
GLASNIK MATEMATIČKI
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Abstract. For a real number x, we let ⌊x⌉ be the closest integer to
x. In this paper, we look at the arithmetic properties of the integers ⌊θn⌉
when n ≥ 0, where θ > 1 is a fixed algebraic number.

1. Introduction

For any real number x we let ⌊x⌋, ⌈x⌉ and ⌊x⌉ be the largest integer ≤ x,
the smallest integer ≥ x and the closest integer to x respectively. When x is
not an integer but 2x is we let ⌊x⌉ = ⌊x⌋. We also put {x} = x − ⌊x⌋ and
||x|| = |x − ⌊x⌉| for the fractional part of x and the distance from x to the
nearest integer, respectively.

We let θ > 1 be an algebraic number. Although there are several results
in the literature concerning the behavior of the numbers ||θn|| and {θn}, many
problems remain unsolved. For example, a famous question of Mahler whether
there exists a real number α > 0 such that {α(3/2)n} ∈ (0, 1/2) holds for all
n > 0 has not yet been answered.

In this note, we look at the arithmetic properties of the sequences of inte-
gers (⌊θn⌋)n≥0, (⌈θn⌉)n≥0, and (⌊θn⌉)n≥0, respectively. We study their digital
properties, the size and number of their prime factors, as well as whether or
not such numbers can be perfect powers.

Some of our results work only for Pisot numbers θ (i.e., real algebraic
integers θ > 1 all whose conjugates lie inside the unit disk), some other ones
work for arbitrary real algebraic numbers and finally some of them work only
for a certain class of algebraic numbers including the ones having the property
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that none of their powers is either an integer, or a Pisot number. Our methods
use classical techniques from Diophantine equations and Diophantine approx-
imations. These techniques are summarized in Section 2. Section 3 contains
our results and their proofs. We briefly mention here our main results. Let
An be one of the numbers ⌊θn⌋, ⌈θn⌉, ⌊θn⌉ when n ≥ 0. Assume that θℓ 6∈ ZZ

for any positive integer ℓ. Then the sum of the digits of An with respect to
an integer base b > 1 is ≫ log n/ log log n; this is also true if θℓ ∈ ZZ for some
positive integer ℓ but with θ and b multiplicatively independent instead (The-
orem 3.1). The largest prime divisor of An is ≫ log n log log n/ log log log n for
all positive integers n and ≫ log n log log n for almost all positive integers n
(Theorem 3.3). Moreover, if additionally θℓ is not a Pisot number or a Salem
number whose minimal polynomial is congruent to a monomial modulo some
prime, then the total number of prime divisors of An counted by multiplicity
is o(n) as n → ∞ (Theorem 3.5). We show that the assumptions here are
indeed necessary (see the discussion before Theorem 3.5). Finally, if θ is a
Pisot number, then An is a perfect power only for finitely many n (Theorem
3.8).

Throughout this paper, we use the Vinogradov symbols ≪, ≫ and ≍ and
the Landau symbols O and o with their usual meaning. We write P (n) for the
largest prime factor of the integer n with the convention that P (0) = P (±1) =
1. For a positive real number x we write log x for the maximum between the
natural logarithm of x and 1. We denote by 2 = p1 < p2 < · · · < pk < · · ·
the increasing sequence of prime numbers. We also write c1, c2, c3, . . . for
positive computable constants depending on θ and b.

2. Preparations

In this section, we recall some results from Diophantine approximations
and Diophantine equations which are needed throughout the paper.

We start with a quantitative version of the Subspace Theorem of W.
Schmidt as formulated by Evertse ([4]).

We normalize absolute values and heights as follows. Let IK be an alge-
braic number field of degree d. Let M(IK) denote the set of places on IK. For
x in IK and a place v in M(IK) define the absolute value |x|v by

(i) |x|v = |σ(x)|1/d if v corresponds to the embedding σ : IK →֒ IR;
(ii) |x|v = |σ(x)|2/d = |σ(x)|2/d if v corresponds to the pair of conjugate

complex embeddings σ, σ : IK →֒ C;
(iii) NIK/Q(π)−ordπ(x)/d if v corresponds to the prime ideal π of OIK.

These absolute values satisfy the product formula

∏

v∈M(IK)

|x|v = 1 for x ∈ IK∗.
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Let n ≥ 2 and x = (x1, . . . , xn) be in IKn with x 6= 0. For a place v in
M(IK) put

|x|v =

(
n∑

i=1

|xi|2d
v

)1/(2d)

if v is real infinite;

|x|v =

( n∑

i=1

|xi|dv
)1/d

if v is complex infinite;

|x|v = max{|x1|v, . . . , |xn|v} if v is finite.

Now define the height of x by

H(x) = H(x1, . . . , xn) =
∏

v∈M(IK)

|x|v.

We stress that H(x) depends only on x and not on the choice of the number
field IK containing the coordinates of x (see e.g. [4]). If L(x) = a1x1 + · · · +
anxn is a linear form with algebraic coefficients in x, we write H(L) for the
height of its normal vector H(a1, . . . , an).

We use the following formulation of the Subspace Theorem. In the sequel,
we assume that the algebraic closure of IK is Q. We choose for every place v
in M(IK) a continuation of | · |v to Q that we denote also by | · |v.

Theorem 2.1. Let IK be an algebraic number field. Let m ≥ 2 be an

integer. Let S be a finite set of places on IK of cardinality s containing all

infinite places. For each v in S let L1,v, . . . , Lm,v be linearly independent linear

forms in m variables with algebraic coefficients. Let ε be real with 0 < ε < 1.
Then the set of solutions x ∈ IKm to the inequality

(2.1)
∏

v∈S

m∏

i=1

|Li,v(x)|v
|x|v

≤
∏

v∈S

( |det(L1,v, . . . , Lm,v)|v ) H(x)−m−ε

lies in finitely many proper subspaces of IKm. Furthermore, if H and D are

such that

(2.2)
H(Li,v) ≤ H and [IK(Li,v) : IK] ≤ D for all i = 1, . . . , m, v ∈ S,

then the following two assertions hold:

(i) There exist proper linear subspaces T1, . . . , Tt1 of IKm with

t1 ≤
(
260m2

ǫ−7m
)s

log 4D log log 4D,

such that every solution x ∈ IKm with H(x) ≥ H of inequality (2.1)
belongs to T1 ∪ · · · ∪ Tt1 .

