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Are adaptive Mann iterations really adaptive?
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Abstract. We show that the Adaptive Mann Iterations deserve to be named in such
way. Namely, we will show that they adapt to the properties of the operator, even if the
information on these properties are not known to the Mann Iteration a-priori. We will also
show on an example that the Adaptive Mann Iterations perform better numerically than
the usual Mann Iterations.
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1. Introduction

Let X be a real Banach space. For p > 1 the set-valued mapping Jp : X → 2X∗

given by
Jp(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖p−1},

where X∗ denotes the dual space of X and 〈·, ·〉 denotes the duality pairing, is called
the duality mapping of X. By jp we denote a single-valued selection of Jp. Notice
that as a consequence of the Hahn-Banach Theorem, Jp(x) is nonempty for every x
in X.

A Banach space X is said to be p-smooth, if it admits a weak polarization law, i.e.
if there exists a positive constant Gp such that for all x, y in X and all jp(x) ∈ Jp(x)

‖x− y‖p ≤ ‖x‖p − p〈jp(x), y〉+ Gp‖y‖p.

Notice that for 1 < p < ∞ the sequence spaces `p, Lebesgue spaces Lp and Sobolev
spaces Wm

p are min{2, p}-smooth [9, 15]. Due to the polarization identity every
Hilbert space is 2-smooth.

A map T : X → X is called strongly pseudocontractive, if for some p > 1 there
exists a constant k > 0, such that for each x and y in X there is a jp(x−y) ∈ Jp(x−y)
satisfying

〈Tx− Ty, jp(x− y)〉 ≤ (1− k)‖x− y‖p.

A map T is called strongly accretive if (I − T ) is strongly pseudocontractive.
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Strongly accretive operators are of great importance in physics, since it is well
known that many significant problems in physics can be modeled as time-dependent
nonlinear equations of the form

du

dt
+ S(t)u = 0

, where S is a strongly accretive operator. The main focus of interest lies on the
equilibrium points of such a system. Therefore many solvers of the equation

Su = 0

have been introduced in recent years. Notice that u solves the above equation, if
(and only if) it is a fixed point of the mapping T := I − S. It is well-known (cf.
e.g. [5, 3, 4, 7, 13, 14, 12]) that Mann iterations [11] are well suited methods for
finding such a fixed point of the strongly pseudocontractive mapping T . We recall
that the sequence (xn) is a Mann iteration, if for some nonnegative sequence (αn)
the recursion

xn+1 = (1− αn)xn + αnTxn with x0 ∈ C (1)

is satisfied.
In [10] the author introduced a problem-adapted selection strategy for the update

coefficients (αn), if T is a strongly pseudocontractive mapping defined on some p-
smooth space X.

In this paper we will introduce a new and improved version of the strategy
mentioned before. We will also show that the strategy of this paper is adaptive
in the sense that it adapts any continuity of the operator. This result is the main
difference and improvement to the Mann iteration proposed by Chidume in [5].
Convergence rates results for Mann iterations are very rare. To the author’s best
knowledge this is the first time that convergence rates for accretive operators subject
to their continuity were proven and hence it is the first time that the adaptivity of
the Mann iterations was shown.

2. Construction of the adaptive Mann iterations

In this section we construct adaptive Mann iterations for strongly pseudocontractive
and strongly accretive operators mapping X to X. The construction carried out in
this section is an improved version of the construction presented in [10].

Let X be a p-smooth Banach space, T : X → X strongly pseudocontractive and
suppose T has a fixed point. If T has a fixed point, then by the strong pseudocon-
tractivity this fixed point is unique (cf. e.g. [10]). Since X is p-smooth and T is
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strongly pseudocontractive, we have

‖xn+1 − x∗‖p ≤ ‖xn − x∗‖p − αn · p〈xn − Txn, jp(xn − x∗)〉
+αp

n ·Gp‖xn − Txn‖p

= ‖xn − x∗‖p − αn · p〈xn − x∗ − (Txn − Tx∗), jp(xn − x∗)〉
+αp

n ·Gp‖xn − Txn‖p

≤ ‖xn − x∗‖p − αn · p‖xn − x∗‖p + αn · p(1− k)‖xn − x∗‖p

+αp
n ·Gp‖xn − Txn‖p .

