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ON CONVERGENTS FORMED FROM DIOPHANTINE

EQUATIONS
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Keio University, Japan

Abstract. We compute upper and lower bounds for the approxi-
mation of certain values ξ of hyperbolic and trigonometric functions by
rationals x/y such that x, y satisfy Diophantine equations. We show that
there are infinitely many coprime integers x, y such that

|yξ − x| ≪
log log y

log y

and a Diophantine equation holds simultaneously relating x, y and some
integer z. Conversely, all positive integers x, y with y ≥ c0 solving the
Diophantine equation satisfy

|yξ − x| ≫
log log y

log y
.

Moreover, we approximate sin(πα) and cos(πα) by rationals in connection
with solutions of a quadratic Diophantine equation when tan(πα/2) is a
Liouville number.

1. Introduction and statement of the results in the case of

hyperbolic functions

Let pn/qn denote the nth convergent of the number

e = exp(1) = [2, 1, 2k, 1]
∞

k=1.
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Put Pk = p3k+1, Qk = q3k+1 (k = 0, 1, 2, . . .), P0 = 3, P−1 = 1, P−2 = 1, Q0 =
1, Q−1 = 1, Q−2 = −1, P−k = Pk−3, and Q−k = −Qk−3 (k = 3, 4, 5, . . . ). By
[5, Theorem 1.1], we know that the following identities hold.
(1.1)
Pn+2 = 2(2n + 5)Pn+1 + Pn and Qn+2 = 2(2n + 5)Qn+1 + Qn (n ∈ Z).

A similar result can be proven for the leaping convergents of the number

e1/s = exp

(

1

s

)

= [1, s(2k − 1) − 1, 1, 1]
∞

k=1 (s ≥ 2).

Put P0 = 1, P1 = p3 = 2s + 1, Pk = p3k (k = 2, 3, . . . ), Q0 = 1, Q1 = q3 =
2s − 1, and Qk = q3k (k = 2, 3, . . . ). Then by [11, Theorem 1], we have
(1.2)
Pn+2 = 2s(2n + 3)Pn+1 + Pn and Qn+2 = 2s(2n + 3)Qn+1 + Qn (n ≥ 0).

The preceding recurrence relations, (1.1) and (1.2), imply PnQn ≡ 1 (mod 2)
for all n and for all s ≥ 1. Let h(x) be a function with

h ∈ C(1)[1 + δ, 3] −→ R, min
1+δ≤t≤3

|h′(t)| > 0,

where δ is an arbitrary small positive number. In particular, h′(x) takes its
minimum and maximum for 1+δ ≤ x ≤ 3. In our applications we choose h(x)
as rational functions such that at rational points p/q the functions h take the
form

h

(

p

q

)

=
g1(p, q)

g2(p, q)

where g1, g2 ∈ Z[p, q]. Then we had the following.

Lemma 1.1 ([7, Theorem 3]). Let s ≥ 1 be an integer and let Pn, Qn, and
h be as above. Then the inequalities

C1
log log Qn

Q2
n log Qn

≤
∣

∣

∣

∣

h(e1/s) − h

(

Pn

Qn

)
∣

∣

∣

∣

≤ C2
log log Qn

Q2
n log Qn

(n ≥ 3)

hold, where C1 and C2 are effectively computable positive constants depending
only on s and the function h.

In [7] the application of this Lemma to various functions h leads to the
following approximation results. The basic idea is initiated in [6]. In what
follows, all the constants C3, C4, . . . , C18 appearing in the rest of this section
depend only on s.

Proposition 1.2. Let s be a positive integer and x and y(≥ 3) relatively
prime integers with y ≡ 0 (mod 2) such that x2 + y2 is a square. Then

∣

∣

∣

∣

y sinh

(

1

s

)

− x

∣

∣

∣

∣

> C3
log log y

log y
.
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On the other hand, there are infinitely many pairs x, y as just described sat-
isfying

∣

∣

∣

∣

y sinh

(

1

s

)

− x

∣

∣

∣

∣

< C4
log log y

log y
.

Proposition 1.3. Let s ≥ 1 be an integer and x and y(≥ 3) relatively
prime integers with y ≡ 0 (mod 2) such that x2 − y2 is a square. Then

∣

∣

∣

∣

y cosh

(

1

s

)

− x

∣

∣

∣

∣

> C5
log log y

log y
.

On the other hand, there are infinitely many pairs x, y as just described sat-
isfying

∣

∣

∣

∣

y cosh

(

1

s

)

− x

∣

∣

∣

∣

< C6
log log y

log y
.