(ii) There exist proper linear subspaces S1, . . . , St2 of IKm with

t2 ≤
(
150m4ε−1

)ms+1
(2 + log log 2H) ,
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such that every solution x ∈ IKm with H(x) < H of inequality (2.1)
belongs to S1 ∪ · · · ∪ St2 .

For a proof of Theorem 2.1 the reader is directed to [4].
In the case when all the components of x are algebraic integers and if

one is not interested in effective bounds for the number of subspaces involved,
then the above statement can be simplified as follows.

Theorem 2.2. Let IK be an algebraic number field. Let m ≥ 2 be an

integer. Let S be a finite set of places on IK of cardinality s containing all

infinite places. For each v in S let L1,v, . . . , Lm,v be linearly independent linear

forms in m variables with algebraic coefficients. Let ε be real with 0 < ε < 1.
Then, the set of solutions x ∈ Om

IK to the inequality

∏

v∈S

m∏

i=1

|Li,v(x)|v < H(x)−ε

is contained in the union of finitely many proper subspaces of Om
IK.

Let S be as in Theorem 2.1. Recall that an S-unit is an element of x ∈ IK
such that |x|v = 1 for all v 6∈ S. We shall need the following version of a
theorem of Evertse ([3]) on S-unit equations.

Lemma 2.3. Let a1, . . . , aN ∈ IK be nonzero. Then the equation

N∑

i=1

aiui = 1

in S-unit unknowns ui for i = 1, . . . , N such that
∑

i∈I aiui 6= 0 for each

nonempty proper subset I ⊂ {1, . . . , N} has only finitely many solutions

(u1, . . . , uN).

Recall that an exponential polynomial is a sequence whose general term
has the form un =

∑s
i=1 γiα

n
i , where γ1, α1, . . . , γs, αs are nonzero algebraic

numbers. We assume that α1, . . . , αs are distinct and that

|α1| ≥ |α2| ≥ · · · ≥ |αs|.
The numbers γ1, . . . , γs are called the coefficients and the numbers α1, . . . , αs

are called the roots of the exponential polynomial, respectively. The sequence
(un)n≥0 is linearly recurrent with characteristic polynomial

f(X) =
s∏

i=1

(X − αi).

One well-known consequence of Theorem 2.2 and Lemma 2.3 is the following
statement regarding the number of zeros and the rate of growth of exponential
polynomials which was first proved independently by Evertse ([3]) and van
der Poorten and Schlickewei ([13]) (this appears also as Theorem 2.3 on page
32 in [2]).
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Lemma 2.4. Let α1, . . . , αs be nonzero algebraic numbers such that the

number αi/αj is not a root of unity for any i 6= j in {1, . . . , s}. Then the

following hold:

(i) The set of n such that un = 0 is finite.

(ii) Given any ε > 0, the set of n such that |un| < |α1|(1−ε)n is finite.

Note that (ii) above implies (i) but we have also included (i) since it will
be used in what follows.

Finally, we will need lower bounds for linear forms in complex logarithms,
due to Matveev ([10]). To formulate them, we recall that if α is an algebraic
number the näıve height of α denoted by h(α) is the maximum between 3
and the absolute values of the coefficients of the minimal nonzero primitive
polynomial with integer coefficients having α as a root.

Lemma 2.5. Let a1, . . . , aN ∈ IK be nonzero and, for 1 ≤ i ≤ N , let Ai be

an upper bound for h(ai). Let x1, . . . , xN be integers such that ax1

1 · · · axN

N 6= 1.
Let X ≥ max{|xi| : i = 1, . . . , N}. Then, the inequality

log |ax1

1 · · · axN

N − 1| > −CN (log A1) · · · (log AN )(log X),

holds, where C is a constant which depends only on the degree d of IK.

3. Results

Let b > 1 be a positive integer. For a positive integer n we write sb(n)
for the sum of the digits of n when written in base b. Our first result gives a
lower bound for sb(m) as m runs through positive integers of the form ⌊θn⌋.
Versions of this result have appeared in [8] and [16].

Theorem 3.1. Assume that θ > 1 is algebraic. Assume further that

θℓ 6∈ ZZ for any positive integer ℓ. Then, the inequality

sb(⌊θn⌋) ≫ log n

log log n

holds for all n > 1. The same result holds with ⌊·⌋ replaced by ⌈·⌉, or ⌊·⌉.
Furthermore, the same inequality holds when θℓ ∈ ZZ holds for some positive

integer ℓ if one further assumes that θ and b are multiplicatively independent.

Proof. We assume that θℓ 6∈ ZZ for any positive integer ℓ. Write

(3.1) θn + λn = a0b
t0 + a1b

t1 + · · · + akbtk ,

where ai ∈ {1, . . . , b − 1} are nonzero digits in basis b of the number on the
left and

(3.2) 0 < |λn| ≤ 1.
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Here, t0 > t1 > · · · > tk ≥ 0. Of course, k, a0, t0, a1, t1, . . . , ak, tk depend
on n. We write n0 for a large positive integer depending on θ and b not
necessarily the same at each occurrence. Clearly, a0 6= 0 if n > n0. Since

bt0 ≤ θn + 1 and θn − 1 ≤ (b − 1)(bt0+1 − 1),

we get easily that

(3.3) t0 = n
log θ

log b
+ O(1)

as n → ∞. Relation (3.1) can be rewritten as

(3.4)
∣∣a0b

t0
0 θ−n − 1

∣∣ ≤ a1b
t1 + · · · + akbtk + |λn|

θn
<

2b

bt0−t1

provided that n > n0. For n > n0, the expression on the left above is not
zero. Furthermore, also for n > n0, estimate (3.3) shows that

(3.5) t0 ≤ n2.