We arrive at the central inequality of our construction

‖xn+1 − x∗‖p ≤ ‖xn − x∗‖p − αn · pk‖xn − x∗‖p + αp
n ·Gp‖xn − Txn‖p. (2)

We notice that the right-hand side in (2) is smaller than the left-hand side as long
as

0 < αn < α+
n :=

(
pk
Gp
· ‖xn−x∗‖p

‖xn−Txn‖p

) 1
p−1

. (3)

By differentiation we can see that the right-hand side in (2) is minimal for

α∗n =
(

k
Gp
· ‖xn−x∗‖p

‖xn−Txn‖p

) 1
p−1

. (4)

By τn we denote the number defined by

τp :=
(

1
p

) 1
p−1

. (5)

Then we see that
α∗n = τnα+

n .

We do not know the exact value of ‖xn − x∗‖p. Assume that we know an upper
bound for Rn on ‖xn − x∗‖p, i.e.

‖xn − x∗‖p ≤ Rn.

Then we replace ‖xn − x∗‖p in (3) by βnRn. We shall impose additional conditions
on βn later. For the time being assume that βn ∈ (0, 1).

Notice that our assumption ‖xn− x∗‖p ≤ Rn is not a boundedness condition for
the operator. In fact, it is still possible that the range of the operator is unbounded.
Notice further that we are allowed to overestimate ‖xn−x∗‖p by arbitrary large Rn.
This is very important in real world applications. Usually some information on the
magnitude of x∗ is available (e.g. by the structure of the operator). Then it is easy
to set Rn = D(‖xn‖+ C)p, where C is the magnitude estimation and D is some big
number.

We already noticed that α∗n = τpα
+
n . Our estimation of the exact distance

‖xn − x∗‖p of course also influences the optimal choice of τp. Therefore we replace
it by some number tn ∈ (0, 1). The introduction of this second parameter tn is the
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main improvement to the construction proposed in [10]. We introduce now auxiliary
variables

hn :=
(

(pk)p

Gp
· Rn

‖xn−Txn‖p

) 1
p−1

and q := p
p−1 . (6)

Then all admissible αn can be written as

αn = 1
pkhnβq−1

n tn

for some choice of βn and tn, where αn is admissible if the related xn+1 admits
‖xn+1 − x∗‖ ≤ ‖xn − x∗‖.

For any fixed choice of αn = 1
pkhnβq−1

n tn with βn ∈ (0, 1) and tn ∈ (0, 1) we have

αp
nGp‖xn − Txn‖p = 1

(pk)p · pkpqRq
n

(Gp‖xn−Txn‖p)q−1 · β(q−1)p
n tpn = hnβq

ntpnRn.

By (2) we get for xn with ‖xn − x∗‖p ≥ βnRn

‖xn+1 − x∗‖p ≤ (1− hntnβq
n + hnβq

ntpn)Rn . (7)

On the other hand, if ‖xn − x∗‖p < βnRn we conclude again with (2) that

‖xn+1 − x∗‖p ≤ (βn + hnβq
ntpn)Rn. (8)

The main idea of our construction is to choose βn and tn optimal, in the sense
that the estimations in (7) and (8) are minimized. Thus such optimal βn and tn
minimize

max{1− hntnβq
n + hnβq

ntpn, βn + hnβq
ntpn}.

for fixed hn. One can show (cf. Appendix), that the above maximum is minimal for
βopt

n and topt
n , where βopt

n is the solution of the equation

τphnβ

p+1
p−1
n = 1− βn (9)

and topt
n is defined via

topt
n = τp(βopt

n )q−1,

where τp is the same as in (5). Then the optimal value of αn, which we denote by
αopt

n , is given by

αopt
n = 1

pkhn(βopt
n )q−1τn(βopt

n )q−1

= 1
pk τphn(βopt

n )
p+1
p−1 (βopt

n )−1

= 1
pk

1−βopt
n

βopt
n

.

One can check that

1− hntopt
n (βopt

n )q + hn(βopt
n )q(topt

n )p = βopt
n + hn(βopt

n )q(topt
n )p .
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By (7) or (8) we therefore get for αopt
n

‖xn+1 − x∗‖p ≤ (βopt
n + hn(βopt

n )q(topt
n )p)Rn

=
(
βopt

n + 1
p (1− βopt

n )βopt
n

)
Rn

=
((

1 + 1
p

)
βopt

n − 1
p (βopt

n )2
)

Rn .