Proposition 1.4. Let s ≥ 1 be an integer and x and y(≥ 3) relatively
prime integers with x ≡ 1 (mod 2) such that y2 − x2 is a square. Then

∣

∣

∣

∣

y tanh

(

1

s

)

− x

∣

∣

∣

∣

> C7
log log y

log y
.

On the other hand, there are infinitely many pairs x, y as just described sat-
isfying

∣

∣

∣

∣

y tanh

(

1

s

)

− x

∣

∣

∣

∣

< C8
log log y

log y
.

Theorem
Diophantine

equation
ξs

Theorem 1.5 x2 + y2 = z4 1

2

(

sinh

(

1

s

)

− cosech

(

1

s

)

)

Theorem 1.6 x2 + y2 = 2z2
sinh

(

1
s

)

− 1

sinh
(

1
s

)

+ 1

Theorem 1.7 x3 + 4y3 = z2
sinh

(

4
s

)

+ cosh
(

4
s

)

+ 4 sinh
(

1
s

)

+ 4 cosh
(

1
s

)

1 − 2 sinh
(

3
s

)

− 2 cosh
(

3
s

)

Theorem 1.8 x2 + xy + y2 = z2
2 sinh

(

1
s

)

2 + cosh
(

1
s

)

− sinh
(

1
s

)

Theorem 1.9 x2 + y2 = u4 − v2 1

2
sinh

(

2

s

)

Table 1. Theorems dealing with hyperbolic functions
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One goal of this paper is to treat more Diophantine equations and the cor-
responding hyperbolic functions. A similar paper [1] appeared without giving
bounds. Our emphasis here is to give computable bounds, too. We organize
this paper as follows: first, we give more examples of values of hyperbolic
functions , which can be approximated by rationals satisfying Diophantine
equations (Theorems 1.5 - 1.9). Then, in the final section 6, we generalize
our results to the approximation of values of trigonometric functions at spe-
cific rational points (Theorem 6.1). Finally, we treat the approximations of
sin(πα) and cos(πα) by rationals with numerators and denominators solving
the Pythagorean equation x2 + y2 = z2, when additionally tan(πα/2) is as-
sumed to be a Liouville number (Theorems 6.4, 6.5). The Table 1 gives an
overview on the subsequent theorems dealing with hyperbolic functions. For
any rational function h let h−1 be the inverse function, always defined in an
interval centered around some β with h′(β) 6= 0.

Theorem 1.5. Let s ≥ 1 be an integer and let

ξs :=
1

2

(

sinh

(

1

s

)

− cosech

(

1

s

))

.

Then there are infinitely many triplets (x, y, z) of integers satisfying simulta-
neously

|yξs − x| < C9

√
y log log y

log y
and x2 + y2 = z4.

Conversely, for any integer s ≥ 1 and for given integers x, y(≥ 3), z with
x2 + y2 = z4, we have the inequality

|yξs − x| > C10

√
y log log y

log y
.

Theorem 1.6. Let s ≥ 1 be an integer and let

ξs :=
sinh(1/s) − 1

sinh(1/s) + 1
, h(t) :=

t2 − 2t − 1

t2 + 2t − 1
.

Then there are infinitely many triplets (x, y, z) of integers satisfying simulta-
neously

|yξs − x| < C11
log log y

log y
and x2 + y2 = 2z2.

Conversely, for any integer s ≥ 1 and for given positive integers x, y(≥ 3), z

with y > x, h−1(x/y) >
√

2 − 1, and x2 + y2 = 2z2, we have the inequality

|yξs − x| > C12
log log y

log y
.
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Theorem 1.7. Let s ≥ 1 be an integer and let

ξs :=
sinh(4/s) + cosh(4/s) + 4 sinh(1/s) + 4 cosh(1/s)

1 − 2 sinh(3/s) − 2 cosh(3/s)
.

Then there are infinitely many triplets (x, y, z) of integers satisfying simulta-
neously

|yξs − x| < C13

√

|y| log log |y|
log |y| and x3 + 4y3 = z2.

Conversely, for s ≥ 1 and for given integers x, y, z with −y ≥ 3 and x3+4y3 =
z2, we assume that

(x, y, z) ∈
{

(p(p3 + 4q3), q(q3 − 2p3), p6 − 10p3q3 − 2q6) : p, q ∈ Z,

q(q3 − 2p3) ≤ −3
}

and that

x

y
≤ − (

3

√

5 + 3
√

3)(3 +
√

3)

3 + 2
√

3
,

p

q
>

3

√

5 + 3
√

3 (s = 1), 3

√

1/2 <
p

q
<

3

√

5 + 3
√

3 (s > 1).

Then we additionally have the inequality

|yξs − x| > C14

√

|y| log log |y|
log |y| .