Taking logarithms in the inequality (3.4) and applying Lemma 2.5 to-
gether with estimate (3.5), we get

−c1(log b)2(log h(θ)) log n ≤ −(t0 − t1) log b + log(2b),

where c1 > 0 is some constant depending only on the degree of θ. For n > n0,
the above inequality implies that

(3.6) t0 − t1 ≤ c2 log n,

where one can take c2 = 2c1(log b) log h(θ) provided that n > n0.
We now show that there exists a constant c3 > 0 such that the inequality

(3.7) t0 − ti < (c3 log n)i

holds for all i = 1, . . . , k. Inequality (3.6) proves that inequality (3.7) holds
at i = 1 when n > n0 with any constant c3 ≥ c2. Assume that it holds with
some i ∈ {1, . . . , k− 1} and let us prove that it holds with i replaced by i + 1.

Rewrite (3.1) as
(3.8)
∣∣(a0b

t0−ti + · · · + ai)b
tiθ−n − 1

∣∣ ≤ ai+1b
ti+1 + · · · + akbtk + |λn|

θn
≤ 2b

bt0−ti+1

for n ≥ n0. Assume first that the expression on the left is nonzero. Then
Lemma 2.5 together with estimate (3.5) imply that

−c1(log n)(log b)(log h(θ)) log(bt0−ti+1) ≤ −(t0 − ti+1) log b + log(2b).

We may assume that ti+1−t0 ≥ 4, otherwise the desired inequality (3.7) holds
with i replaced by i + 1 provided that n ≥ n0. Thus,

(ti+1 − ti) log b ≥ 4 log b ≥ 2 log(2b).
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Since also

log(bt0−ti+1) ≤ 2(t0 − ti) log b ≤ 2(log b)(c3 log n)i,

we get that

−(2c1(log b)2 log h(θ))(c3 log n)i(log n) ≤ −(t0 − ti+1) log b + log(2b)

≤ − (t0 − ti+1)

2
log b,

giving
t0 − ti+1 ≤ (4c1 log b logh(θ))(c3 log n)i(log n).

Hence, choosing c3 = 2c2, we note that c3 > c2 and that inequality (3.7) with
i implies the same inequality with i replaced by i + 1. This conclusion was
drawn under the assumption that

(3.9) θn −
(
a0b

t0 + · · · + aib
ti
)
6= 0,

which is true because θn 6∈ ZZ. Hence, inequality (3.7) holds for all i = 1, . . . , k.
We now rewrite again (3.1) as

(3.10)
∣∣(a0b

t0−tk + · · · + ak)btkθ−n − 1
∣∣ ≤ 1

θn
.

The left hand side above is λnθ−n 6= 0. Applying again Lemma 2.5 and
estimate (3.5), we get that

−c1(log b)(log h(θ))(log n) log(bt0−tk+1) ≤ −n log θ,

giving

(3.11) n log θ ≤ c1(log b)2(log h(θ))(log n)(t0 − tk + 1) ≤ (c4 log n)k+1,

where we can take c4 = c3 log b. This last inequality obviously leads to the
conclusion that

k ≥ (1 + o(1))(log n)/ log log n as n → ∞,

which is slightly more than what we wanted to prove.
The above argument deals with the statement of the theorem when θℓ 6∈ ZZ

for any positive integer ℓ by taking λn to be θn − ⌊θn⌋, or θn − ⌈θn⌉, or the
minimum between the above two expressions, respectively. Minor modifica-
tions deal with the case when θℓ ∈ ZZ for some positive integer ℓ. Indeed, the
fact that θℓ 6∈ ZZ was only used to justify that the expression (3.9) is nonzero.
Assume, with the previous notations, that

(3.12) (c3 log n)k ≤ n

log n
,

since otherwise the desired inequality is true. If the expression appearing at
(3.9) is zero for some i ≤ k, it then follows, in particular, that θn ∈ ZZ. Letting
ℓ be the minimal positive integer such that θℓ ∈ ZZ, we conclude that ℓ | n.
Thus, we may replace θ by θℓ and therefore assume that ℓ = 1; i.e., θ ∈ ZZ.
Let i ≤ k be minimal such that the expression shown at (3.9) is zero. Note
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that for i = n this expression is zero anyway since θn ∈ ZZ. Then the above
inductive argument gives t0− ti ≤ (c3 log n)i. Let q1, . . . , qs be all the distinct
primes dividing θb and write

θ =
s∏

j=1

q
uj

j and b =
s∏

j=1

q
vj

j

for some nonnegative exponents u1, v1, . . . , us, vs. Then the relation

θn = bti(a0b
t0−ti + · · · + ai)

together with estimate (3.12) shows that

uj = vjti + O

(
n

log n

)

holds for j = 1, . . . , s, where the constant implied by the above O depends on
θ and b. In particular, uj 6= 0 if and only if vj 6= 0 holds for n > n0. Thus,
ujvj 6= 0 for all j = 1, . . . , s and

∣∣∣∣
uj

vj
− ti

n

∣∣∣∣ = O

(
1

log n

)
for all j = 1, . . . , s.

Thus, if j1, j2 are in {1, . . . , s}, we then get that
∣∣∣∣
uj1

vj1

− uj2

vj2

∣∣∣∣ = O

(
1

log n

)
.

For n > n0, the above estimates imply that

uj1

vj1

=
uj2

vj2

for all j1, j2 ∈ {1, . . . , s}.

Writing u/v for the common value of all uj/vj for j = 1, . . . , s, we get that
θn = bv, which contradicts the fact that θ and b are not multiplicatively
independent.

⊓⊔

Remark 3.2. The same conclusion remains true if the sequences of gen-
eral term un = ⌊θn⌋, etc., from the statement of Theorem 3.1 are replaced by
sequences of integers (un)n≥1 of the form

un = θn + λn for all n ≥ 0

with an algebraic number θ > 1 satisfying the following conditions:

(i) either θn 6∈ ZZ for any n > 0, or θℓ ∈ ZZ for some positive integer ℓ but
θ and b are multiplicatively independent.

(ii) There exists ǫ > 0 and n0 such that

|λn| < θ(1−ǫ)n holds for all n > n0.
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Indeed, in this case, with the notation from the proof of Theorem 3.1, we
assume additionally that

(c3 log n)k <
ǫ log θ

2 log b
,

since otherwise the desired inequality holds. Then

bt0−tk ≤ θǫn/2,

therefore the inequality

btk ≥ θn − θ(1−ǫ)nb(t0−tk+1) ≥ θ(1−ǫ/2)n

2b
> θ(1−ǫ)n > |λn|

holds for n > n0. Thus, estimates (3.4) and (3.8) hold. Estimate (3.10)
also holds up to replacing n by ǫn in the exponent of θ appearing in the
denominator in the right hand side, which in turn leads to an inequality
similar to (3.11), except that its left hand side is now smaller by a factor of
ǫ. This still implies the desired estimate.

