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Abstract. Let c be a positive integer. In this paper, we use the
method of Tzanakis to transform the quartic Thue inequality

|x4 − 4x3y − (2c − 2)x2y2 + (4c + 4)xy3 − (2c − 1)y4| ≤ max
{ c

4
, 4

}

into systems of Pellian equations. Then we find all primitive solutions of
this inequality using continued fractions.

1. Introduction

A Thue equation is a Diophantine equation of the form

F (x, y) = k,

where F ∈ Z[X, Y ] is an irreducible binary form of degree d ≥ 3 and k is
a non-zero rational integer; the unknowns x and y being rational integers.
The name is given in honor of the Norwegian mathematician A. Thue ([16])
who proved that it has only finitely many solutions. Upper bounds for the
solutions have been given using A. Baker’s theory on linear forms in logarithms
of algebraic numbers (see [1]). In fact, since E. Thomas ([15]) has solved the
first parameterized family of Thue equations of positive discriminant, several
families of parameterized Thue equations have been studied, many authors
are able to solve cubic, quartic, quintic, sextic Thue equations. In 2004,
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Heuberger, Togbé, and Ziegler ([10]) solved the first octic family of Thue
equations. In 2006, the third author solved a family of sextic Thue equations
by means of Baker’s method (see [17]).

In 1993, Tzanakis ([18]) considered Thue equations of the form F (x, y) =
k, where F is a quartic form that corresponds to quartic field K which is
the composite of two real quadratic fields. Tzanakis proved that solving the
equation F (x, y) = k consists in solving a system of Pellian equations. There-
fore the method is called the Tzanakis method. The method was successfully
applied by several authors not only for families of quartic Thue equations
but also to families of quartic Thue inequalities. One can cite for exam-
ples [6–9, 11–13, 21]. One advantage of the method is that one can use the
theory of continued fractions to determine small values of k for which the
equation F (x, y) = k has a solution. Worley ([20]), Dujella ([5]), Dujella-
Ibrahimpašić ([6]) have extended or generalized the classical results of Le-
gendre and Fatou concerning Diophantine approximations of irrational num-
bers.

Let c ≥ 1 be an integer. In this paper, we consider the Thue inequality

(1.1) |x4 − 4x3y − (2c − 2)x2y2 + (4c + 4)xy3 − (2c − 1)y4| ≤ max
{ c

4
, 4

}

,

or, equivalently, the Thue equations of the form

(1.2) x4 − 4x3y − (2c − 2)x2y2 + (4c + 4)xy3 − (2c − 1)y4 = m,

where |m| ≤ max
{

c
4 , 4

}

. The aim of the paper is to prove the following the-
orem.

Theorem 1.1. Let c, m be integers such that c ≥ 1 and |m| ≤ max
{

c
4 , 4

}

and such that the Thue equation (1.2) has a primitive solution. Then

m ∈











{1,−1, 4,−4}, if c = 1,

{1,−3, 4}, if c = 2,

{1, 4}, if c ≥ 3.

All primitive solutions are given as follows

1. If c = 2n2 − 2, n ∈ N, n > 1,

(x, y) =

{

(±1, 0), ± (n + 1, n) , ± (n − 1, n) if m = 1,

±(1, 1), ± (2n + 1, 1) , ± (2n − 1,−1) if m = 4.

2. If c 6= 2n2 − 2, n ∈ N, n > 1,

(x, y) =

{

(±1, 0), if m = 1,

±(1, 1), if m = 4.
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Moreover, there are additional primitive solutions

(x, y) =

{

(0,±1), ±(2, 1), if m = −1,

±(3, 1), if m = −4,
for c = 1,

and

(x, y) = ± (2, 1) , ± (0, 1) if m = −3, for c = 2.

From the above theorem, one can easily deduce the following consequence.

Corollary 1.2. Let c ≥ 1 be an integer. Then, for all c ≥ 1, the Thue
inequality (1.1) has primitive solutions of the form (x, y) = (±1, 0),±(1, 1).
These solutions are the only primitive solutions if c 6= 2n2 − 2, n ∈ N, n > 1
and c 6= 1, 2. The additional primitive solutions are given by:

i) (x, y) = ± (n + 1, n) , ± (n − 1, n) , ± (2n + 1, 1) , ± (2n − 1,−1) for
c = 2n2 − 2, n ∈ N, n > 1;

ii) (x, y) = ± (0, 1) , ± (2, 1) for c = 2;
iii) (x, y) = (0,±1), ±(2, 1), ±(3, 1) for c = 1.

