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Abstract. Let L be a metacyclic p-group, p > 2, without cyclic
subgroups of index p and let a ∈ Aut(L) be of order p. We show that
either a centralizes Ω1(L) or p = 3 and the natural semidirect product
〈a〉 · L is of maximal class so the subgroup L has very specific structure.
This improves Lemma 4.9 from [MS].

According to [MS, Lemma 4.9], if p > 3 is a prime and a is an automor-
phism of order p of abelian group L of type (p2, p2), then a centralizes Ω1(L)
(the proof of this result is also reproduced in [AS, Lemma A.1.30]). The same
conclusion is true provided L is abelian of type (pm, pn), p > 3 and m ≥ n > 2
(it suffices to consider the restriction of a on Ω2(L)). Our aim is to improve
this result as follows:

Theorem 1. Suppose that L is a metacyclic p-group without cyclic sub-
group of index p, p > 2. An element a ∈ Aut(L) of order p does not centralize
Ω1(L) if and only if p = 3 and the natural semidirect product G = 〈a〉 ·L is a
3-group of maximal class.1

By Theorem 1, if p > 3 and L is a metacyclic p-group without cyclic
subgroup of index p, then Ω1(L) is centralized by A, where A is the subgroup
generated by all elements of Aut(L) of order p. We claim that, if W = A · L
is the natural semidirect product, then |W : CW(L)| is a power of p. Indeed,
if b is a p′-element of W , then b, as an element of A, centralizes Ω1(L) and so
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1The proof of this theorem shows that if L has a cyclic subgroup of index p, then

either G = 〈a〉 ·L is a group of maximal class and order p4 or a group (b2) of Lemma 3(b).
It is known that an outer automorphism of L of order p exists; see, for example, [Hup, Satz
III.19.1]
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the natural semidirect product 〈b〉 ·L has no minimal nonnilpotent subgroups
(see [B2, Theorem 10.8]) so it is nilpotent [I, Theorem 9.18]; in that case b
centralizes L.

Our proof of Theorem 1 uses fairly deep results of finite p-group theory
and so it is essentially differed from the proof of [MS, Lemma 4.9] which is
based on intricate computations with elements of L and the given automor-
phism a of L of order p.

Corollary 2. Suppose that p > 2 and L is an abelian group of type
(pm, pn), m > 1, n > 1. An element a ∈ Aut(L) of order p does not centralize
Ω1(L) if and only if |m − n| ≤ 1, p = 3 and the natural semidirect product
G = 〈a〉 · L is a 3-group of maximal class.

To deduce Corollary 2 from Theorem 1, it suffices to apply Remark 4,
below.

We use standard notation of finite p-group theory (see [B1–B5]).
In Lemma 3 we gathered all known results which are used in what follows.

Lemma 3. Let G > {1} be a p-group.

(a) If G is regular, then exp(Ω1(G)) = p and |G/℧1(G)| = |Ω1(G)|.
(b) Blackburn; see also [B1, Theorem 6.1]. If p > 2 and G has no nor-

mal elementary abelian subgroup of order p3, then one of the following
holds:
(b1) G is metacyclic.
(b2) G = CΩ1(G), where Ω1(G) is nonabelian of order p3 and ex-

ponent p and C is cyclic (in particular, G/Ω1(G) is cyclic and
℧1(C) ≤ Z(G)).

(b3) G is a 3-group of maximal class not isomorphic to a Sylow 3-
subgroup of the symmetric group of degree 32.2

(c) Blackburn; see also [B2, Theorems 9.5 and 9.6]. Let a p-group G
of maximal class be of order greater than pp. Then G is irregular,
Ω1(Φ(G)) is of order pp−1 and exponent p and |G/℧1(G)| = pp. If, in
addition, |G| > pp+1, then there is in G a unique regular maximal sub-
group, say G1, and it is absolutely regular; all other maximal subgroups
of G are of maximal class.3

(d) A p-group of maximal class and order > p3 has no normal cyclic sub-
group of order p2, unless p = 2.