Theorem 3.3. Let again θ > 1 be an algebraic number such that θℓ 6∈ ZZ

for any positive integer ℓ > 0. Then the inequality

(3.13) P (⌊θn⌋) ≫ log n log log n

log log log n

holds for all positive integers n, while the inequality

(3.14) P (⌊θn⌋) ≫ log n log log n

holds for almost all positive integers n. The same estimates hold with ⌊θn⌋
replaced by ⌈θn⌉, or by ⌊θn⌉, respectively.

Proof. Assume that the largest prime factor of ⌊θn⌋ is pt. Then

⌊θn⌋ = p
a1,n

1 · · · pat,n

t ,

therefore

(3.15)
∣∣1 − θ−np

a1,n

1 · · · pat,n

t

∣∣ = O(θ−n).

Applying Lemma 2.5 to get a lower bound on the left hand side of estimate,
together with the trivial estimate ai ≪ n, and taking logarithms of both sides,
we get that there exists a computable absolute constant c1 > 0 such that

n log θ < ct
1(log h(θ))

t∏

i=1

(log pi) log n for n > n0.

Since pi < i2 holds for all i ≥ 2, we get that

(3.16)
n log θ

(log n) log h(θ)
≤ (2c1 log t)t.
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After taking logarithms, this last inequality leads to

(1 + o(1)) log n ≤ t log log t

as n → ∞. The last estimate above leads to the conclusion that the inequality
t > (1 + o(1))(log n)/(log log log n) holds as n → ∞. By the Prime Number
Theorem, we get that

pt = P (⌊θn⌋) > (1 + o(1))
log n log log n

log log log n
as n → ∞,

which obviously implies estimate (3.13). Note that the implied constant in
(3.13) can be taken to be any positive constant < 1 and the resulting inequality
then holds once n is sufficiently large.

For the second inequality, we take IK = Q[θ] and let d be its degree. We
assume that X is a large positive real number. We let t be a function of X
to be determined later and let

N = {X1/2 ≤ n ≤ X : P (⌊θn⌋) ≤ pt}.

We may assume that t is sufficiently large such that pt exceeds both the
numerator and the denominator of the rational number NIK/Q(θ). Then

(3.17)

∣∣∣∣∣θ
n −

t∏

i=1

p
ai,n

i

∣∣∣∣∣ = |λn| < 1 for n ∈ N .

We let S be the set of all valuations v of IK such that |pi|v 6= 1 for some
i = 1, . . . , t. Clearly, |S| = s ≤ d(t + 1). We select the infinite valuation of
S corresponding to the conjugation that sends θ to itself and we denote this
valuation by w (note that θ is real, so |θ|w = |θ|1/d). We let m = 2 and for
x = (x1, x2), we let Li,v(x) = xi for (i, v) ∈ {1, 2}×S except for (i, v) = (2, w)
for which we put L2,w = x1 − x2. It is easy to see that L1,v(x) and L2,v(x)
are linearly independent over IK for all v ∈ S. One also checks easily that
condition (2.2) holds for our system of forms Li,v(x) for i = 1, 2 and v ∈ S
with H = D = 1. Furthermore,

|det(L1,v, L2,v)|v = 1 for all v ∈ S.

We now let x = (θn, p
a1,n

1 · · · pat,n

t ), where n ∈ N . It is then easy to see that

∏

v∈S

2∏

i=1

|Li,v(x)|v

= |θn − p
a1,n

1 · · · pat,n

t |1/d
∏

v∈S

|θn|v
∏

v∈S\{w}

|pa1,n

1 · · · pat,n

t |v(3.18)

≪ (p
a1,n

1 · · · pat,n

t )−1/d ≪ θ−n/d.
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Since |x2|v ≤ 1 for all finite valuations v ∈ S and |x1|v = |x2|v = 1 for all
valuations v of IK which are not in S, one gets easily that

H(x) ≍ H(θn) = H(θ)n.

Let δ > 0 be such that θ = H(θ)δ. Relation (3.18) now shows that

∏

v∈S

2∏

i=1

|Li,v(x)|v ≪ H(x)−δ/d,

therefore

(3.19)
∏

v∈S

2∏

i=1

|Li,v(x)|v
|x|v

≪ H(x)−δ/d

(
∏

v∈S

|x|v
)−2

≤ H(x)−2−δ/d,

where the last inequality follows from the fact that

H(x) ≤
∏

v∈S

|x|v,

which in turn holds because S contains all valuations v of IK such that |x|v ≥ 1.
It thus follows that inequality (2.1) is satisfied for m = 2, our finite set of
valuations S and system of linear forms Li,v(x) for i = 1, 2 and v ∈ S with
ε = δ/2d assuming that X is large. For such large X , the argument from
the end of the proof of Theorem 3.1 shows that H(x) > 1. Now Theorem 2.1
shows that N is contained in at most

(2240(dδ−1)14)d(t+1) log 4d log log 4d

nontrivial subspaces. Note that a vector x = (x1, x2) to belong to a proper a
subspace of IK2 just means that x1/x2 = γ has fixed value. If γ is fixed, then
since θℓ 6∈ ZZ for any positive integer ℓ, it follows that there can exist at most
one positive integer n ∈ N such that θn/(p

a1,n

1 · · · pat,n

t ) = γ. This shows that
for large X we have

|N | ≤ (2240(dδ−1)14)d(t+1) log 4d log log 4d.

If

t + 1 ≤ log(2240(dδ−1)14)

2d
log X,

we then get that |N | ≤ X1/2 log 4d log log 4d = o(X) as X → ∞. Thus, for
most n, the inequality

t + 1 ≥ log(2240(dδ−1)14)

2d
log n

holds. This implies, via the Prime Number Theorem, that the inequality

pt ≫ log n log log n

holds for most positive integers n. Taking λn to be θn − ⌊θn⌋, or θn − ⌈θn⌉,
or the minimum of the two, respectively, we get the desired estimates. ⊓⊔
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Remark 3.4. As Theorem 3.1, Theorem 3.3 also holds under slightly
more general assumptions. Namely, both statements asserted by Theorem
3.3 remain true if the sequence of general term un = ⌊θn⌋ is replaced by a
sequence of general term

un = θn + λn,

where θ > 1 is an algebraic number such that θℓ is irrational for all positive
integers ℓ and there exist ǫ > 0 and n > n0 such that

0 < |λn| < θ(1−ǫ)n holds for all n ≥ n0.