Theorem 1.8. Let s ≥ 1 be an integer and let

ξs :=
2 sinh(1/s)

2 + cosh(1/s) − sinh(1/s)
.

Then there are infinitely many triplets (x, y, z) of integers satisfying simulta-
neously

|yξs − x| < C15
log log y

log y
and x2 + xy + y2 = z2.

Conversely, for any integer s ≥ 1 and for given positive integers x, y(≥ 3), z
with x2 + xy + y2 = z2, we have the inequality

|yξs − x| > C16
log log y

log y
.

Theorem 1.9. Let s ≥ 1 be an integer and let

ξs :=
1

2
sinh

(

2

s

)

.
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Then there are infinitely many quadruplets (x, y, u, v) of integers satisfying
simultaneously

|yξs − x| < C17

√
y log log y

log y
and x2 + y2 = u4 − v2.

Conversely, for any integer s ≥ 1 and for given positive integers x, y(≥ 3), u, v
with x2 + y2 = u4 − v2, we assume that

(x, y, u, v) ∈
{

(p4 − q4, 4p2q2, p2 + q2, 2pq(p2 − q2)) : p, q ∈ Z+, p > q
}

.

Then we additionally have the inequality

|yξs − x| > C18

√
y log log y

log y
.

As can be seen from these results and their proofs, |qξs −x| tends to zero
when the parametric representation of the solutions x, y of the corresponding
Diophantine equations are given by homogeneous forms of degree two. In
Theorems 1.7, 1.9, and 6.1, it is hard to say whether all solutions of the
Diophantine equations are given by the above mentioned parameterizations.
Therefore, we preferred to deal with stronger conditions for the lower bounds
of |yξs − x|.

2. An auxiliary Lemma

First, we mention that for every rational function

R(α) =
gtα

t + gt−1α
t−1 + · · · + g0

huαu + hu−1αu−1 + · · · + h0

we have

(2.1) R
(

e1/s
)

=

∑t
ν=1 gν sinh(ν/s) +

∑t
ν=0 gν cosh(ν/s)

∑u
µ=1 hµ sinh(µ/s) +

∑u
µ=0 hµ cosh(µ/s)

,

which follows immediately from the identity e1/s = sinh(1/s)+cosh(1/s). We
shall apply (2.1) with integral coefficients, and t, u not exceeding 4.

Lemma 2.1. Let s ≥ 1 be an integer and let h(t) ∈ Q(t) \ Q. Then there
exists a closed interval Is = [e1/s − δ, e1/s + δ] centered around e1/s such that
for any positive coprime integers p, q with q ≥ 3 the following holds.

(2.2)
p

q
∈ Is =⇒

∣

∣h(e1/s) − h(p/q)
∣

∣ > C
log log q

q2 log q
,

where δ and C are positive constants depending possibly on s and the function
h.
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Proof. Since h(t) is a non-constant rational function with algebraic coef-
ficients, we know by Lindemann’s theorem that h(e1/s) 6= 0 and h′(e1/s) 6= 0.
Hence there is a closed interval Is =

[

e1/s − δ, e1/s + δ
]

with δ > 0 such that

(2.3) h(t) ∈ C(1)(Is) and h′(t) 6= 0 (t ∈ Is).

Then, by the mean-value theorem, we have

(2.4) C23

∣

∣e1/s − t
∣

∣ <
∣

∣h(e1/s) − h(t)
∣

∣ < C24

∣

∣e1/s − t
∣

∣ (t ∈ Is)

with

C23 := min
t∈Is

|h′(t)| > 0 and C24 := max
t∈Is

|h′(t)| > 0.

Let p, q be integers with q ≥ 3 and p/q ∈ Is. We can assume without loss
of generality that

(2.5)
∣

∣h(e1/s) − h(p/q)
∣

∣ ≤ log log q

q2 log q
,

since otherwise for such rationals p/q the inequality in (2.2) is already satisfied
with C ≤ 1. Thus, by (2.4) and (2.5), there exists a constant C25 such that

(2.6)

∣

∣

∣

∣

e1/s − p

q

∣

∣

∣

∣

<
log log q

C23q2 log q
<

1

3q2
(q ≥ C25).