First we will use Tzanakis method to transform the Thue equation (1.2)
into the following system of Pellian equations

cU2 − (c + 4)V 2 = −4m,(1.3)

U2 − 2 (c + 4)Z2 = m.(1.4)

This is done in the next section. Second, we recall some results due to Worley,
Dujella, and Dujella-Jadrijević on continued fractions in Section 3. We use
these results in order to find all possible values of m for which system (1.3)
and (1.4) has a solution. In the last two sections we solve equation (1.2) for
all values of m that are obtained in Section 3, using results of Cohn ([3, 4])
and Walsh ([19]).

2. An application of the method of Tzanakis

In this section, we recall the method of Tzanakis and use it to transform
equation (1.2) into a system of Pellian equations. So let us consider the Thue
equation

(2.1) f(x, y) = m,

where

(2.2) f(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy3 + a4y

4 ∈ Z[x, y], a0 > 0.

We assign to this equation the cubic equation

(2.3) 4ρ3 − g2ρ − g3 = 0,
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where

g2 = a0a4 − 4a1a3 + 3a2
2 ∈ 1

12
Z, g3 =

∣

∣

∣

∣

∣

∣

a0 a1 a2

a1 a2 a3

a2 a3 a4

∣

∣

∣

∣

∣

∣

∈ 1

432
Z.

In 1993, Tzanakis [18] proved that a necessary condition to apply his method
is that equation (2.3) has three rational roots ρ1, ρ2, ρ3 that satisfy

(2.4)
a2
1

a0
− a2 ≥ max (ρ1, ρ2, ρ3).

Let H(x, y) and G(x, y) be the quartic and sextic covariants of f(x, y)
respectively, i.e.

H(x, y) = − 1

144

∣

∣

∣

∣

∣

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

∣

∣

∣

∣

∣

∈ 1

48
Z[x, y],

G(x, y) = −1

8

∣

∣

∣

∣

∣

∂f
∂x

∂f
∂y

∂H
∂x

∂H
∂y

∣

∣

∣

∣

∣

∈ 1

96
Z[x, y].

Then we have 4H3 − g2Hf2 − g3f
3 = G2. Let us put

H =
1

48
H0, G =

1

96
G0, ρi =

1

12
ri, i = 1, 2, 3,

then

H0, G0 ∈ Z[x, y], ri ∈ Z, i = 1, 2, 3,

and

(H0 − 4r1f)(H0 − 4r2f)(H0 − 4r3f) = 3G2
0.

There exist positive square-free integers k1, k2, k3 and quadratic G1, G2, G3 ∈
Z[x, y] such that

H0 − 4rif = kiG
2
i , i = 1, 2, 3

and k1k2k3(G1G2G3)
2 = 3G2

0. If (x, y) ∈ Z×Z is a solution of (2.1), then we
obtain

(2.5) k2G
2
2 − k1G

2
1 = 4(r1 − r2)m,

(2.6) k3G
2
3 − k1G

2
1 = 4(r1 − r3)m.

Now we apply the reduction method to equation (1.2). In this particular
case, we obtain

a0 = 1, a1 = −1, a2 = −c − 1

3
, a3 = c + 1, a4 = −2c + 1,

g2 =
c2 + 4c + 16

3
, g3 =

c3 + 6c2 − 24c− 64

27
.
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One can see that equation (2.3) has three rational roots

ρ1 = −1

6
c +

2

3
, ρ2 = −1

6
c − 4

3
, ρ3 =

1

3
c +

2

3
.

Since

a2
1

a0
− a2 =

1

3
c +

2

3
≥ max{ρ1, ρ2, ρ3},

so the reduction method can be applied to equation (1.2). We get

H0(x, y) − 4r1F (x, y) = 24c(x2 − 2xy + 3y2)2,

H0(x, y) − 4r2F (x, y) = 24(c + 4)(x2 − 2xy − y2)2,

H0(x, y) − 4r3F (x, y) = 48c(c + 4)(xy − y2)2.

We take

k1 = 6c, k2 = 6(c + 4), k3 = 3c(c + 4),

and

G1 = 2(x2 − 2xy + 3y2), G2 = 2(x2 − 2xy − y2), G3 = 4y(x − y).

