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Abstract. In this paper geodesics and geodesic spheres in SL(2,R) geometry are consid-
ered. Exact solutions of ODE system that describes geodesics are obtained and discussed,
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geodesic spheres are determined and visualization of SL(2,R) geometry is given as well.
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1. Introduction

—_~—

SL(2,R) geometry is one of the eight homogeneous Thurston 3-geometries

—_~—

E3 8% H3 S xR, H? x R, SL(2,R), Nil, Sol.

e~

SL(2,R) is a universal covering group of SL(2,R) that is a 3-dimensional Lie group

—_~—

of all 2 x 2 real matrices with determinant one. SL(2,R) is also a Lie group and
it admits a Riemann metric invariant under right multiplication. The geometry of

SL(2,R) arises naturally as geometry of a fibre line bundle over a hyperbolic base
plane H?. This is similar to Nil geometry in a sense that Nil is a nontrivial fibre

line bundle over the Euclidean plane and SL(2,R) is a twisted bundle over H?2.

In SL(2,R), we can define the infinitesimal arc length square using the method
of Lie algebras. However, by means of a projective spherical model of homogeneous
Riemann 3-manifolds proposed by E. Molnar, the definition can be formulated in a
more straightforward way. The advantage of this approach lies in the fact that we
get a unified, geometrical model of these sorts of spaces.

Our aim is to calculate explicitly the geodesic curves in SL(2,R) and discuss
their properties. The calculation is based upon the metric tensor, calculated by E.
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Molnar using his projective model (see [3]). It is not easy to calculate the geodesics
because in the process of solving the problem we face a nonlinear system of ordinary
differential equations of the second order with certain limits at the origin. We will

also explain and determine the geodesic spheres of SL(2,R) geometry.
The paper is organized as follows. In Section 2 we give a description of the

hyperboloid model of SL(2,R) geometry. Further, in Section 3, the geodesics of

SL(2,R) space are explicitly calculated and discussed. Finally, in Section 4 the
geodesic half-spheres in  SL(2,R) are given and illustrated for radii R < 7 small
enough.

—_—

2. Hyperboloid model of SL(2,R) geometry

—~

In this section we describe in detail the hyperboloid model of SL(2,R) geometry,
introduced by E. Molnar in [3].

The idea is to start with the collineation group which acts on projective 3-space
P3(R) and preserves a polarity i.e. a scalar product of signature (— — ++). Let us
imagine the one-sheeted hyperboloid solid

H: —2%0 — 2zt + 2222 4+ 2322 < 0

in the usual Euclidean coordinate simplex with the origin Fy = (1;0;0;0) and the
ideal points of the axes E{°(0;1;0;0), £5°(0;0;1;0), ES°(0;0;0;1). With an appro-
priate choice of a subgroup of the collineation group of ‘H as an isometry group, the
universal covering space H of our hyperboloid H will give us the so-called hyper-

boloid model of SL(2,R) geometry.
We start with the one parameter group of matrices

cosp singp 0 0
—sinp cosp 0 0 (1)
0 0 cosy —siny
0 0 singp cosyp

which acts on P3(R) and leaves the polarity of signature (— — ++) and the hyper-
boloid solid H invariant. By a right action of this group on the point (z%; z'; 2%; 23)

we obtain its orbit

1 2

(2° cos o — 2t sin ; 20 sin o + 2! cos @; 22 cos ¢ + 23 sin p; —x? sin @ + 2° cos ), (2)

which is the unique line (fibre) through the given point. We have pairwise skew
fibre lines. Fibre (2) intersects base plane EgEoE3 (2! = 0) at the point

Z = (2%2° + 'zt 0; 22 — 223y 2023 + 2la?). (3)

This action is called a fibre translation and ¢ is called a fibre coordinate (see Fig-
ure 1).
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. X 1 2 3
By usual inhomogeneous E? coordinates = %45, y = &5, z = %5, 20 # 0 fibre

20
(2) is given by

(La,y,2) - (1

r+tany y+z-tanp z—y-tany
"l—z-tanp’1—x-tanp 1 —x-tanp )’

where ¢ # § + km. Particularly, the fibre through the base plane point (0,y, 2) is
given by (tanp,y + z - tanp, z — y - tan ) and through the origin by (tan ¢, 0, 0).

.