Then from the well-known properties of the convergents of simple continued
fractions, we find p/q = pk/qk for some k > 0, where pk/qk is the kth conver-
gent of e1/s. If the (k + 1)th partial quotient ak+1 of the continued fraction
expansion of e1/s is 1, we have for q ≥ qn that

∣

∣

∣

∣

e1/s − p

q

∣

∣

∣

∣

=

∣

∣

∣

∣

e1/s − pk

qk

∣

∣

∣

∣

>
1

(2 + ak+1)q2
k

=
1

3q2
k

≥ 1

3q2
,

which contradicts (2.6). Hence, by the definition of Pn and Qn, i.e.,

(2.7)
Pn

Qn
=

p3n+1

q3n+1
(if s = 1) or

Pn

Qn
=

p3n

q3n
(if s ≥ 2),

we have p/q = Pn/Qn for some n, and so p = Pn and q = Qn since gcd(p, q) =
1. Therefore, by the left-hand inequality in Lemma 1.1, we get

∣

∣

∣

∣

h(e1/s) − h

(

p

q

)
∣

∣

∣

∣

=

∣

∣

∣

∣

h(e1/s) − h

(

Pn

Qn

)
∣

∣

∣

∣

> C1
log log Qn

Q2
n log Qn

= C1
log log q

q2 log q

for q ≥ C25. Hence, for some 0 < C < min{1, C1}, the lemma is proven.

Remark 2.2. Lemma 2.1 also holds without the condition gcd(p, q) = 1,
since then we have to deal with Qn ≤ q.
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3. Parameter solutions of Diophantine equations

The lemmata in this section can be proven by straightforward computa-
tions. Therefore, the details are left to the reader.

Lemma 3.1 ([3, p.466], [4, p.256]). All positive integral solutions of

(3.1) x2 + y2 = z4

are given by

x = (p2 − q2)
2 − (2pq)

2
= p4 − 6p2q2 + q4,

y = 4pq(p2 − q2),

z = p2 + q2

(up to exchange of x and y), where p, q ∈ Z. Moreover, if we put

h(t) :=
(t2 − 1)

2 − 4t2

4t(t2 − 1)
,

we have x/y = h (p/q) for any solution x, y(6= 0) of the above equation (3.1).
The function h(t) is monotonously increasing for t > 1, and h ∈ C(1)(1,∞).

Lemma 3.2 ([2, p. 353, Corollary 6.3.14], [12, p. 13]). All positive integral
solutions of

(3.2) x2 + y2 = 2z2

are given by

x = p2 − q2 − 2pq,

y = p2 − q2 + 2pq,

z = p2 + q2

(up to exchange of x and y), where p, q ∈ Z. Moreover, if we put

h(t) :=
t2 − 2t − 1

t2 + 2t − 1
,

we have x/y = h (p/q) for any solution x, y(6= 0) of the above equation

(3.2). The function h(t) is monotonously increasing for t >
√

2 − 1, and

h ∈ C(1)(
√

2 − 1,∞).

Lemma 3.3 ([9]). A set of integral solutions of

(3.3) x3 + 4y3 = z2,

where x, y, z are relatively prime in pairs, is given by

x = p(p3 + 4q3),

y = q(q3 − 2p3),

z = p6 − 10p3q3 − 2q6,
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where p, q ∈ Z. Moreover, if we put

h(t) := t
4 + t3

1 − 2t3
,

we have x/y = h (p/q) for any solution x, y(6= 0) of the above equation (3.3).

The function h(t) is monotonously increasing for 0.7937 . . . = 3

√

1/2 < t <
3

√

5 + 3
√

3 = 2.1684 . . ., monotonously decreasing for t >
3

√

5 + 3
√

3, and
h ∈ C(1)( 3

√

1/2,∞).

Lemma 3.4 ([4, p. 406]). All positive integral solutions of

(3.4) x2 + xy + y2 = z2

are given by

x = p2 − q2,

y = 2pq + q2,

z = p2 + pq + q2

(up to exchange of x and y), where p, q ∈ Z with p > q. Moreover, if we put

h(t) :=
t2 − 1

2t + 1
,

we have x/y = h (p/q) for any solution x, y(6= 0) of the above equation
(3.4). The function h(t) is monotonously increasing for t > −1/2, and
h ∈ C(1)(−1/2,∞).

Lemma 3.5 ([4, p. 260]). A set of positive integral solutions of

(3.5) x2 + y2 = u4 − v2

is given by

x = p4 − q4,

y = 4p2q2,

u = p2 + q2,

v = 2pq(p2 − q2)

(up to exchange of x and y), where p, q ∈ Z with p > q. Moreover, if we put

h(t) :=
t2

4
− 1

4t2
,

we have x/y = h (p/q) for any solution x, y(6= 0) of the above equation (3.5).
The function h(t) is monotonously increasing for t > 0, and h ∈ C(1)(0,∞).
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4. Proof of Theorem 1.5

By the function h(t) defined in Lemma 3.1, we have

ξs := h
(

e1/s
)

=
(e2/s − 1)

2 − 4e2/s

4e1/s(e2/s − 1)
=

(e1/s − e−1/s)
2 − 4

4(e1/s − e−1/s)

=
sinh2(1/s) − 1

2 sinh(1/s)
=

1

2

(

sinh(1/s) − cosech(1/s)
)

.