Thus the number Rn+1 defined by

Rn+1 :=
((

1 + 1
p

)
βopt

n − 1
p (βopt

n )2
)

Rn (10)

fulfills
‖xn+1 − x∗‖p ≤ Rn+1 < Rn,

where the right-hand side is true due to the fact that βopt
n as defined by (9) is zero,

only if xn is already a fixed point of T . We of course assume that the iteration stops
then.

Algorithm 1 (Adaptive Mann iteration).

(S0) Choose an arbitrary x0 ∈ X with ‖x0 − x∗‖p ≤ R0. Set n = 0.

(S1) Stop if Txn = xn, else compute the unique positive solution βn of the equation

p
(

kp

Gp
· Rn

‖xn−Txn‖p

) 1
p−1

β

p+1
p−1
n = 1− βn. (11)

(S2) Set

αn = 1
pk · 1−βn

βn

Rn+1 =
((

1 + 1
p

)
βn − 1

pβ2
n

)
Rn.

(S3) Set
xn+1 = (1− αn)xn + αnTxn.

(S4) Let n ← (n + 1) and go to step (S1).

The constants Gp and k are as introduced in Section 1.

The formulas in (S1) and (S2) follow directly from (3), (6), (9) and (10).

3. Convergence results

In this section we will state several theorems, which justify the name of adaptive
Mann iterations. In fact, we will show that Algorithm 1 automatically adapts to the
continuity of the underlying operator T .

In what follows let hn and q be defined as in (6).
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Theorem 1. Let X be a p-smooth Banach space and T : X → X a strongly pseu-
docontractive map (with fixed point x∗), mapping bounded sets on bounded sets. Let
R0 be the initial guess on the distance ‖x0 − x∗‖p. Then the sequence (xn) defined
by the Mann iteration of Algorithm 1 converges strongly to the fixed point of T (if
T has a fixed point). The rate of convergence is given by

‖xn − x∗‖ ≤ Cn−
p−1

p ,

for some C > 0.

Proof. For the proof we use a nice trick also used in [1] and [8]. Consider

1
Rq−1

n+1

− 1
Rq−1

n

=
1−

[(
1 + 1

p

)
βn − 1

pβ2
n

]q−1

[(
1 + 1

p

)
βn − 1

pβ2
n

]q−1 ·R1−q
n

≥ 1−
[(

1 + 1
p

)
βn − 1

pβ2
n

]q−1

·R1−q
n .

Since q > 1, we have

1
Rq−1

n+1

− 1
Rq−1

n

≥ 1−
[(

1 + 1
p

)
βn − 1

pβ2
n

]
·R1−q

n

≥ (1− 1
pβn)(1− βn) ·R1−q

n .

Due to 0 < βn < 1 we get

1
Rq−1

n+1

− 1
Rq−1

n

≥ 1
q (1− βn) ·R1−q

n .

By the Taylor expansion of the right-hand side in (9) or (11) (as a function of βn),
a simple geometric argument or by employing the implicit function theorem, we get
that

1− βn ≥ τphn

1+
p+1
p−1 τphn

.

Therefore

1
Rq−1

n+1

− 1
Rq−1

n

≥ 1
q (1− βn) ·R1−q

n

≥ 1
q ·

τphn

1+
p+1
p−1 τphn

·R1−q
n .

Notice that
x

1+x ≥ 1
2 min{1, x}.

Hence

1
Rq−1

n+1

− 1
Rq−1

n

≥ 1
2q · p−1

p+1 min{1, p+1
p−1τphn}R1−q

n .
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By construction we have R1−q
n ≥ R1−q

0 . Therefore the numbers R1−q
n are uniformly

bounded away from zero. Since T maps bounded sets on bounded sets, for M defined
by

M := {‖Tx− Tx∗‖p :x ∈ X, ‖x− x∗‖p ≤ R0},
we have that

M < ∞.

Hence

‖xn − Txn‖p ≤ 2p−1(‖xn − x∗‖p + ‖Tx∗ − Txn‖p) ≤ 2p−1(R0 + M) < ∞.

Therefore by definition of hn the numbers hnR1−q
n are also uniformly bounded away

from zero. Thus
1

Rq−1
n+1

− 1
Rq−1

n

≥ c

for some c > 0. We have

1
Rq−1

n+1

≥ 1
Rq−1

n+1

− 1
Rq−1

0

=
n∑

k=0

1
Rq−1

k+1

− 1
Rq−1

k

≥ (n + 1)c.