—~—

Figure 1. Hyperboloid model of SL(2,R)

The subgroup of collineations that acts transitively on the points of H and maps
the origin Ey(1;0;0;0) onto X (2°; ';22; 23) is represented by the matrix

20 b 2?2 28
1.0 .3 2
; —zt 20 23 —z
N
T: ()= 22 23 0 g | (4)
a3 —x? —gl 20

whose inverse up to a positive determinant factor @ is

20—zt —g2? 3

_ i 1 b 20 —z3 22
Tli(tg)lz_' .2 .3 .0 .1 |- (5)

Q ¢ —x° T T

Remark 1. A bijection between H and SL(2,R), which maps point (z°;2'; 22; 23)

_(dDbY . . . . .
to matriz <c a) 1s provided by the following coordinate transformations

a=a"+23 b=az'+2% c=-a'42% d=2"—2°
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This will be an isomorphism between translations (4) and (cicbz with the usual

multiplication operations, respectively. Moreover, the request bc — ad < 0, by using
the mentioned coordinate transformations, corresponds to our hyperboloid solid

—2%2% — 2lat + 2222 + 232% < 0.
Similarly to fibre (2) that we obtained by acting of group (1) on the point (z°; x'; 22; 23)
cosy sing

—_~—

in H, a fibre in SL(2,R) is obtained by acting of group —sing cosgp )’ on the
"point” <(Ci Z) € SL(2,R) (see [3] also for other respects).
Let us introduce new coordinates
z° = coshrcos o
z' = coshrsing (6)

2?2 = sinhr cos(¥) — )

23 = sinhrsin(¥ — ¢))

as hyperboloid coordinates for H, where (r, 1) are polar coordinates of the hyperbolic
base plane and ¢ is just the fibre coordinate (by (2) and (3)). Notice that

—202° — 22t + 2222 + 232% = — cosh®r +sinh?r = —1 < 0.

Now, we can assign an invariant infinitesimal arc length square by the standard
method called pull back into the origin. Under action of (5) on the differentials
(dx®; dxt; da?; dx®), by using (6) we obtain the following result

(ds)? = (dr)? + cosh? rsinh® r(dd)? + ((dg) + sinh® r(d9))>. (7)

Therefore, the symmetric metric tensor field g is given by

1 0 0
gij=10 sinh? 7’((:osh2 r + sinh? r) sinh?r | . (8)
0 sinh? r 1

Remark 2. Note that inhomogeneous coordinates corresponding to (6), that are
important for a later visualization of geodesics and geodesic spheres in E®, are given

by

x
T=— = tany,
x
2 ¥ —
y = m—o = tanhr - cos(V — ) (9)
x Ccos
3 in(¥ —
o= tanhr. 209

x0 CoS ¥
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3. Geodesics in SL(2,R)

The local existence, uniqueness and smoothness of a geodesics through any point
p € M with initial velocity vector v € T, M follow from the classical ODE theory on
a smooth Riemann manifold. Given any two points in a complete Riemann manifold,
standard limiting arguments show that there is a smooth curve of minimal length
between these points. Any such curve is a geodesic.

Geodesics in Sol and Nil geometry are considered in [2], [5] and [6].

In local coordinates (u',u?, u?) around an arbitrary point p € SL(2,R) one has

a natural local basis {9y, 02,3}, where 09; = %. The Levi-Civita connection V is
defined by Vp,0; := Ffj@k, and the Cristoffel symbols Ffj are given by

1
Ffj = §gkm <6igmj + ajgim - 8mgij)7 (10)
where the Einstein-Schouten index convention is used and (g%) denotes the inverse
matrix of (gi;).

Let us write u!

= r,u? = 9,u® = 9. Now by formula (10) we obtain Cristoffel

symbols Ffj , as follows
0 0 0
F}j = | 0 3(1 —2cosh2r)sinh2r —coshrsinhr |,
0 —coshrsinhr 0
0 cothr + 2tanhr -0 Tlsinh -
I‘?j = | cothr + 2tanhr 0 0 , (11)
cosh rlsinh T 0 0
0 —2sinh? rtanhr — tanhr
Ffj = | —2sinh®rtanhr 0 0
—tanhr 0 0

Further, geodesics are given by the well-known system of differential equations
i* +u'' T, = 0. (12)

After having substituted coefficients of Levi-Civita connection given by (11) into
equation (12) and by assuming first » > 0, we obtain the following nonlinear system
of the second order ordinary differential equations

i = sinh(2r) 9 ¢ + %(sinh(élr) - sinh(27“))19197 (13)
27 . ;
¢ = 27 tanhr (2 sinh? 7 9 + ¢). (15)