Let Pn, Qn (n ≥ 3) be convergents of e1/s given by (2.7), and let

xn = P 4
n − 6P 2

nQ2
n + Q4

n,

yn = 4PnQn(P 2
n − Q2

n),

zn = P 2
n + Q2

n.

Then it follows from Lemma 3.1 and PnQn ≡ 1 mod 2 that

x2
n + y2

n = z4
n, xn > 0, yn > 0, zn > 0, 4|xn, 4|yn, 2|zn, and

xn/yn = h(Pn/Qn).

Applying Lemma 1.1, we have

(4.1)

∣

∣

∣

∣

ξs −
xn

yn

∣

∣

∣

∣

=

∣

∣

∣

∣

h(e1/s) − h

(

Pn

Qn

)∣

∣

∣

∣

≤ C2
log log Qn

Q2
n log Qn

.

Since 1 < Pn/Qn < 3 for all integers n ≥ 1,

(4.2) Q2
n < PnQn < PnQn(P 2

n − Q2
n) =

yn

4
< P 3

nQn < 27Q4
n.

Particularly, for Qn ≥ 3, we get

Q7
n >

Q3
nyn

108
≥ yn

4
, log Qn >

log(yn/4)

7
,

and so

Q2
n >

√
yn

6
√

3
=

√

yn/4

3
√

3
, log log Qn < log log(yn/4).

Hence, from (4.1) we conclude that
∣

∣

∣

∣

ξs −
xn

yn

∣

∣

∣

∣

< 21
√

3C2
log log(yn/4)

√

yn/4 log(yn/4)
(n ≥ 1).

Setting

C9 := 21
√

3C2, x := xn/4, y := yn/4, z := zn/2,

we get the upper bound in Theorem 1.5.



ON CONVERGENTS FORMED FROM DIOPHANTINE EQUATIONS 277

Conversely, we apply Lemma 2.1 to the function h defined in Lemma 3.1.
There exists a nontrivial closed interval Is ⊂ (1,∞) centered around e1/s such
that for any positive integers p, q(≥ 3), p/q ∈ Is the inequality

(4.3)
∣

∣

∣
h(e1/s) − h(p/q)

∣

∣

∣
> C

log log q

q2 log q

holds. Let positive integers x, y(≥ 3), z be given such that x2 +y2 = z4. Since
h((1,∞)) = R, x/y may take every rational number. By Lemma 3.1 there are
integral parameters p, q with

x = p4 − 6p2q2 + q4,

y = 4pq(p2 − q2),

z = p2 + q2,

and x/y = h(p/q). By h′(t) > 0 (t ∈ Is), the inverse function h−1 exists on
h(Is), i.e. h−1(x/y) = p/q. Now assuming p/q = h−1(x/y) ∈ Is, we obtain
the inequality (4.3), namely

∣

∣

∣

∣

ξs −
x

y

∣

∣

∣

∣

> C
log log q

q2 log q
.

The interval Is has the form Is = [e1/s −α, e1/s + α], where 0 < α < e1/s − 1.
Hence, if p/q ∈ Is, then p > q(e1/s − α), so that we get p2 − q2 > βq2 with

β := (e1/s − α)
2 − 1. Thus we have y = 4pq(p2 − q2) > 4q4β

√
1 + β > 4βq4

or q2 <
√

y/(2
√

β). Then, for some positive constant C26 depending at most
on s, we get

∣

∣

∣

∣

ξs −
x

y

∣

∣

∣

∣

> C26
log log y√

y log y
(y ≥ 3).

Since h is monotonously increasing on (0,∞), there exists a constant C27 such
that the inequality |ξs − x/y| > C27 > 0 holds for p/q = h−1(x/y) 6∈ Is.

5. Remarks on the proofs of Theorems 1.6 - 1.9

In this section we sketch the proofs of Theorems 1.6 - 1.9. The argu-
ments are always the same as in the proof of Theorem 1.5 given in section 4.
Therefore we only mention the main formulas of the proofs.

Proof of Theorem 1.6. This Theorem is based on Lemma 3.2.
Upper bound: We have

xn = P 2
n − Q2

n − 2PnQn,

yn = P 2
n − Q2

n + 2PnQn = (Pn + Qn)2 − 2Q2
n,

zn = P 2
n + Q2

n.

By Qn < Pn < 3Qn (n ≥ 1) we get 2Q2
n < yn < 14Q2

n, and so

Q2
n >

yn

14
, log Qn >

log(yn/14)

2
> C28 log yn, log log Qn < log log yn.
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Lower bound: We have

ξs = h(e1/s) =
sinh(1/s) − 1

sinh(1/s) + 1

and

x = p2 − q2 − 2pq,

y = p2 − q2 + 2pq > 3,

z = p2 + q2.

