn → x as n→∞. Since xn ∈ Ti(xn), there exists vn ∈ Tj(x) such that

d(xn, vn) ≤ αd(xn, x) + βd(xn, xn) + γd(x, vn),

and so
d(x, vn) ≤ d(x, xn) + αd(xn, x) + γd(x, vn).

Thus,

d(x, vn) ≤ 1 + α

1− γ
d(x, xn)� c

for a sufficiently large n. Thus d(x, vn) → 0 as n → ∞. Since vn ∈ Tj(x) for each
n ∈ N and Tj(x) is closed, x ∈ Tj (x) . Hence, x ∈ F (Tj) = F (Ti).

Example 1. Let X = [0, 1], E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}. Let
d : X ×X → E be defined by

d(x, y) = (|x− y| , h |x− y|),

where h ≥ 0. Define T1, T2 : X → Pcl(X) by

T1x = [0,
x

4
] and T2x = [0,

x

3
].

Note that for x = y = 0, (2) is satisfied as ux = uy = 0. For x = y 6= 0 and
ux ∈ T1x, take uy = 0. Then

d(ux, uy) = (ux, hux) ≤ (
x

4
, h
x

4
)

≤ 1
6

(0, 0) +
2
6

(
3x
4
, h

3x
4

) +
2
6

(x, hx)

≤ 1
6

(x− y, h(x− y)) +
2
6

(x− ux, h(x− ux)) +
2
6

(x, hx)

= αd(x, y) + βd(x, ux) + γd(y, uy),

and so (2) is satisfied with α = 1/6, β = γ = 2/6. Now when x = 0, y 6= 0, then (2)
is satisfied for uy = 0. If x 6= 0, y = 0, then since uy = 0, for any ux ∈ T1x we have

d(ux, uy) ≤ (
x

4
, h
x

4
)

≤ αd(x, y) + βd(x, ux) + γd(y, uy).
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Since d(x, y) is symmetric in x and y and β = γ, it is sufficient to consider
0 < x < y, ux ∈ T1x. Take uy = 0. Then

d(ux, uy) = (ux, hux) ≤ (
x

4
, h
x

4
)

≤ 1
6

(0, 0) +
2
6

(
3x
4
, h

3x
4

) +
2
6

(y, hy)

≤ αd(x, y) + βd(x, ux) + γd(y, uy).

Now we show that for x, y ∈ X, ux ∈ T2x, there exists uy ∈ T1y such that (2) is
satisfied. For x = y = 0, (2) is satisfied as ux = uy = 0. For x = y 6= 0, ux ∈ T2x,
take uy = 0. Then we have

d(ux, uy) = (ux, hux) ≤ (
x

3
, h
x

3
)

≤ 1
6

(0, 0) +
2
6

(
2x
3
, h

2x
3

) +
2
6

(x, hx)

≤ αd(x, y) + βd(x, ux) + γd(y, uy).

Now when x = 0, y 6= 0, then (2) is satisfied for uy = 0. If x 6= 0, y = 0, then for
any ux ∈ T2x, we have uy = 0, and

d(ux, uy) = d(ux, hux) ≤ (
x

3
, h
x

3
)

≤ αd(x, y) + βd(x, ux) + γd(y, uy).

For 0 < x < y, ux ∈ T2x, take uy = 0. Then we have

d(ux, uy) = (ux, hux) ≤ (
x

3
, h
x

3
)

≤ 1
6

(0, 0) +
2
6

(
2x
3
, h

2x
3

) +
2
6

(y, hy)

≤ αd(x, y) + βd(x, ux) + γd(y, uy),

with α + β + γ = 5/6. Note that F (T1) = F (T2) 6= φ. Moreover, F (T1) = F (T2) ∈
Pcl (X).

Now we present another example with a different topological vector space as a
range.

Example 2. Let E = CR[0,∞), P = {f ∈ E : f(x) ≥ 0, x ∈ [0,∞)}, X = [0, 1]
with a usual metric and with a cone metric d : X×X → E defined by d(x, y) = fx,y,
where fx,y(t) = t |x− y| ([3]). Define T1, T2 : X → Pcl(X) as

T1x = [
x

7
,
x

5
] and T2x = [

x

6
,
x

3
].

Now if x = y, then (2) is satisfied with ux = uy, α = β = 4/10 and γ = 1/10. Also
the following cases arise:
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Case (i): x = 0, y > 0. Then ux = 0 ∈ T1x, choosing uy = y/6 ∈ T2y we have

[d(ux, uy)] (t) = fux,uy
(t) = tuy = t

y

6

≤ t[
4
10

(y) +
4
10

(0) +
1
10

(
5
6
y)]

≤ t[
4
10

(y − x) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t),

with α = β = 4/10, γ = 1/10 and for all t ∈ [0,∞).
Case (ii): x > 0, y = 0. Then, for ux ∈ T1x, choosing uy = 0 ∈ T2y we have

[d(ux, uy)] (t) = fux,uy
(t) = tux ≤ t

x

5

≤ t[
4
10

(x) +
4
10

(
4x
5

) +
1
10

(0)]

≤ t[
4
10

(x− y) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).