Then
Rq−1

n+1 ≤ c−1(n + 1)−1.

Finally, we arrive at

‖xn − x∗‖ ≤ R1/p
n ≤ c

−p−1
p n

−p−1
p ,

since −1/(q − 1) · 1/p = −(p− 1)/p.

Remark 1. Let us mention:

1. Notice that the proof of strong convergence (without any convergence rate) can
be carried out in the same way as the proof of Theorem 3.2 in [10].

2. We also remark that the theorem is also true, if T is only locally strongly
accretive.

3. The crucial point in the estimations above is that M (as defined above) is finite.
It would therefore suffice to demand that the range of the R0 norm ball around
the fixed point is bounded, instead of the slightly more restrictive assumption
that the range of all bounded sets is bounded.

We can now prove that the Adaptive Mann iteration of Algorithm 1 automatically
adapts the continuity of T .

Theorem 2. Assume that additionally to the assumptions made in Theorem 1 the
operator T is (locally) Hlder continuous, i.e. for every bounded set there exist some
0 < γ < 1 and κ > 0, such that

‖Tx− Ty‖ ≤ κ‖x− y‖γ
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for all x, y in that bounded set. Then the Mann iteration converges as

‖xn − x∗‖ ≤ Cn
− 1

1−γ ·
p−1

p ,

for some C > 0.

Proof. Along the lines of the proof in Theorem 1 we get

1

R
(1−γ)(q−1)
n+1

− 1

R
(1−γ)(q−1)
n

≥ 1
q ·

τphn

1+
p+1
p−1 τphn

·R(1−γ)(1−q)
n .

We notice that since the identity operator is Lipschitz, it is also locally Hlder. There-
fore the operator I − T is also locally Hlder. We get then

‖xn − Txn‖p = ‖(I − T )xn − (I − T )x∗‖p ≤ C‖xn − x∗‖γp ≤ CRγ
n

for some generic constant C > 0. Hence,

hn ≥ CR(1−γ)(q−1)
n .

We arrive at
1

R
(1−γ)(q−1)
n+1

− 1

R
(1−γ)(q−1)
n

≥ C.

Therefore as in the proof of Theorem 1 we conclude

R
(1−γ)(q−1)
n+1 ≤ Cn−1.

Finally, we arrive at

‖xn − x∗‖ ≤ R−1/p
n ≤ Cn

− 1
1−γ ·

p−1
p .

Remark 2. Let us mention:

1. Notice that the Hlder exponent γ does not have to be given in Algorithm 1.
Despite the fact that the algorithm does not have the information about the
Hlder continuity, it is automatically able to achieve a faster convergence rate
than for merely bounded operators. We think that this behavior of Algorithm
1 justifies the ’adaptivity’ in the name.

2. We would also like to remark that the last theorem induces that Algorithm 1
may perform better than the algorithm proposed by Chidume in [5] for certain
operators.

Theorem 3. Assume that additionally to the assumptions made in Theorem 1 the
operator T is (locally) Lipschitz continuous, i.e. for every bounded set there exists
some κ > 0, such that

‖Tx− Ty‖ ≤ κ‖x− y‖
for all x, y in that bounded set. Then the Mann iteration converges (almost) linearly,
i.e. there exists a constant C > 0, such that

‖xn − x∗‖ ≤ C · exp(−n/C).
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Proof. For this very special case the proof is rather simple. Consider

Rn+1 =
((

1 + 1
p

)
βn − 1

pβ2
n

)
Rn.

We show that βn are bounded away from one. From (9) we see that βn → 1 only
if hn → 0. With T also I − T is (locally) Lipschitz. Consider therefore with some
generic constant C > 0

hp−1
n ≥ C Rn

‖xn−Txn‖p = C Rn

‖(I−T )xn−(I−T )x∗‖p ≥ C Rn

Rn
≥ C.

Hence there exists some Γ < 1, such that

Rn+1 ≤ ΓRn

for all n ≥ 1. Therefore the sequence (Rn) converges geometrically. But (Rn) also
majorizes the sequence (‖xn − x∗‖p), which proves the claim.

Remark 3. Again we remark that Algorithm 1 does not need the information about
the Lipschitz continuity to converge (almost) linearly.