The assumption x/y < 1 of the theorem implies that x/y belongs to the range
of h. In addition, we have Is ⊂ [1,∞). Thus, Is = [e1/s − α, e1/s + α], where
0 < α < e1/s−1. If p/q ∈ Is, then p > q(e1/s−α), and y = (p+q)2−2q2 > βq2,

where β = (e1/s−α+1)2−2 > 2. For p/q = h−1(x/y) 6∈ Is and p/q >
√

2−1,
the inequality |yξs − x| > C > 0 holds, since h is monotonously increasing on

(
√

2− 1,∞). In particular, h−1 exists for every ε > 0 on [
√

2− 1 + ε,∞).

Proof of Theorem 1.7. This Theorem is based on Lemma 3.3.
Upper bound: We have

xn = Pn(P 3
n + 4Q3

n),

yn = Qn(Q3
n − 2P 3

n) < 0,

zn = P 6
n − 10P 3

nQ3
n − 2Q6

n.

By Qn < Pn < 3Qn (n ≥ 1) we get Q4
n < |yn| < 53Q4

n, and so

Q2
n >

√

|yn|
53

, log Qn >
log(|yn|/53)

4
> C29 log |yn|, log log Qn < log log |yn|.

Lower bound: Let ρ =
3

√

5 + 3
√

3. By the condition of the theorem

x

y
≤ − (

3

√

5 + 3
√

3)(3 +
√

3)

3 + 2
√

3
= h(ρ),

so that x/y(> 0) belongs to the range of h. We have

ξs = h(e1/s) = e1/s 4 + e3/s

1 − 2e3/s

=
sinh(4/s) + cosh(4/s) + 4 sinh(1/s) + 4 cosh(1/s)

1 − 2 sinh(3/s) − 2 cosh(3/s)
< 0,

and

x = p(p3 + 4q3),

y = q(q3 − 2p3) < 0,

z = p6 − 10p3q3 − 2q6.

In addition, Is ⊂ [ρ,∞) (s = 1), Is ⊂ [1, ρ] (s > 1). Thus, Is =
[e1/s − α, e1/s + α], where 0 < α < e − ρ if s = 1, 0 < α < e1/s − 1 if
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s > 1. If p/q ∈ Is, then p > q(e1/s − α), and |y| = q(2p3 − q3) > βq4, where
β = 2(e1/s −α)3−1 > 1. If p/q 6∈ Is, we again distinguish the cases s = 1 and
s > 1. If s = 1, we have the additional condition of the theorem that p/q > ρ.
Since h is monotonously decreasing on (ρ,∞), there exists a constant C′ such

that |ξs − x/y| > C′ > 0. If s > 1, we have 3

√

1/2 < p/q < ρ. Since h is

monotonously increasing on ( 3

√

1/2, ρ), there exists a constant C′′ such that
|ξs − x/y| > C′′ > 0.

Proof of Theorem 1.8. This Theorem is based on Lemma 3.4.
Upper bound: We have

xn = P 2
n − Q2

n,

yn = 2PnQn + Q2
n,

zn = P 2
n + PnQn + Q2

n.

Since Qn < Pn < 3Qn (n ≥ 1), we have 3Q2
n < yn < 7Q2

n, and so

Q2
n >

yn

7
, log Qn >

log(yn/7)

2
> C30 log yn, log log Qn < log log yn.

Lower bound: We have

ξs = h(e1/s) =
2 sinh(1/s)

2 + cosh(1/s) − sinh(1/s)

and

x = p2 − q2,

y = 2pq + q2,

z = p2 + pq + q2.

In addition, Is ⊂ [0,∞). Hence, Is = [e1/s − α, e1/s + α], where 0 < α <
e1/s. If p/q ∈ Is, then p > q

(

e1/s − α
)

, and y = 2pq + q2 > βq2, where

β = 2(e1/s − α) + 1 > 1. Since h is monotonously increasing on [0,∞), there
exists a constant C′

30 such that the inequality |ξs − x/y| > C′
30 > 0 holds for

p/q = h−1(x/y) 6∈ Is. In particular, h−1 exists on [0,∞).

Proof of Theorem 1.9. This Theorem is based on Lemma 3.5.
Upper bound: We have

xn = P 4
n − Q4

n,

yn = 4P 2
nQ2

n,

un = P 2
n + Q2

n,

vn = 2(P 2
n − Q2

n)PnQn.