By homogeneity of SL(2,R), we can extend the solution to limit » — 0, due to the
given assumption, as follows later on.
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From (14) we get

. Jsinh(2r) 1 .
e P 5(3 cosh(2r) — 1)9, (16)
and after inserting (16) into (13) we have
2f _ 99 sinh(2r) ..
— cosh(2 . 1
Snh(2 ) o7 cosh(2r)99 (17)
Multiplying (17) by 2sinh(2r)7 we get a differential
Ld g/ .. . 9 X
1% (47‘7‘ + sinh (27‘)1919) =0 (18)
and hence
4(7)% 4 sinh?(2r)(9)? = 4C?, (19)

where C'is the constant of integration, depending on initial conditions to be discussed
later on.
Therefore we obtain
. 2,/C? — (1)
g4 2VC ()2
sinh(2r)
As a consequence of (13) and (14), the sign will be (=) due to the geometric
interpretation of a fibre translation, but we will discuss this later.
From derivative of (20) we get

- 277 27 cosh(2r)
J—_ r7 +9 /702 7 cosh(2r) . (21)

sinh(2r) (:I: c? — (r)2) blnhQ (2r)

Further, by inserting (20) and (21), equation (16) has the following form

(20)

2 _ (/)2
! _ @cosh(2r) — 1) EVE (22)
9 (im> sinh(2r)
Now we put (20) and (22) in (15) and get
s ey
@ — tanh(r) r + © 5 ) 7 =0. (23)
(:i: 02— (T)z) cosh”(r)

From this equation it follows

&+ tanh(r) (+£1/C7 = (7)2) = D, (24)

where D is a new constant of integration.
By equalizing ¢ from (22) and (24) we have

2 ()2
- 2oosh(20) - DY — D tan(r) (/7= (7).

2 (/7= ()
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By reordering and multiplying by —27 sinh(2r) we get

" inh(2r) + 27-Dsinh(2r) + 27 cosh(2r) (j: c? = (7‘)2) -0,

+,/C? — (1)?
which is again a differential and implies
+4/C? — (7)2sinh(2r) + D cosh(2r) = E. (25)

In consistence with homogeneity we may consider }in}) r(t) = 0. This implies D = E,

and relation (25) then obtains the following form
+4/C? — (7)2 = —Dtanhr. (26)

Now from (26), (20) and (24) we have respectively

7 = +v/C2 — D2 tanh®r, (27)
-D

= —F, 28

cosh? r (28)

¢ = D(1 +tanh?r) = 2D + 9. (29)

Here we see the consistence with » — 0
#0)=C, 9(0)=-D, ¢(0)=D. (30)

At the same time we can assume 7(0) = 0, ¥(0) = 0, ¢(0) = 0, as initial conditions.
Further we consider the arc length

5= /O dT\/ ()2 4 cosh? (1) sinh? (r) (9)2 + ( 4 sinh?(r)19)2, (31)
that by (27), (28) and (29) gives

t
3:/ dr\/C2 + D2, (32)
0

normalized with C? + D? = 1 ie. C = 7(0) = cosa, D = ¢(0) = sina and
9(0) = —D = —sin« can be assumed.

Now, we have to consider three different cases: D = C > 0,
D >C>0and C > D > 0, with respect to the former equations as well.
(i) Case D = C > 0, or equivalently oo = 7.
In this case we obtain Dt = for(t) cosh p dp = sinhr(t), and hence

r(t) = arsinh(Dt). (33)
From (28) and (29), with initial conditions ¢(0) = 0 and ¥(0) = 0, we obtain

9(t) = —arctan(Dt), (34)
o(t) = 2Dt — arctan(Dt).
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Particularly, C'= D implies a = 7 and hence D = %

(ii) Case C' > D > 0, or equivalently tan o < 1.
From (27) we have

r(t) d r(t) hod
t:/ P . :/ CoSap ap , (35)
r(0) v/ C? — D2 tanh” p 0 \/(02 — D?)sinh? p + C2
and by substitution u = +/C? — D? sinh p, after integration, we obtain
1
t= m a,rsinh%
and hence
r(t) = arsinh ¢ sinh(y/C2 — D2 t) (36)
B 02 — D2

According to (28), we have

9 9 —D(C?-D?)
—D(C - D ) cosh?(v/C2—D2 t)

9= :
C2cosh?(v/C2 = D2 t)— D2 (C2? — D2) + D2 tanh?(v/C2 — D2 t)

and hence by using substitution u = D tanh(y/C? — D? t), after integration, we get