Let

(2.7) U = x2 − 2xy + 3y2, V = |x2 − 2xy − y2|, Z = |y (x − y) |.

Then, by the method of Tzanakis, solving equation (1.2) reduces to solving
the system of Pellian equations (1.3) and (1.4), where |m| ≤ max{ c

4 , 4}.
Assuming that x and y are relatively prime, from (2.7) we see that

gcd (U, V, Z) = 1. Since U2 − V 2 = 8Z2, we see gcd (U, V ) = 1 or 2.

3. Continued fractions

In this section, we will consider the connections between solutions of the
equations (1.3) and continued fraction expansion of the corresponding qua-
dratic irrational.

The simple continued fraction expansion of a quadratic irrational α =
a+

√

d
b

is periodic. This expansion can be obtained using the following algo-
rithm. Multiplying the numerator and the denominator by b, if necessary, we
may assume that b|(d − a2). Let s0 = a, t0 = b and

(3.1) an =
⌊

sn+
√

d
tn

⌋

, sn+1 = antn − sn, tn+1 =
d−s2

n+1

tn

, for n ≥ 0.

If (sj , tj) = (sk, tk) for j < k, then

α = [a0, . . . , aj−1, aj , . . . , ak−1].
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Applying this algorithm to quadratic irrational
√

(c + 4)/c, we find
√

c + 4

c
=

[

1;
c

2
, 2

]

,

(s0, t0) = (0, c) , (s1, t1) = (c, 4) ,

(s2, t2) = (c, c) , (s3, t3) = (c, 4) ,

if c is an even positive integer, and
√

c + 4

c
=

[

1,
c − 1

2
, 1, 2c + 2, 1,

c − 1

2
, 2

]

,

(s0, t0) = (0, c) , (s1, t1) = (c, 4) ,

(s2, t2) = (c − 2, 2c − 1) , (s3, t3) = (c + 1, 1) ,

(s4, t4) = (c + 1, 2c − 1) , (s5, t5) = (c − 2, 4) ,

(s6, t6) = (c, c) , (s7, t7) = (c, 4) ,

if c > 1 is an odd positive integer. If c = 1, we have
√

c + 4

c
=

√
5 =

[

2, 4
]

,

(s0, t0) = (0, 1) , (s1, t1) = (2, 1) , (s2, t2) = (2, 1) .

Let (U, V, Z) be integer solution of the system of equations (1.3) and
(1.4). One can observe that if one of the integers U, V, Z is equal to zero, then
equations (1.3) and (1.4) imply that the two other integers are not equal to
zero. Moreover, one can see that U = 0 or V = 0 is impossible, which follows
immediately from U2 − V 2 = 8Z2.

Assume now that (U, V, Z) is a nonnegative solution of the system (1.3)

and (1.4). Then U
V

is a good rational approximation of
√

c+4
c

. We find that

√

c + 4

c
+

U

V
>

√

c + 4

c

which implies
∣

∣

∣

∣

∣

√

c + 4

c
− U

V

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

c + 4

c
− U2

V 2

∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

√

c + 4

c
+

V

U

∣

∣

∣

∣

∣

−1

<
4 |m|
cV 2

·
√

c

c + 4
≤

{ 4· c

4

cV 2 · 1 = 1
V 2 , if c ≥ 16,

16√
c(c+4)V 2

, if c ≤ 15.

This implies that
∣

∣

∣

∣

∣

√

c + 4

c
− U

V

∣

∣

∣

∣

∣

<
M

V 2
,
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where M = 1 if c ≥ 15, M = 2 if 7 ≤ c ≤ 14, M = 3 if 4 ≤ c ≤ 6, M = 4 if
c = 3, M = 5 if c = 2 and M = 8 if c = 1.

Let pk/qk denote the kth convergent of α. The following result of Wor-
ley ([20]) and Dujella ([5]) extends classical results of Legendre and Fa-
tou concerning Diophantine approximations of the form

∣

∣α − a
b

∣

∣ < 1
2b2

and
∣

∣α − a
b

∣

∣ < 1
b2

.

Theorem 3.1 (Worley [20], Dujella [5]). Let α be a real number and a
and b coprime nonzero integers, satisfying the inequality

∣

∣

∣
α − a

b

∣

∣

∣
<

M

b2
,

where M is a positive real number. Then (a, b) = (rpk+1 ± upk, rqk+1 ± uqk) ,
for some k ≥ −1 and nonnegative integers r and u such that ru < 2M .