(e) Blackburn; see also [B3, Theorem 7.5]. Suppose that a non-absolutely
regular p-group G has an absolutely regular maximal subgroup H. Then

2A Sylow 3-subgroup of the symmetric group of degree 32 is the unique 3-group of
maximal class that contains an elementary abelian subgroup of order 33.

3A p-group X is absolutely regular if |X/℧1(X)| < pp; then X is regular, by Hall’s
regularity criterion [B2, Theorem 9.8(a)]. It follows that, if p > 2, then metacyclic p-groups
are absolutely regular.
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either G is irregular of maximal class or G = HΩ1(G), where Ω1(G)
is of order pp and exponent p.

(f) Blackburn; see also [J, Theorem 7.1] and [BJ, Theorem 7.1]. If a
2-group G is minimal nonmetacyclic, then G is one of the following
groups: (i) E8, (ii) Q8 × C2, (iii) D8*C4 (central product) of order 16,
(iv) a special group of order 25 with |Z(G)| = 2 2 .

(g) [B4, Proposition 19(a)]. If B is a nonabelian subgroup of order p3 of
a p-group G such that CG(B) < B, then G is of maximal class.

(h) If a metacyclic p-group G has a nonabelian subgroup B of order p3,
then either G is a 2-group of maximal class or G = B.

(i) [BJ, Lemma 3.2(a)] If G is a nonabelian two-generator p-group and
G′ ≤ Ω1(Z(G)), then G is minimal nonabelian.

(j) Blackburn; see also [B3, Theorem 7.6]. If a p-group G has no normal
subgroup of order pp and exponent p, then it is either absolutely regular
or of maximal class.

(k) Huppert; see also [B5, Corollary 13]. If p > 2 and G is such that
|G/℧1(G)| ≤ p2, then G is metacyclic.

(l) Redei ([R]); see also [B2, Exercise 1.8a]. If G is a metacyclic minimal
nonabelian p-group of order pm, then either G ∼= Q8 or G = 〈a, b |

apm

= bpn

= 1, ab = a1+pm−1

〉. If G is nonmetacyclic minimal non-
abelian of order > p3, then Ω1(G) ∼= Ep3 .

Let us prove Lemma 3(d). Let p > 2 and X a p-group of maximal class
and order > p3. Then X has only one normal subgroup of order p2; since this
subgroup is abelian of type (p, p) [B2, Lemma 1.4], we are done.

Let us prove Lemma 3(h). Assume that |G| > p3 and CG(B) 6≤ B, where
B is nonabelian of order p3 and G is metacyclic. If F ≤ CG(B) is of order p2,
then d(BF ) > 2 so BF is a nonmetacyclic subgroup of a metacyclic group G,
a contradiction. Thus, CG(B) < B. Then, by Lemma 3(g), G is of maximal
class so |G : G′| = p2 which is impossible for metacyclic p-groups of order
> p3 with p > 2; in case p = 2, our G is of maximal class (Taussky).

Remark 4 (Blackburn). Suppose that G is a 3-group of maximal class
and order > 34 and G1 < G is absolutely regular; then G1 is noncyclic
(Lemma 3(c)) and metacyclic (Lemmas (c,k)). Assume that G1 has a cyclic
subgroup of index 3. In that case, Ω2(℧1(G1)) is cyclic of order 32, contrary
to Lemma 3(d). Suppose that G1 is abelian of type (3m, 3n) with m ≥ n.
Then ℧n(G1) is G-invariant and cyclic of order 3m−n so m − n ≤ 1 (Lemma
3(d)). Now suppose that G1 is nonabelian. Then G′