9¥(t) = — arctan < tanh (/C? — D? t)) (37)

02 D2

Finally, from (29) we have (t) = 2D t + ¥(t) and hence

D
JoT— D2

o(t) = 2D t — arctan (

tanh (\/C? — D? t)) (38)

05
00

-05

—~—

Figure 2. Geodesics in SL(2,R) - Case a = & and o =
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Figure 2 shows geodesics through the origin for C' = ?, D= % andC =D = ?,
and parameter ¢ € [—1, 1], respectively.
(iii) Case D > C > 0, or equivalently tan o > 1.

Similarly to the previous case, we start with equation

f /T(T) dp _ /T(T) cosh p dp
r(0) /O2?— D2tanh®p  Jr(0) \/02 — (D2 — C?)sinh? p

and by using substitution u = v/D? — C? sinh p, after integration, we obtain

t= # arcsin u
- VDZ—(? C
and hence
r(t) = arsinh (DZ—Cz sin(y/D? — C2 t)) (39)
From (28) we get
—D(D*-C?)
—D(D2 - 02) cos2(v/D2—C2 t)

T D2 (2cos2(VDZ_C2t) (D2—C2)+ D*tan®(VD2 —C2t)’

and hence, by using substitution « = Dtan(yv/D? — C? t), after integration, we
obtain

9(t) = — arctan ( tan (/D2 — C? t)). (40)

D
JDE_C?

Similarly to the former case ¢(t) = 2D t 4+ ¥(t) and hence

©(t) = 2D t — arctan ( tan (\/D? — C? t)) (41)

D
D2 _ (2

Figure 3 shows geodesic through the origin for C' = %, D = ? and parameter
te[-1,1].

Remark 3. One can easily observe special cases a =0,

r(s) =s, z(s) =0
I(s) =0, y(s) = tanhs
o(s) =0, z(s) =0,

and o = 3,
r(s) =0, x(s) =tans
os)=—s  yls)=0
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s

Figure 3. Geodesic in SL(2,R) - Case a = %

Geodesic line (hyperboloid coordinates)

Case

0<D=sina<C=cosa | r,(s)=arsinh (“7% sinh(v/cos 2 s))

0<a< .

. Jq(s) = —arctan (\/“““73 tanh(+/cos 2 s))
X COS z2x

(H2-like direction) Pa(s) =2sina s+ Ja(s)

D=C= g r(s) = arsinh (?s)

a=7
- V2

b g ¥(s) = — arctan ( > 3)

(separating light direction) | ¢(s) =12 s+ ¥(s)

0<C=cosa<D=sina 7o (s) = arsinh ( fii?za sin(\/m s))

T<a<s |
PR ¥ (8) = —arctan (\/% tan(v/— cos 2« s))
(fibre-like direction) Yo (s) =2sina s+ 94(s)

)

[SIE

Table 1. Table of geodesics restricted to SL(2,R), s € (—%,

e~ —

4. Geodesic spheres in SL(2,R) geometry

After having investigated geodesic curves, we can consider geodesic spheres. Geodesic
spheres in Sol model geometry are visualized in [1]. For Nil geodesics, problems
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with geodesic Vil spheres and balls, and for analogous translation spheres and balls,
we refer to [4], [5], [7] and [8], respectively.

In SL(2,R) geometry geodesic spheres of radius R are given by following equa-
tions

X(R’ ¢7a) =T (8 = R7a)7
Y(R,9,a) =y (s=R,a)cosd — z (s = R,a) sin ¢, (42)
Z(R,p,a) =y (s=R,a)sind + z (s = R, ) cos ¢,

where z,y, z are Euclidean coordinates of geodesics given in Table 1, that are trans-
formed according to formulas (9). Here ¢ € (—m, 7] denotes the longitude and
o€ (—g, g] the altitude coordinate.

For R > % we consider the projective extension and the universal covering space

—~—

SL(2,R) = H by (1) (see [3]) for the fibre coordinate ¢ € R by extra conventions.
That is not visual any more!

In Figure 4 geodesic half-spheres in SL(2,R) are shown. Dark parts correspond
to geodesics determined by 0 < o < 7, light parts correspond to geodesics deter-

mined by § < a < 7 and black curves between these parts correspond to a = 7.
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Figure 4. Geodesic half-spheres in SL(2,R) of radius 0.5, 1 and 1.5, respectively
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