Explicit version of Theorem 3.1 for M = 2, was given by Worley ([20,
Corollary, p. 206]). Recently, Dujella and Ibrahimpašić ([6, Propositions 2.1
and 2.2]) extended Worley’s work and gave explicit and sharp versions of
Theorem 3.1 for M = 3, 4, ..., 12.

We would like to apply Theorem 3.1 in order to determine all values of m
with |m| ≤ max

{

c
4 , 4

}

for which equation (1.3) has solutions. We need the
following lemma (see Dujella and Jadrijević [8, Lemma 1]).

Lemma 3.2. Let αβ be a positive integer which is not a perfect square,
and let pk/qk denotes the kth convergent of continued fraction expansion of
√

α
β
. Let the sequences (sk) and (tk) be defined by (3.1) for the quadratic

irrational
√

αβ
β

. Then

(3.2) α(rqk+1 +uqk)2−β(rpk+1+upk)2 = (−1)k(u2tk+1+2rusk+2−r2tk+2).

Since the period length of the continued fraction expansion of
√

c+4
c

is:

equal to 2 if c is even, equal to 6 if c > 1 is odd and equal to 1 if c = 1,
according to Lemma 3.2, we have to consider only the fractions (rpk+1 +
upk)/(rqk+1 + uqk) for: k = 0, 1 if c is even and c = 1 and k = 0, 1, ...., 5 if
c > 1 is odd.

By checking all possibilities, it is now easy to prove the following result.

Proposition 3.3. Let c and m be integers such that c ≥ 1 and |m| ≤
max

{

c
4 , 4

}

and such that equation (1.3) has a solution in integers U and V
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with gcd(U, V ) = 1 or 2. Then

m ∈



































































{1, 4, − c
4}, if c ≡ 0 (mod 4), c ≥ 16,

{1, 4}, if c 6≡ 0 (mod 4), c ≥ 13 and c = 10, 9, 6, 5,

{1,−3, 4}, if c = 12, 2,

{1,−2, 4}, if c = 11,

{1,−2, 3, 4}, if c = 8,

{1, 3, 4}, if c = 7,

{1,−1, 2 ,−2, 4, −4}, if c = 4,

{1, 2,−2 ,−3, 4,−4}, if c = 3,

{1,−1, 4,−4}, if c = 1.

Furthermore, all solutions of this equation in relatively prime positive inte-
gers are given by (U, V ) = (p2k, q2k) if m = 1 and c ≡ 0 (mod 4), c ≥ 16;
(U, V ) = (p2k+1, q2k+1) if m = − c

4 and c ≡ 0 (mod 4); (U, V ) = (p6k, q6k),
(p6k+2 + p6k+2, q6k+2 + q6k+2), (p6k+4, q6k+2) if m = 1 and c ≡ 1, 3 (mod 4),
c ≥ 15. While all solutions of this equation in integers with gcd(U, V ) = 2
are given by (U, V ) = (2p2k, 2q2k) if m = 4 and c ≡ 0 (mod 4), c ≥ 16;
(U, V ) = (2p6k, 2q6k), (2p6k+2 + 2p6k+2, 2q6k+2 + 2q6k+2), (2p6k+4, 2q6k+2) if
m = 4 and c ≡ 1, 3 (mod 4), c ≥ 15.
Here pk/qk denotes the kth convergent of continued fraction expansion of
√

c+4
c

and (p−1, q−1) = (1, 0).

Now we will discuss the solvability in integers U, V, Z, with gcd (U, V ) = 1
or 2, of the system of equations (1.3) and (1.4) where m is one of the admissible
values from Proposition 3.3.

Assume now that for m = − c
4 and c ≡ 0 (mod 4), c ≥ 16, the system

(1.3) and (1.4) has a solution (U, V, Z). Then, by Proposition 3.3, we have
U = p2k+1 for an integer k ≥ 0.

We will need the recursive relations for the convergents of
√

c+4
c

, c ≡ 0

(mod 4), with odd and even subscripts. Let c = 4d, d ≥ 1. Then from

p0 = 1, p1 = 2d + 1,(3.3)

p2k = 2p2k−1 + p2k−2,(3.4)

p2k+1 = 2dp2k + p2k−1,(3.5)

it follows easily

p2k+1 = 2 (2d + 1) p2k−1 − p2k−3.