Since Qn < Pn < 3Qn (n ≥ 1), we have 4Q4
n < yn < 36Q4

n, and so

Q2
n >

√
yn

6
, log Qn >

log(yn/36)

4
> C31 log yn, log log Qn < log log yn.
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Lower bound: We have

ξs = h(e1/s) =
1

2
sinh

(

2

s

)

and

x = p4 − q4,

y = 4p2q2,

u = p2 + q2,

v = 2(p2 − q2)pq.

In addition, Is ⊂ (0,∞), and so Is = [e1/s − α, e1/s + α], where 0 < α <
e1/s. If p/q ∈ Is, then p > q(e1/s − α), and y = 4p2q2 > βq4, where β :=

4(e1/s − α)
2

> 0. Since h is monotonously increasing on (0,∞), there exists
a constant C′

31 such that the inequality |ξs − x/y| > C′
31 > 0 holds for p/q =

h−1(x/y) 6∈ Is. In particular, h−1 exists for every ε > 0 on [ε,∞).

6. Generalization to Trigonometric Functions

Let s be a positive integer. Then, the following continued fraction expan-
sions are known:

tan(1) = [1; 2k − 1, 1]
∞

k=1,

tan(1/s) = [0; s− 1, 1, s − 2 + 2ks]
∞

k=1 (s > 1).

Let pn/qn be the n-th convergent of tan(1/s). Then, we have for Pν := p2ν

and Qν := q2ν that

∣

∣

∣

∣

tan(1) − Pν

Qν

∣

∣

∣

∣

<
1

(2ν + 1)Q2
ν

(ν ≥ 0),

∣

∣

∣

∣

tan

(

1

s

)

− Pν

Qν

∣

∣

∣

∣

<
1

(s(2ν + 1) − 2)Q2
ν

(s > 1, ν ≥ 1).

Applying the method given by [8, Corollary 1], we find three-term linear
recurrence formulae for Pn and Qn: For s = 1 we get with P0 = 1, P1 =
3, Q0 = 1, Q1 = 2 that

Pn = (2n + 1)Pn−1 − Pn−2, Qn = (2n + 1)Qn−1 − Qn−2 (n ≥ 2),

whereas for s > 1 the recurrences start with P0 = 0, P1 = 1, Q0 = 1, Q1 = s:

Pn = s(2n − 1)Pn−1 − Pn−2, Qn = s(2n − 1)Qn−1 − Qn−2 (n ≥ 2).
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These recurrence formulae correspond to the well-known non-regular contin-
ued fraction

tan(1/s) =
1

s − 1

3s −
1

5s − . . .

,

see [13, ch. 8, (27)]. By these facts, in connection with the results for exp(1/s)
in (1.1) and (1.2), it follows that Lemma 1.1 holds for h(e1/s) just as for
h(tan(1/s)). As a consequence, we may replace the hyperbolic functions in
our preceding results by certain trigonometric functions.

Theorem 6.1. Let s be a positive integer. Then, the theorems listed in
the following table hold for the numbers h(e1/s) and h(tan(1/s)) both.

Theorem No. ξs = h(e1/s) ξs = h(tan(1/s))
Proposition 1.2 sinh(1/s) − cot(2/s)
Proposition 1.3 cosh(1/s) cosec (2/s)
Proposition 1.4 tanh(1/s) − cos(2/s)
Theorem 1.5 (sinh (1/s) − cosech (1/s))/2 − cot(4/s)

Theorem 1.6
sinh(1/s) − 1

sinh(1/s) + 1

1 + tan(2/s)

1 − tan(2/s)
Theorem 1.9 (sinh(2/s))/2 − cosec (2/s) cot(2/s)

A real irrational number ξ is said to be a Liouville number , if there is a
sequence of rationals (an/bn)n>0 with 1 < b1 < b2 < · · · and

(6.1)

∣

∣

∣

∣

ξ − an

bn

∣

∣

∣

∣

<
1

bn
n

(n > 0).

Remark 6.2. If ξ is a Liouville number and κ(n) any strictly increasing
sequence of positive integers satisfying κ(n) ≥ n, then there is a sequence of
rationals (An/Bn)n>0 with 1 < B1 < B2 < · · · and

∣

∣

∣

∣

ξ − An

Bn

∣

∣

∣

∣

<
1

B
κ(n)
n

(n > 0).

This follows by setting An := aκ(n), Bn := bκ(n) (n > 0).

Remark 6.3. When the inequality (6.1) holds for all subscripts n > n0

only, ξ is a Liouville number defined by the shifted sequence of rationals a′
n/b′n

with a′
n := an+n0

, b′n := bn+n0
(n > 0).