Indeed, in this case, the right hand side of inequality (3.15) is replaced by
O(θǫn). In turn, this leads to an inequality similar to (3.16) except that its
left hand side is smaller by a factor of ǫ. This does not change the desired
conclusion about pt. For the second inequality, the right hand side of inequal-
ity (3.17) becomes θ(1−ǫ)n. In turn, this implies that inequality (3.19) holds
with the exponent of H(x) equal to −2 − ǫδ/d. This leads to the conclusion
that for large X , the inequality (2.1) from the statement of Theorem 2.1 holds
for m = 2, our set of valuations S and our system of linear forms Li,v(x) for
i = 1, 2 and v ∈ S with ε = ǫδ/(2d). This leads to the desired conclusion
except that the constant implied by the symbol ≫ in pt = P (un) also depends
on ǫ. We give no further details.

For a positive integer n =
∏t

i=1 qai

i , where q1 < · · · < qt are primes and

ai are positive integers for i = 1, . . . , t, we write Ω(n) =
∑t

i=1 ai for the
total number of prime factors of n, including repetition. It is known that
the maximal order of Ω(n) is log n/ log 2 (see Lemma 3.7 below). Next, we
ask whether this order of magnitude can be attained by a subsequence of
the form (⌊θn⌋)n≥0, where θ > 1 is an algebraic number. Considering the
following scenarios:

1. Assume that θℓ ∈ ZZ holds for some positive integer ℓ. Clearly, θℓ > 1.
Let p be a prime factor of θℓ. Then, if n is any multiple of ℓ, we have that

⌊θn⌋ = ⌈θn⌉ = ⌊θn⌉ = θn ≡ 0 (mod pn/ℓ),

therefore

Ω(⌊θn⌋) = Ω(⌈θn⌉) = Ω(⌊θn⌉) ≫ n ≫ log(θn)

holds for infinitely many n.

2. Assume that θ > 1 is such that for some positive integer ℓ we have that
θℓ = η, where η is a Pisot number of degree e1 whose minimal polynomial
is congruent to Xe1 (mod p) for some prime number p. In this case, we let
η1(= η), η2, . . . , ηe1

be all the conjugates of η. Clearly,

un =

e1∑

i=1

ηn
i ∈ ZZ
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and
∑e1

i=2 ηn
i = o(1) as n → ∞. Thus, if n is sufficiently large, then un =

⌊ηn⌉ = ⌊θℓn⌉. Now note that since the minimal polynomial of η is congruent
to Xe1 (mod p), it follows that p divides ηe1

i for all i = 1, . . . , e1. In particular,

p⌊n/e1⌋ |
e1∑

i=1

ηn
i = un.

Thus,

Ω(⌊θℓn⌉) ≥ ⌊n/e1⌋ ≫ log(θℓn)

holds for all sufficiently large n.
As an example, we leave it to the reader to verify that if p is any prime

and d is odd and large with respect to p, then the polynomial

fp,d(X) = Xd − 2pX − p

is a Pisot polynomial (i.e., the minimal polynomial of a Pisot number).
The next result shows that up to allowing also Salem numbers, the above

two cases are the only ones for which ⌊θn⌋, or ⌈θn⌉, or ⌊θn⌉ can have a
very large total number of prime factors for infinitely many n. The precise
statement is as follows. Recall that a Salem number is an algebraic integer
θ > 1 all whose conjugates are inside or on the unit circle and at least one
of them has absolute value one. Now the precise statement of the result is as
follows.

Theorem 3.5. Let θ > 1 be an algebraic number such that neither θℓ 6∈ ZZ

for a positive integer ℓ, nor is θℓ a Pisot or a Salem number whose minimal

polynomial is congruent to a monomial modulo some prime number. Then

the estimate

Ω(⌊θn⌋) = o(n)

holds as n → ∞. The same conclusion holds when ⌊θn⌋ is replaced by ⌈θn⌉,
or ⌊θn⌉, respectively.

In order to prove Theorem 3.5, we need the following technical result.

Theorem 3.6. Let θ > 1 be any algebraic number such that either θℓ 6∈ ZZ

for any positive integer ℓ, or θℓ is not some Pisot or Salem number whose

minimal polynomial is congruent to a monomial modulo some prime number.

Then, for every finite set of places S of IK = Q[θ] and for every ǫ > 0 there

are only finitely positive integers n such that

(3.20)
∏

v∈S

|⌊θn⌋|v <
1

θnǫ
.

The same conclusion holds if one replaces ⌊θn⌋ by ⌈θn⌉, or ⌊θn⌉, respectively.

Proof. We assume that there are infinitely many values of n for which
inequality (3.20) holds and we shall reach a contradiction.
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We let d be the degree of θ and let θ1(= θ), θ2, . . . , θd be all its conjugates.
Let IL = Q[θ1, . . . , θd] be the normal closure of IK = Q[θ]. We let S be the set
of valuations of IL consisting of the following ones:

(i) valuations v of IL extending some valuation of IK from S;
(ii) valuations v of IL sitting above some prime pi for i = 1, . . . , t, where t

is a sufficiently large positive integer such that pt exceeds the largest
prime factor of both the numerator and the denominator of the rational
number NIK/Q(θ).