1 is cyclic and G-invariant
so |G′

1| = 3 (Lemma 3(d)). In that case, G1 is minimal nonabelian and

G1 = 〈a, b | a3m

= b3n

= 1, ab = a1+3m−1

〉 (Lemma 3(i,l)). The center Z(G1)
is abelian of type (3m−1, 3n−1) and G-invariant. Let k = min {m − 1, n− 1}.
Then ℧k(Z(G1 )) is G-invariant and cyclic of order 3|m−n| so |m − n| ≤ 1
(Lemma 3(d)).
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Let G be a 3-group of maximal class and order > 34 and let L < G be
absolutely regular maximal subgroup of G (Lemma 3(c)). By Remark 4, L is
either abelian or minimal nonabelian; in addition, L has no cyclic subgroup
of index 3. In any case, the abelian subgroup Ω1(L) of type (3, 3) is contained
in Z(L) (see Lemma 3(l)) so CG(Ω1(L)) = L since |Z(G)| = 3. Therefore, if
x ∈ G − L is of order 3 (note that, in general, such x need not exist), then x
does not centralize Ω1(L), and then such pair {x, L} satisfies the hypothesis
of Theorem 1.

Proof of Theorem 1. By Remark 4 and the paragraph following the
remark, it suffices to prove that the natural semidirect product G = 〈a〉 ·
L is a 3-group of maximal class (obviously, this semidirect product is not
metacyclic). We have |L| ≥ p4 since the metacyclic subgroup L has no cyclic
subgroup of index p.

Suppose that an element a ∈ Aut(L) of order p does not centralize Ω1(L).
Let G be defined as in the previous paragraph. By Lemma 3(a), Ω1(L) and
L/Ω1(L) are abelian of type (p, p), and Ω1(L) ⊳ G. Since p > 2, the subgroup
H = 〈a, Ω1(L)〉 is nonabelian of order p3 and exponent p, by assumption. We
have G = LH since H 6≤ L and L is maximal in G. Clearly, G has no subgroup
of order p4 and exponent p (otherwise, the intersection of that subgroup with
L will be of order > p2 and exponent p, which is impossible).

Assume that G is regular. Then exp(Ω1(G)) = p (Lemma 3(a)) so, by
the previous paragraph, |Ω1(G)| = p3 = |H | hence Ω1(G) = H . It follows
that G has no elementary abelian subgroup of order p3 so G is as in part (b2)
of Lemma 3(b) (the group (b3) of Lemma 3(b) is irregular, by Lemma 3(c)).
In that case, however, every metacyclic subgroup of that group has a cyclic
subgroup of index p, contrary to the hypothesis.

Thus, G is irregular. In view of Remark 4 and the paragraph following
it, one may assume that G is not a 3-group of maximal class. It follows from
Lemma 3(c) that G is not of maximal class for all p > 3 (indeed, Φ(G) < L
and Ω1(Φ(G)) is of exponent p and order pp−1 > p2 = |Ω1(L)|). As we have
noticed, L is absolutely regular. Therefore, by Lemma 3(e), G = LΩ1(G),
where Ω1(G) is of order pp and exponent p. Since L ∩ Ω1(G) = Ω1(L) is
abelian of order p2, we get p = 3. It follows that Ω1(G) = H = 〈x, Ω1(L)〉
is nonabelian of order p3 and exponent p so G has no elementary abelian
subgroup of order p3. In that case, G is an irregular 3-group of maximal class
(since, as we have noticed, any group of part (b2) of Lemma 3(b) has no such
a subgroup as L), contrary to the assumption.