The following lemma can be proved easily by induction.



SOLUTIONS OF A CLASS OF QUARTIC THUE INEQUALITIES 317

Lemma 3.4. Let the sequences (pm) be defined by (3.3), (3.4), and (3.5).
Then for all l ≥ 0 we have

p4l+3 ≡ 1 (mod 8d + 8),(3.6)

p4l+1 ≡ 2d + 1 (mod 8d + 8).(3.7)

From equation (1.4) we have

(3.8) U2 + d ≡ 0 (mod 8d + 8).

On the other hand, if c = 4d and d ≥ 4, from Lemma 3.4 and U = p2k+1, we
have

U2 + d ≡ 1 + d 6≡ 0 (mod 8d + 8) if U = p4l+3

or

U2 + d ≡ (2d + 1)2 + d ≡ (d + 1) (4d + 1) 6≡ 0 (mod 8d + 8) if U = p4l+1.

Hence, we have proved that for m = − c
4 and c ≡ 0 (mod 4), c ≥ 16 the

system (1.3) and (1.4) has no solution. We will consider the remaining cases
in the next two sections.

4. Cases m = 1, 4

Let c ≥ 1 and m = 1, 4. Let x = X + Y and y = Y. Then equation (1.2)
gives

(4.1)
(

2Y 2
)2 − (c + 2)

(

2Y 2
)

X2 + X4 = m.

Furthermore, by (2.7), we have (U, V, Z) = (X2 + 2Y 2, |X2 − 2Y 2|, |XY |).
We will apply the results of Cohn [3, Equation 1 and Equation 5] and

Walsh [19, Theorem 2].

Theorem 4.1 (Cohn [3]). Let K be an odd positive integer.

1. The only solutions to x2 − Kxy2 + y4 = 1 in non-negative integers
(x, y) are (K, 1), (0, 1), (1, 0), unless either K is a perfect square, in

which case there is also the solution (1,
√

K);
2. The only solution in non-negative integers x, y to the equation x2 −

Kxy2 + y4 = 4 is (x, y) = (2, 0).

Theorem 4.2 (Walsh [19]). Let K be an even positive integer.

1. The only solutions to x2 − Kxy2 + y4 = 1 in non-negative in-
tegers (x, y) are (K, 1), (0, 1), (1, 0), unless either K is a perfect

square, in which case there are also the solutions (1,
√

K), (K2 −
1,
√

K), or K = 338 in which there are the solutions (x, y) =
(114243, 6214), (13051348805, 6214)

2. The only solution in non-negative integers x, y to the equation x2 −
Kxy2 + y4 = 4 is (x, y) = (2, 0), unless K = 2v2 for some integer v,

in which case there are also the solutions (2,
√

2K), (2K2 − 2,
√

2K).
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Let us begin with m = 1 by applying the first part of the above theorems
to equation (4.1).

Case 1: For all c ≥ 1, we obtain that possible solutions are given by
(2Y 2,±X) = (c + 2, 1), (0, 1), (1, 0).

• The first solution gives us c = 2n2 − 2, X = ±1, Y = ±n for some
positive integer n. This implies (U, V, Z) = (2n2 + 1, 2n2 − 1, n) and the
solutions of equation (1.2) are (x, y) = ±(n + 1, n),±(n− 1, n).

• The second solution gives us X = ±1, Y = 0. This implies (U, V, Z) =
(1, 1, 0), and the solutions are (x, y) = (±1, 0).

• It is obvious to see that there is no solution corresponding to
(2Y 2,±X) = (1, 0).

Case 2: If c+2 = t2, for some positive integer t, then possible additional
solutions are given by (2Y 2,±X) = (1, t) for all c ≥ 1 and (2Y 2,±X) =
(t4 − 1, t) when c is an even integer.

• Using Cohn’s result [4], one can see that the equation 2Y 2 = t4 − 1 has
only the integer solutions (Y, t) = (0,±1). This implies c = −1 which gives
us a contradiction.

• The second eventuality (2Y 2,±X) = (1, t) is also impossible.

Case 3: If c + 2 = 338, i.e., c = 340, then there is no additional solution
because 2Y 2 /∈ {114243, 13051348805}.

Now we only apply the second part of Theorem 4.1 and Theorem 4.2 to
deal with m = 4.