It is clear that if n is such that inequality (3.20) holds, then the same inequality
also holds when v runs in the subset of all the finite valuations of IL. We let N
be the set of positive integers n such that inequality (3.20) is fulfilled. Let U
be the group of roots of unity inside IL and let M be its cardinality. Assume
that {θM

1 , . . . , θM
d } has precisely d1 distinct elements. Up to relabeling the

conjugates θ2, . . . , θd of θ1, we may assume that θM
1 , . . . , θM

d1
are distinct. Put

αi = θM
i for i = 1, . . . , d1. By Galois theory, α1 has degree d1 and all its

conjugates are α1, . . . , αd1
. Let us note that αi/αj is not a root of 1 for any

i 6= j in {1, . . . , d1}. Indeed, assume that αi/αj is a root of 1. Then (θi/θj)
M

is a root of 1, therefore θi/θj is also a root of 1. Since θi/θj ∈ IL, we get that
this root of 1 is in U , a group of order M . But then (θi/θj)

M = 1, therefore
αi = αj , which is not allowed. So far, we know that αi/αj is not a root of 1
for any i 6= j in {1, . . . , d1}.

Assuming that the inequality (3.20) is fulfilled for infinitely many positive
integers n, we conclude that there exists a ∈ {0, 1, . . . , M − 1} and infinitely
many positive integers n such that inequality (3.20) holds with n replaced by
a + Mn.

Now let m = d1+1, put x = (x1, . . . , xm) and the system of forms Li,v(x)

for i = 1, . . . , m and v ∈ S given as follows:

(i) Li,v(x) = θa
iv

xi for all i = 1, . . . , d1 and all v ∈ S;

(ii) Lm,v(x) = xm for all finite valuations v ∈ S;

(iii) For any infinite valuation v ∈ S corresponding to some automorphism
of IL into itself, let iv ∈ {1, . . . , d} be such that θiv

is mapped via this
automorphism to θ1. Let jv ∈ {1, . . . , d1} be such that θM

iv
= θM

jv
.

Then put Lm,v(x) = θa
iv

xjv
− xm.

One checks easily that the system of forms Li,v(x) for i = 1, . . . , m consists

of m linearly independent linear forms for all v ∈ S. Further, the condition
(2.2) holds for our system of forms with H = H(θ1, · · · , θd)

M and D = d!/d1

although these parameters will not be needed in the proof that follows. We
write again

θn + λn = un,

where 0 < |λn| < 1. For our system of forms with

x = (αn
1 , αn

2 · · · , αn
d1

, ua+Mn) and a + Mn ∈ N ,
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we have the following estimate

m∏

i=1

∏

v∈S

|Li,v(x)|v =

d1∏

i=1

∏

v∈S

|θa
i αn

i |v
∏

v∈S
v finite

|ua+Mn|v

×
∏

v∈S
v infinite

|θn
iv

αn
jv

− ua+Mn|v

= |θa+Mn − ua+Mn|
∏

v∈S
v finite

|ua+Mn|v

≪ θ−nMǫ ≪ α−nǫ
1 .

As in the proof of Theorem 3.3, the above inequality implies that
m∏

i=1

∏

ν∈S

|Li,v(x)|v
|x|v

≪ H(x)−m−nǫδ,

where δ > 0 is such that θ = H(θ)δ. Theorem 2.2 now tells us that N is
contained in finitely many nontrivial subspaces of ILm. Let one such nontrivial
subspace be given by an equation of the form

m∑

i=1

γixi = 0,

where not all coefficients γ1, . . . , γm are zero. Hence, we have arrived to the
equation

(3.21)

d1∑

i=1

γiα
n
i + γd1+1ua+Mn = 0.

If γd1+1 = 0, we then get that

(3.22)

d1∑

i=1

γiα
n
i = 0

and not all γi for i = 1, . . . , d1 are equal to zero. Since αi/αj is not a root of
unity for any i 6= j, Lemma 2.4 (i) shows that there can be only finitely many
positive integers n such that relation (3.22) holds.

Assume next that γd1+1 6= 0. Suppose that d1 = 1. Then writing γ =
γd1+1/γ1 (note that γ1 6= 0), we then get that αn

1 = γun. If this equation
has at least two positive integer solutions n, we then get that there exists a
positive integer ℓ such that αℓ

1 ∈ Q (here, we can take ℓ to be the difference
between two solutions for n, say n1 and n2). If furthermore this equation
has infinitely many positive integer solutions n, it follows that there exists
b ∈ {0, 1, . . . , ℓ − 1} such that infinitely many of these solutions will have
n ≡ b (mod ℓ). Write n = b + ℓn1. Then, writing γ′ = γ/αb

1, we get that
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(αℓ
1)

n1 = γ′ub+ℓn1
holds for infinitely many positive integers n1. In turn,

this is possible only if αℓ
1 ∈ ZZ (since the numbers of the form γ′ub+ℓn1

have
bounded denominators independently of n1). Thus, we have arrived at the
conclusion that θMℓ is an integer, which was excluded.

Assume next that still γd1+1 6= 0 but d1 ≥ 2. Write γ′
i = γi/γd1+1.

Conjugating the relation

(3.23)

d1∑

i=1

γ′
iα

n
i = ua+Mn

by an appropriate Galois automorphism of IL, we may assume that γ′
1 6= 0.

Using also the fact that un = θaαn
1 + λn, we have

(γ′
1 − θa

1)αn
1 +

d1∑

i=2

γ′
iα

n
i = λa+Mn = O(1).

Since |α1| > 1, (ii) of Lemma 2.4 shows that unless γ′
1 = θa

1 , the above
estimate is possible only for finitely many values of n. Knowing that γ′

1 = θa
1 ,

we claim that γ′
j = θa

j holds for all j = 1, . . . , d1. Indeed, to see why this is
true, note that if

(3.24)

d1∑

i=1

γ̂iα
n
i = ua+nM

holds with some algebraic coefficients γ̂i for i = 1, . . . , d1, then necessarily
γ̂i = γ′

i for all i = 1, . . . , d1. Indeed, this can be noticed by subtracting the
above relation from (3.23) getting

d1∑

i=1

(γ′
i − γ̂i)α

n
i = 0,

relation which, by (i) of Lemma 2.4, has only finitely many positive integer
solutions n provided that at least one of the coefficients γ′

i − γ̂i is not zero.
With this observation, let σ be some Galois automorphism of IL mapping θ1

to θj . Conjugating relation (3.23) by σ, we get a relation like (3.24) where
γ̂j = θa

j . Hence, γ′
j = θa

j . We record this as follows.

d1∑

i=1

θa+Mn
i = ua+Mn.