Notice that the results of Theorem 1 extend canonically to strongly accretive
mappings. Therefore, as a consequence of Theorem 1 we can prove the following
corollary:

Corollary 1. Let X be a p-smooth Banach space, f ∈ X and S : X → X strongly
accretive. Suppose S maps bounded sets on bounded sets and suppose the equation

Sx = f

has a solution. Then this solution is unique and the sequence (xn) defined by the
Mann iteration of Algorithm 1 with T : X → X and

T (x) = f + x− Sx

converges strongly to this unique solution x∗ with the rate

‖xn − x∗‖ ≤ Cn−
p−1

p .

If in addition S is also γ-Hlder continuous, then the rate improves to

‖xn − x∗‖ ≤ Cn
− 1

1−γ ·
p−1

p .

If S is Lipschitz continuous, then the (xn) converge linearly to the solution x∗.

Remark 4. If in addition to strong pseudocontractivity in Theorem 1 (resp. strong
accretivity in Corollary 1) we assume that T (resp. S) is Lipschitz continuous, then
the existence of the fixed point of T (resp. solution of Sx = f) follows from [2, 6].

We remark that our approach can also be extended to set-valued strong pseudo-
contractions and strongly accretive mappings without any difficulties.
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4. Numerical example

In this section we consider a simple example to visualize the strength of the adaptive
Mann iterations. We consider the rotation

Rota,φ =
(

cos(φ) a · sin(φ)
−a · sin(φ) cos(φ)

)
, a ≥ 1,

as a mapping from X to X, where X is the space R2 equipped with the euclidean
norm. Hence the space X is a Hilbert space. One can check that Rota,φ is strongly
accretive with

k = 1− cos(φ).

On the other hand, Rota,φ is not a contraction for a ≥ 1, since

‖Rota,φ x‖2 = (cos(φ)2 + a2 sin(φ)2)‖x‖2.

Further, it is clear, that the fixed point is (0, 0). In all our simulations the starting
point was x0 = (1, 0)T and the value of a was 10.

A classical assumption on the step-sizes αn is given by
∑

α2
n = 0 and

∑
αn = ∞. (12)

Hence a classical candidate for a step-size is

αn =
1
n

.

However, if condition (12) is fulfilled for some (αn), then it is also fulfilled for all
c · (αn) with 0 < c < ∞.
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Figure 1. Convergence results of standard step-size rule αn = c/n for the first 1000
iterations and variable values of φ from 0.1 to 1.0 in 0.1 steps. The y-axis denotes
the squared distance of the current iterate to the fixed-point

In the first step of our analysis we have to clarify how the choice of a particular
c influences the behavior of the Mann iteration. A typical result is displayed in
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Figure 1. We see that for the choice c = 1 the iterates diverge from the fixed point
in the few first iterations. They begin to converge only in the late iterations. We
further see that the convergence is lethargic in the sense that the lines representing
the convergence are very flat. This behavior was to be expected.

We further observe that for big values of φ the iterates diverge more than for
small values. And in general they converge rather slow. This is remarkable, since
the bigger φ, the more accretive the problem. Therefore we expect the iterates
to converge faster with increasing the value of φ. We conclude that for c = 1
the iterates behave counterintuitive. However, the expected behavior that stronger
accretiveness (bigger k) implies faster convergence if we choose c = 0.1. Although
we do not visualize it here, we remark that if the value of c is chosen too small, the
results are again getting counterintuitive. Altogether we see that the right choice of
the constant c is crucial in applications. However, the standard convergence proofs
do not deliver any information on the appropriate choice of c.

This is completely different for the adaptive Mann iterations as we can see in
Figure 2. First we have chosen the initial estimate on the distance to 1, which is the
true distance of the start point x0 = (1, 0)T to the fixed point (0, 0). We see that
for adaptive Mann iterations the full information on accretivity is used immediately
by the iteration. The more accretive the mapping, the faster the convergence of the
Mann iterations.

On the other hand, the information about the exact distance to the fixed point
is usually not available. However, usually some sensible estimate on the magnitude
of the distance is available due to the constraints of the problem. What happens if
we overestimate the value R0 by several orders of magnitude? An example is again
given in Figure 2. We have tested our results for R0 = 100. Hence we overestimated
the distance function by two orders of magnitude. But again the accretiveness is
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Figure 2. Convergence results of adaptive Mann iterations for the first 1000 iterations
and variable values of φ from 0.1 to 1.0 in 0.1 steps. The y-axis denotes the squared
error of the current iterate to the fixed-point

transported by means of convergence speed. The more accretive the mapping, the
faster the convergence. Altogether we see that the results for Mann iterations always
agree with the intuition.
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At last we notice that the adaptive Mann iterations converge faster than the
standard version. The slope of the distances in Figure 1 (representing the standard
Mann iteration) is getting flatter and flatter with increasing the number of iterations.
This is not the case for the adaptive Mann iterations in Figure 1. This was to be
expected after the results of Theorem 3.