Remark 5. Here we consider a similar, but more complicated, situation
for p = 2. Suppose that a metacyclic 2-group L without cyclic subgroups of
index 2 is maximal in a 2-group G; then Ω1(L) is a G-invariant four-subgroup
(this follows immediately from Lemma 3(h)), and so G is not of maximal
class. Let, in addition, Ω1(L) ≤ Z(L). Suppose that there is an involution
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a ∈ G − L that does not centralize Ω1(L). Since 〈x, Ω1(L)〉 ∼= D8, it follows
that G is not metacyclic (otherwise, G is of maximal class, by Lemma 3(h)).
By hypothesis, CG(Ω1(L)) = L. If E < G is elementary abelian of order 8,
then L ∩ E = Ω1(L) so CG(Ω1(L)) ≥ LE = G, a contradiction. Let H be a
minimal nonmetacyclic subgroup of G; then H 6≤ L. Since H has no subgroup
∼= E8, we get |H | > 8 and exp(H) = 4 (Lemma 3(f)). If Z(H) ∼= E4, then
Z(H) is contained in every abelian subgroup of H of order ≥ 8 (Lemma 3(f))
so, since H ∩L contains an abelian subgroup of order 8 (Lemma 3(h)), we get
Z(H) = Ω1(L) and CG(Ω1(L)) ≥ HL = G, a contradiction. Thus, Z(H) is
cyclic so, by Lemma 3(f), H ∼= D8 ∗ C4 is of order 16. A similar argument
shows that if A < G and A 6≤ L is minimal nonabelian, then A has a cyclic
subgroup of index 2. Indeed, A is metacyclic (Lemma 3(l)) so, if |A| > 8,
then |Ω1(A)| ≤ 4 and, if Ω1(A) ∼= E4, then Ω1(A) 6≤ Z(A) = Φ(A)(≤ L)
so Φ(A) = ℧1(A) is cyclic. Now we construct a group G = 〈a, L〉, where
a ∈ G − L is an involution and L is metacyclic without cyclic subgroups of
index 2 and such that Ω1(L) ≤ Z(L) and Ω1(L) 6≤ Z(G). Let G = Z wr C
(wreath product), where Z is cyclic of order 2n > 2 and C = 〈a〉 is of order
2; then |G| = 22n+1 and Z(G) is cyclic of order |Z| = 2n. Let L = Z ×Za be
the base of the wreath product G. We see that a does not centralize Ω1(L)
and L is abelian of type (2n, 2n).

Suppose that an abelian 2-group L of type (2n, 2), n > 2, is maximal
in a 2-group G = 〈a, L〉 and involution a does not centralize Ω1(L). Then
H = 〈a, Ω1(L)〉 ∼= D8. We have CG(Ω1(L)) = L so G has no subgroups
∼= E8 (see Remark 5). Let Z < L be cyclic of index 2. We claim that
H ∩ Z = Z(H ). Indeed, H ∩ L = Ω1(L) is abelian of type (2, 2) so cyclic
H ∩Z < H ∩L, and our claim follows, since Ω1(Z)⊳G (consider the kernel of
representation of G by permutations of left cosets of Z and take into account
that |G : Z| = 4 and n > 2). Thus, G = HZ, by the product formula. By the
modular law, H ∗ Ω2(CG(H )) is minimal nonmetacyclic of order 24. Assume
that M < G is minimal nonmetacyclic; then M is nonabelian, 23 < |M | ≤ 25

and exp(M) = 4 (Lemma 3(f)) so M ∩ L (of order > 4) is abelian noncyclic
(Lemma 3(g)). It follows that Ω1(L) < M ∩ L so, if Z(M) is noncyclic, we
get Z(M)) 6≤ M ∩ L (otherwise, Ω1(L) = Z(M ) ≤ Z(G), a contradiction). It
follows from Lemma 3(f) that Z(M) is cyclic so M = D8 ∗C4. As in Remark
5, if A < G is minimal nonabelian, then A has a cyclic subgroup of index 2.

Suppose that a nonmetacyclic subgroup U is maximal in a p-group G =
〈x, U〉, where o(x) = p > 2 and Ω1(U) ∼= Ep2 ; then p = 3 and U is of maximal
class and order > 33 (Lemma 3(b)). Suppose, in addition, that there is an
element of order 3 in G−U , and all such elements do not centralize Ω1(U) (if
there are no such elements, then G is of maximal class, by the same Lemma
3(b)). Then CG(Ω1(U)) = L is maximal in G since Ω1(U) 6≤ Z(U ), and G
has no elementary abelian subgroups of order 33. Therefore, L is metacyclic
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and G is as in parts (b2) or (b3) of Lemma 3(b). However, a group of part
(b2) has no maximal subgroup such as U . Thus, G is a 3-group of maximal
class, and L is such as the subgroup G1 in Remark 4.
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