In particular, γ′
j 6= 0 for any j = 1, . . . , d1. Replacing again ua+Mn by θa

1αn
1 +

λa+Mn, we get that
∑d1

j=2 γ′
jα

n
j = O(1) holds for infinitely many n. Now (ii)

of Lemma 2.4 implies that |αj | ≤ 1 holds for all j = 2, . . . , d1. Furthermore,
it is well-known and again a consequence of the Subspace Theorem 2.2, that

the fact that
∑d1

i=1 γ′
iα

n
i is an integer for infinitely many n implies that α1 is

an algebraic integer (see, for example, [1]). Let us briefly sketch the details
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of such a deduction. Assume on the contrary that the denominator of α1 is
D > 1. Let βi = Dαi ∈ OIL for i = 1, . . . , d1 and write

(D) =
∏

π∈P

πaπ

for a certain finite set of prime ideals P of OIK, where aπ is a positive integer
for each π ∈ P . If for each π ∈ P we have that πaπ | βi for all i = 1, . . . , d1,
we conclude that D =

∏
π∈P πaπ divides βi for all i = 1, . . . , d1. In particular,

αi = βi/D ∈ OIK for all i = 1, . . . , d1, contradicting the minimality of the
positive integer D with such a property. Thus, there exist π0 ∈ P and i0 ∈
{1, . . . , d1} such that π

bπ0

0 ‖β0, where bπ0
is some positive integer strictly less

that aπ0
. Note that

d1∑

i=1

γ′
iβ

n
i = Dnua+nM

is divisible by πnaπ−c0 , where c0 > 0 is some constant depending on the
denominators of γ′

i for i = 1, . . . , d1. We now take m = d1 and T be all the
valuations of IL which are either infinite or correspond to prime ideals in OIL

which divide DNIL/Q(β1). Write v0 for the valuation corresponding to π0. Put
Li,m(x) = xi for all (i, v) ∈ {1, . . . , d1} × T except for (i, v) = (i0, v0), where

we put Li0,v0
(x) =

∑d1

i=1 c′ixi. Evaluating the double product for our system
of forms and valuations in x = (βn

1 , . . . , βn
d1

) and using the fact that T consists
of all possible valuations v of IL such that |βi|v 6= 1 for some i = 1, . . . , d1, we
get that

∏

v∈T

|Li,v(x)|v = |
d1∑

i=1

γ′
iβ

n
i |w0

|βn
i0 |−1

w0
≪ π

−n(aπ0
−bπ0

)
0 ≪ H(x)−δ

for some suitable number δ. We can take

δ =
d1 log(H(β1, . . . , βd1

))

(aπ0
− bπ0

) log p0
,

where p0 is that prime number such that NIL/Q(π0) is a power of p0. Theorem
2.2 now implies that (βn

1 , . . . , βn
d1

) can lie in only finitely many subspaces of
OIL and (i) of Lemma 2.4 shows the each of such subspaces can contain only
finitely many of such vectors. Hence, there are only finitely many possibilities
for n altogether, which is a contradiction.

In particular, θ1 is an algebraic integer and θM
1 is either a Pisot or a Salem

number.
Returning to estimate (3.20), it follows easily that there exists a constant

δ > 0 depending on ε, S and θ and a prime ideal π0 ∈ OIL, such that for

infinitely many n, we have that π
⌊δn⌋
0 | ua+Mn. Indeed, let P be the set of

all prime ideals corresponding to all the finite valuations of S. Put P for the
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maximal prime number appearing in the factorization of NIL/Q(π) for π ∈ P
and t for the number of finite valuations in S. Then, writing

(ua+Mn) =
∏

π∈P

πaπ V,

where V is an ideal such that |V |π = 1 for all π ∈ S, we get that if we put

a(n) = max{aπ : π ∈ P},
then the product appearing on the left of (3.20) exceeds P−ta(n)/d1 . Inequality
(3.20) implies that a(n) ≫ n, where the constant understood in ≫, which we
denote by δ, depends on P, d1, θ and ǫ. Since we have infinitely many values
for n and only finitely many elements in P , it follows that we may assume
that a(n) = aπ0

holds for infinitely many n. Then

d1∑

i=1

γ′
iα

n
i ≡ 0 (mod πδn

0 )

holds for infinitely many n. An argument similar to the one used to prove
that αi is an algebraic integer based on the Subspace Theorem now shows
that π0 | αi must hold for all i = 1, . . . , d1. But this shows that the minimal
polynomial f(X) of α1 is congruent to Xd1 modulo π0 and, in particular, it
is also congruent to Xd1 modulo p0, where p0 is the prime number such that
NIL/Q(π0) is a power of p0. Now θ is a root of f(XM), a polynomial congruent

to XMd1 (mod p0). Since the minimal polynomial of θ divides f(XM) and
has degree d, we conclude that this polynomial must be Xd (mod p0), which
finishes the proof. ⊓⊔

Now Theorem 3.5 is an immediate consequence of Theorem 3.6 and of the
following lemma which has previously appeared in [9] concerning the structure
of positive integers n with a large Ω(n).

Lemma 3.7. (1) The inequality Ω(n) ≤ log n

log 2
holds for all positive

integers n.

(2) Let K be any positive real number in the interval

(
0,

1

log 2

)
and let

AK be the set of all positive integers n such that Ω(n) ≥ K log n. Then

AK is infinite and there exist two computable positive constants L and

δ with δ < 1 depending only on K such that if n ∈ AK , then there

exists a prime number p < L such that if we write n = pαpm where

gcd(p, m) = 1, then

log m < δ log n.

Finally, we look at the perfect powers in the sequence (⌊θn⌋)n≥0.
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Theorem 3.8. Assume that θ > 1 is a Pisot number. Then the equation

xk = ⌊θn⌋
has only finitely many positive integer solutions (x, k, n) with x > 1 and k > 1.
The same conclusion remains true when ⌊θn⌋ is replaced by ⌈θn⌉, or ⌊θn⌉,
respectively.

Proof. Write again

θn + λn = xk,

where 0 < |λn| < 1. Then

|θn − xk| = O(1).