We summarize: In our numerical simulations adaptive Mann iterations converged
faster than standard Mann iterations. And the results of the adaptive Mann iter-
ations with respect to the dependency on the accretivity were more intuitive in
comparison with the standard Mann iterations. Altogether we dare say that for the
class of operators discussed in this paper (i.e. strongly accretive) the adaptive Mann
iterations have better convergence properties than the standard Mann iterations.

5. Appendix

We show that for fixed hn the maximum

max{1− hntnβq
n + hnβq

ntpn, βn + hnβq
ntpn} (13)

is minimal for βopt
n and topt

n , with βopt
n the solution of the equation

τphnβ

p+1
p−1
n = 1− βn (14)

and topt
n defined via

topt
n = τp(βopt

n )q−1,

where τp is the same as in (5).
We consider the function

(βn, tn) 7→ max{1− hntnβq
n + hnβq

ntpn, βn + hnβq
ntpn}.

One can easily see that for small βn and small tn the maximum is dominated by
the first term. For large βn and large tn the maximum is dominated by the second
term. We use this observation in our analysis.

For fixed hn and βn the function

tn 7→ 1− hntnβq
n + hnβq

ntpn (15)

is minimal for
tn = τp .

Next we notice that the function

βn 7→ 1− hnτnβq
n + hnβq

nτp
n

is monotonically decreasing in βn. We also notice that for tn = τp the second term
of maximum (13), i.e. the function

βn 7→ βn + hnβq
nτp



Adaptive Mann iterations 411

is monotonically decreasing. Hence the first term of maximum (13) is bigger than
the second as long as

1− hnτnβq
n + hnβq

nτp
n ≥ βn + hnβq

nτp

or equivalently
1− βn ≥ hnτnβq

n.

We know that for βn ∈ (0, 1) this inequality is fulfilled in some subinterval

(0, β−n ),

where β−n is the solution of
τphnβq

n = 1− βn. (16)

Altogether we have proven, that for (βn, tn) ∈ (0, β−n )× (0, 1) the maximum (13) is
minimal for (βn, tn) = (β−n , τn).

Next we consider the region (β−n , 1) × (0, 1). We notice that for fixed βn > β−n
the function

tn 7→ βn + hnβq
nτp

n (17)

is monotonically increasing. On the other hand, for small values of tn the function
in (17) is bigger than the function in (15). From the above considerations we know
that for tn = τn we have 1 − hntnβq

n + hnβq
ntpn < βn + hnβq

ntpn. And we know that
in the interval (0, τp) the function in (15) is monotonically decreasing. Together, we
have that for fixed βn > β−n maximum (13) is minimal, if

1− hntnβq
n + hnβq

ntpn = βn + hnβq
ntpn

or equivalently
1− βn = hntnβq

n. (18)

We now consider the second term in maximum (13) along the line of (βn, tn)
fulfilling (18). (Of course we could also consider the first term, since along line (18)
both sides have the same value.) We have then

βn + hnβq
ntp = βn + hnβq

n

(
1−βn

βq
n
· 1

hp
n

)
.

The right hand-side in the last equation, as function of βn, is minimal for βn fulfilling

τphnβ
p+1
p−1
n = 1− βn. (19)

We denote the solution of the above equation by β+
n . Then the point (β+

n , t+n ) with
t+n defined by

t+n = τp(β+
n )q−1

is located on the line described by (18). We notice that

q = p
p−1 < p+1

p−1 .
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Therefore comparing (16) and (19), we see that

β−n < β+
n .

Hence, for (βn, tn) ∈ (β−n , 1)×(0, 1) maximum (13) is minimal for (βn, tn) = (β+
n , t+n ).

Since the point (β−n , τn) is also located on the line fulfilling (18), we get that (β+
n , t+n )

is the minimizer of maximum (13) in the whole square (0, 1)× (0, 1). This shows the
assertion.
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