Theorem 6.4. Let α be a real number such that tan(πα/2) is a Liouville
number. Then there is a sequence of rationals (pn/qn)n>0 with 1 < q1 < q2 <
· · · and a sequence of positive integers (rn)n>0 satisfying

∣

∣

∣

∣

sin(πα) − pn

qn

∣

∣

∣

∣

<
1

qn
n

, q2
n = p2

n + r2
n, pn ≡ 0 mod 2.
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In particular, sin(πα) is a Liouville number.

Proof. Without loss of generality we may assume that 0 < α < 1. From
the hypothesis of the theorem it follows that there is a sequence of rationals
(an/bn)n>0 with 1 < b1 < b2 < · · · satisfying

∣

∣

∣

∣

tan
( πα

2

)

− an

bn

∣

∣

∣

∣

<
1

b3n+1
n

.

For 0 < α < 1 the number tan(πα/2) is positive. In what follows we separate
our arguments according to the cases tan(πα/2) < 1 and tan(πα/2) > 1.

Case 1. tan(πα/2) < 1
Then, for all sufficiently large subscripts n > n1, we have 0 < an/bn < 1.

Case 2. tan(πα/2) > 1
Here, we have for large subscripts n > n2 that 1 < an/bn < 1 + tan(πα/2).
Set

f(x) :=
2x

1 + x2
.

Then,

f ′(x) =
2(1 − x2)

(1 + x2)2
.

For n > 0 there is a real number η depending possibly on α and n such that

(6.2)

∣

∣

∣

∣

f
(

tan
( πα

2

) )

− f

(

an

bn

)
∣

∣

∣

∣

= |f ′(η)|
∣

∣

∣

∣

tan
( πα

2

)

− an

bn

∣

∣

∣

∣

,

where either an/bn < η < tan(πα/2) or tan(πα/2) < η < an/bn holds. By our
construction, the situation described in Case 1 yields 0 < η < 1 for n > n1,
whereas in Case 2 we have 1 < η < 1 + tan(πα/2) for n > n2. Hence

1

2
|f ′(η)| =

|1 − η2|
(1 + η2)

2 ≤ |1 − η2|

=







1 − η2 ≤ 1 (Case 1)

η2 − 1 ≤ tan(πα/2)
(

2 + tan(πα/2)
)

(Case 2)
,

or |f ′(η)| ≤ Cα := 2 max{ 1; tan(πα/2)
(

2 + tan(πα/2)
)

}. In the first case

we have 0 < an < bn, and in the second case 0 < an < bn

(

1 + tan(πα/2)
)

,
which is summarized by 0 < an < Cαbn. Now, the right-hand side of (6.2)
can be estimated as follows: Let bn > 1 + C2

α > Cα, and n > n1 or n > n2,
respectively. Then,

|f ′(η)|
∣

∣

∣

∣

tan
( πα

2

)

− an

bn

∣

∣

∣

∣

≤ Cα

b3n+1
n

<
1

b3n
n

<
1

b2n
n (1 + C2

α)
n

=
1

(b2
n + C2

αb2
n)n <

1

(b2
n + a2

n)n .
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The left-hand side of (6.2) equals to
∣

∣

∣

∣

2 tan(πα/2)

1 + tan2(πα/2)
− 2an/bn

1 + a2
n/b2

n

∣

∣

∣

∣

=

∣

∣

∣

∣

sin(πα) − 2anbn

a2
n + b2

n

∣

∣

∣

∣

.

With pn = 2anbn, qn := a2
n + b2

n, and rn := |a2
n − b2

n|, we have proven for
sufficiently large n that

∣

∣

∣

∣

sin(πα) − pn

qn

∣

∣

∣

∣

<
1

qn
n

with p2
n + r2

n = q2
n,

and (qn)n>0 is a strictly increasing sequence of positive integers. To prove
that sin(πα) is a Liouville number, it suffices to show that it is not rational.
But, assuming the contrary, it follows by

sin(πα) tan2
( πα

2

)

− 2 tan
( πα

2

)

+ sin(πα) = 0

that tan(πα/2) is an algebraic number. But every Liouville number is tran-
scendental, a contradiction. This completes the proof of the theorem.

Observing the identity

cos(πα) =
1 − tan2(πα/2)

1 + tan2(πα/2)
,

the following result can be proven in a similar manner by applying the mean
value theorem to the function f(x) = (1 − x2)/(1 + x2).

Theorem 6.5. Let α be a real number such that tan(πα/2) is a Liouville
number. Then there is a sequence of rationals (pn/qn)n>0 with 1 < q1 < q2 <
· · · and a sequence of positive even integers (rn)n>0 satisfying

∣

∣

∣

∣

cos(πα) − pn

qn

∣

∣

∣

∣

<
1

qn
n

, q2
n = p2

n + r2
n.

In particular, cos(πα) is a Liouville number.
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