A result of Shorey and Stewart from [15] implies that k is bounded.
Now assume that k ≥ 2 is fixed. We show that the equation ⌊θn⌋ = xk

has only finitely many positive integer solutions (n, x). Assume that this is
not so. Since θ is Pisot, it follows that if we write θ1 = θ, . . . , θd for all the
conjugates of θ (including itself), then

∑

ℓ≥2

θn
ℓ = o(1)

as n → ∞. In particular,

⌊θn⌋ =

d∑

ℓ=1

θn
ℓ + δ, where δ ∈ {−1, 0}.

Since there are infinitely many pairs (n, x), we may assume that δ is common
for infinitely many values of n. The sequence

un =

d∑

ℓ=1

θn
ℓ + δ

is a linearly recurrent sequence of order d, or d+1, according to whether δ = 0,
or −1, respectively, which has a dominant root θ. Theorem 2 on page 322 of
[1] (for more general statements of this type see [5–7]) shows that there exists
a ∈ {0, 1, . . . , k − 1}, an integer s ≥ 1, and numbers α1, β1, . . . , αs, βs ∈ Q
such that the identity

ukn+a =

(
s∑

ℓ=1

αiβ
n
i

)k

holds for all n. Further, a close analysis of the arguments used to prove the
above statement, shows that there exist rational numbers ai,j whose denom-

inators divide k such that βi =
∏d

j=1 θ
ai,j

i for all i = 1, . . . , s. Thus, taking
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n = 2km, and writing γi = β2k
i , we get that

(3.25)

d∑

i=1

(θi)
a(θm

i )2k2

+ δ = u2k2m+a =

(
s∑

i=1

αiγ
m
i

)2k2

holds for all positive integers m. A result of Mignotte ([11]), shows that
there is no nontrivial multiplicative relation among the θi’s. By a trivial
multiplicative relation, we mean that it could happen that NIK/Q(θ) = ±1, in

which case
∏d

i=1 θi = ±1 is a trivial multiplicative relation on the θi’s.
Assume first that NIK/Q(θ) 6= ±1. In this case, the d functions m 7→

θm
i are multiplicatively independent, and by a theorem of Ritt ([14]) (see

also 3.2 in [12]), it follows that there exists a polynomial P (X1, . . . , Xd) ∈
Q[X1, . . . , Xd] such that

(3.26)

d∑

i=1

δiX
2k2

i + δ = P (X1, . . . , Xd)
2k2

,

where we have put δi = θa
i for all i = 1, . . . , d. Since d ≥ 2, the polynomial

on the left is a binomial polynomial of the form δ1X
2k2

1 + Q(X2, . . . , Xm) as
a polynomial in X1, where δ1Q(X2, . . . , Xm) is nonzero. Of course, such a
polynomial cannot have a double root (as a polynomial in the variable X1),
showing that relation (3.26) with k ≥ 2 is impossible.

Assume finally that NIK/Q(θ) = ±1. Then

θd = ±(θ1 · · · θd−1)
−1,

and the functions m → θm
i are multiplicatively independent for i = 1, . . . , d−

1. Ritt’s theorem tells us now that relation (3.25) implies that the rational
function

d−1∑

i=1

δiX
2k2

i + δd

d−1∏

i=1

X−2k2

i + δ

is the kth power of a rational function in Q(X1, . . . , Xd−1). In particular,

d−1∏

i=1

X2k2

i

(
d−1∑

i=1

δiX
2k2

i + δ

)
+ δd = R(X1, . . . , Xd−1)

k

for some R(X1, . . . , Xd−1) ∈ Q[X1, . . . , Xd−1]. As a polynomial in X1, the
polynomial on the left above is of the form

Q(X1, . . . , Xd−1) = AX4k2

1 + BX2k2

1 + C,

where

A = δ1

d−1∏

i=2

X2k2

i , B =

d−1∏

i=2

X2k2

i

(
d−1∑

i=2

δiX
2k2

i + δ

)
, C = δd
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are all three nonzero in Q[X2, . . . , Xd]. Such a polynomial does not have triple
roots. It can have double roots only if

∆ = B2 − 4AC = 0,

in which case

Q(X1, . . . , Xd−1) = A(X2k2 − Y )2,

where Y ∈ Q[X2, . . . , Xd−1] is such that

AX2
1 + BX1 + C = A(X1 − Y )2.

For us,

∆ = (X2 · · ·Xd−1)
2k2




(

d−1∑

i=2

δiX
2k2

i + δ

)2

− 4δdδ1



 .

Clearly, the above polynomial is never zero for d ≥ 3. Thus, it remains to
treat the case d = 2, k = 2. In this case, θ is a quadratic unit and k = 2.
We can assume that θ is a fundamental unit. Write Q[θ] = Q[

√
D] for some

squarefree positive integer D. Let

θn = Xn +
√

DYn,

where Xn and Yn are positive integers. Then

X2
n − DY 2

n = ±4, ±1,

according to whether D ≡ 1 (mod 4) or not. Furthermore,

Xn =
θn
1 + θn

2

2
.

Hence, θn
1 + θn

2 = 2Xn. It thus follows that

⌊θn
1 ⌋ = θn

1 + θn
2 + δ = 2Xn + δ,

where δ ∈ {0,−1}. Thus, ⌊θn⌋ = x2 implies that Xn = (x2 − δ)/2, where
δ ∈ {0,−1}. Hence,

DY 2
n = X2

n − λ =

(
x2 − δ

2

)2

− λ =
x4 − 2δx2 + δ2 − 4λ

4
,

where δ ∈ {0,−1} and λ ∈ {±1,±4}. The discriminant of the quadratic
polynomial x4 − 2δx2 + (δ2 − 4λ) is 16λ 6= 0. Thus, this polynomial has four
simple roots. A well-known theorem of Siegel implies that the Diophantine
equation

Dy2 =
x4 − 2δx2 + (δ2 − 4λ)

2
has only finitely many integer solutions (y, x) for each of the finitely many
possibilities for the couple (δ, λ). Thus, even in the case k = d = 2 and
NIK/Q(θ) = ±1, there can be only finitely many n such that ⌊θn⌋ is a perfect
power of exponent k. This takes care of the case d = 2, k = 2.
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Similar arguments can be used to deal with the sequences of general term
⌈θn⌉, or ⌊θn⌉, respectively (i.e., one only has to also allow for the possibility
δ = 1, which does not affect the preceding arguments). This completes the
proof of Theorem 3.8. ⊓⊔
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