Case 4: For all c ≥ 1 possible solutions are given by (2Y 2,±X) = (2, 0).
This implies (X, Y ) = (0,±1) and (U, V, Z) = (2, 2, 0). Therefrom we obtain
the solutions (x, y) = ±(1, 1).

Case 5: If K = 2n2, i.e. c = 2n2 − 2 with n > 1, then we have two
additional possibilities.

• First, we take (2Y 2,±X) = (2, 2n). Therefore, we get Y = ±1. It
follows that (U, V, Z) = (2n2 +2, 2n2−2, 2n), and gives the solutions (x, y) =
±(2n + 1, 1),±(2n− 1).

• Second, we take (2Y 2,±X) = (2(2n2)2−2, 2n) and we get Y 2 = (2n2)2−
1. This is impossible.

Therefore, all solutions are found when m = 1, 4.

Remark 4.3. It is easy to see that when m = 4 and X = 2X1, then from
(4.1), we get

(2X2
1 )2 − (c + 2)(2X2

1 )Y 2 + Y 4 = 1.

Conversely, one can see that any solution of equation (4.1) of the form
(X, Y ) = (a, b) for m = 1 gives a solution of the form (X, Y ) = (2b, a) for
m = 4.
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5. Cases m 6= 1, 4

In this section, we study the remaining cases when m 6= 1, 4. By (1.3)
and (1.4), we get

(5.1) V 2 − 2cZ2 = m.

So if c = 2 and m = −3 then from equation (5.1) we obtain

V 2 − 4Z2 = (V − 2Z) (V + 2Z) = −3.

This implies V = ±1, Z = ±1. Then, from (2.7), we obtain (x, y) = ± (2, 1)
or (x, y) = ± (0, 1) .

Now let us rewrite equation (4.1) to

(5.2) A2 −
(

δ2 − 4
)

B2 = m,

where δ = c+2 ≥ 3, A = X2−(c + 2)Y 2 = (x − y)
2−(c + 2) y2, B = Y 2 = y2.

Since the period of continued fraction expansion of
√

δ2 − 4 is even if δ ≥ 4,
there is no solution if m = −1,−4 and c ≥ 2. If δ = 3, i.e c = 1, the period
is odd which implies that equation (5.2) has solutions with m = −1 and
m = −4.

It remains to consider the cases:

• c = 1 and m = −1 or m = −4;
• c = 3 and m = 2 or m = −2 or m = −3;
• c = 7 and m = −3;
• c = 8 and m = −2 or m = 3;
• c = 11 and m = −2;
• c = 12 and m = −3.

We solve the remaining cases as follows.
Case c = 1. When m = −1, equation (1.2) was solved by Tzanakis [18, p.

275]. For m = −4, we used Thuesolver of KASH ([14]). So we get

(x, y) =

{

(0,±1),±(2, 1), if m = −1,

±(3, 1), if m = −4.

Case c = 3. Equation (5.2) becomes A2−21B2 = m. If m = 2, it implies
A2 ≡ 2 (mod 3). This is impossible. If m = −2, we obtain A2 ≡ −2 ≡ 5
(mod 7). So there is no solution. If m = 3, then A2 ≡ 3 (mod 7), but 3 is
not a square modulo 7. Therefore, we have no solution (A, B) when c = 3.

Case c = 7, m = −3. In this case, equation (5.2) has the form A2 −
77B2 = −3. By taking modulo 11, we obtain A2 ≡ −3 (mod 11). Using
the Legendre symbol, we get (−3/11) = (8/11) = (2/11) = −1. There is no
solution (A, B).

Case c = 8. Equation (5.2) becomes A2 − 96B2 = m. If m = −2, we
get A2 ≡ −2 ≡ 2 (mod 4) which is impossible. If m = 3, similarly, A2 ≡ 3
(mod 4) gives us a contradiction.
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Case c = 11, m = −2. Then we have A2 − 165B2 = −2. We get that
A2 ≡ −2 (mod 5). This is impossible.

Case c = 12, m = −3. From equation (5.2), we deduce A2−192B2 = −3.
Then A2 ≡ −3 ≡ 5 (mod 8) which is also impossible.
This completes the proof of Theorem 1.1.
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[7] A. Dujella and B. Jadrijević, A parametric family of quartic Thue equations, Acta

Arith. 101 (2002), 159-169.
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