Case (iii): 0 < y < x. Then for ux ∈ T1x, taking uy = y/6, we have

[d(ux, uy)] t = fux,uy
(t) ≤ t(x

5
− y

6
)

≤ t[
4
10

(0) +
4
10

(
4x
5

) +
1
10

(
5
6
y)]

≤ t[
4
10

(x− y) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)]t.

Case (iv): 0 < x < y. Then, for ux ∈ T1x, taking uy = y/5, yields

[d(ux, uy)] (t) = fux,uy
(t) ≤ t(y

5
− x

7
)

≤ t[
4
10

(y − x) +
4
10

(
4x
5

) +
1
10

(
4
5
y)]

≤ t[
4
10

(y − x) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).

Now we show that for x, y ∈ X, ux ∈ T2x, there exists uy ∈ T1y such that (2) is
satisfied. We consider the following cases.
Case (i): x = 0, y > 0. Then with ux = 0 ∈ T2x, uy = y/7 ∈ T1y we have

[d(ux, uy)] (t) = fux,uy
(t) = tuy = t

y

7

≤ t[
4
10

(y) +
4
10

(0) +
1
10

(
6
7
y)]

≤ t[
4
10

(y − x) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).
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Case (ii): x > 0, y = 0. Then, for ux ∈ T2x, uy = 0 ∈ T1y we have

[d(ux, uy)] (t) = fux,uy (t) = tux ≤ t
x

3

≤ t[
4
10

(x) +
4
10

(
2x
3

) +
1
10

(0)]

≤ t[
4
10

(x− y) +
4
10

(x− ux) +
1
10

(0)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).

Case (iii): 0 < y < x. Then, for ux ∈ T2x, take uy =
8y
50

to obtain

[d(ux, uy)] (t) = fux,uy
(t) = t(ux −

8y
50

) ≤ t(x
3
− 8y

50
)

≤ t[
4
10

(x− y) +
4
10

(
2x
3

) +
1
10

(
42
50
y)]

≤ t[
4
10

(x− y) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).

Case (iv): 0 < x < y. Then, for ux ∈ T2x, taking uy = y/6 yields

[d(ux, uy)] (t) = fux,uy (t) ≤ t
∣∣∣x
3
− y

6

∣∣∣
≤ t[

4
10

(y − x) +
4
10

(
2x
3

) +
1
10

(
5
6
y)]

≤ t[
4
10

(y − x) +
4
10

(x− ux) +
1
10

(y − uy)]

= [αd(x, y) + βd(x, ux) + γd(y, uy)](t).

Also note that F (T1) = F (T2) 6= φ. Moreover, F (T1) = F (T2) ∈ Pcl (X).

Other examples in the support of Theorem 2 can be constructed by taking E = `p

( p > 0), P = {{xn}n≥1 ∈ E | xn ≥ 0}, and d(x, y) = {(ρ(x, y)/2n)1/p}n≥1, where ρ
is a metric on any nonempty set X.

The following corollary extends Theorem 4.1 of [8] to the case of two mappings
on cone metric spaces.

Corollary 1. Let (X, d) be a complete cone metric space and P a non normal cone.
If T1, T2 : X → Pcl(X) are two multivalued mappings such that for i, j ∈ {1, 2} with
i 6= j, x, y ∈ X and ux ∈ Ti(x), there exists uy ∈ Tj(y) such that

d(ux, uy) ≤ h[d(x, ux) + d(y, uy)],

where α, β, γ ≥ 0 are fixed constants with α+ β + γ < 1. Then F (T1) = F (T2) 6= φ
and F (T1) = F (T2) ∈ Pcl (X) .

The following corollary extends Theorem 4.1 of [8] to cone metric spaces.
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Corollary 2. Let (X, d) be a complete cone metric space and P a non normal cone.
If T : X → Pcl(X) is a multivalued mapping such that for each x, y ∈ X and
ux ∈ T (x), there exists uy ∈ T (y) such that

d(ux, uy) ≤ h[d(x, ux) + d(y, uy)],

where 0 ≤ h < 1
2

. Then F (T ) 6= φ and F (T ) ∈ Pcl (X) .

Corollary 3. Let (X, d) be a complete cone metric space and P a non normal cone.
If T : X → Pcl(X) is a multivalued mapping such that for each x, y ∈ X and
ux ∈ T (x), there exists uy ∈ T (y) such that

d(ux, uy) ≤ αd(x, y),

where 0 ≤ α < 1. Then F (T ) 6= φ and F (T ) ∈ Pcl (X) .

Proof. Take β = γ = 0, and T1 = T2 = T in Corollary 1.

Corollary 4. Let (X, d) be a complete cone metric space and P a non normal cone.
If T : X → Pcl(X) is a multivalued mapping such that for each x, y ∈ X and
ux ∈ T (x), there exists uy ∈ T (y) such that

d(ux, uy) ≤ αd(x, y) + βd(x, ux) + γd(y, uy),

where α, β, γ ≥ 0 are fixed constants with α+ β + γ < 1, then T has a fixed point.

The above corollary is an extension of Theorem 3.1 of [14] to cone metric spaces.
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