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ON AUTOMORPHISMS OF ORDER p OF METACYCLIC
p-GROUPS WITHOUT CYCLIC SUBGROUPS OF INDEX p

YAKOV BERKOVICH
University of Haifa, Israel

ABSTRACT. Let L be a metacyclic p-group, p > 2, without cyclic
subgroups of index p and let a € Aut(L) be of order p. We show that
either a centralizes Q1(L) or p = 3 and the natural semidirect product
(a) - L is of maximal class so the subgroup L has very specific structure.
This improves Lemma 4.9 from [MS].

According to [MS, Lemma 4.9], if p > 3 is a prime and « is an automor-
phism of order p of abelian group L of type (p?,p?), then a centralizes (L)
(the proof of this result is also reproduced in [AS, Lemma A.1.30]). The same
conclusion is true provided L is abelian of type (p™,p"), p > 3 and m > n > 2
(it suffices to consider the restriction of @ on Q2(L)). Our aim is to improve
this result as follows:

THEOREM 1. Suppose that L is a metacyclic p-group without cyclic sub-
group of index p, p > 2. An element a € Aut(L) of order p does not centralize
01 (L) if and only if p = 3 and the natural semidirect product G = (a)- L is a
3-group of mazimal class.!

By Theorem 1, if p > 3 and L is a metacyclic p-group without cyclic
subgroup of index p, then 4 (L) is centralized by A, where A is the subgroup
generated by all elements of Aut(L) of order p. We claim that, if W =A-L
is the natural semidirect product, then |W : Cw(L)| is a power of p. Indeed,
if b is a p’-element of W, then b, as an element of A, centralizes Q1(L) and so
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IThe proof of this theorem shows that if L has a cyclic subgroup of index p, then
either G' = (a) - L is a group of maximal class and order p* or a group (b2) of Lemma 3(b).
It is known that an outer automorphism of L of order p exists; see, for example, [Hup, Satz
111.19.1]
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the natural semidirect product (b) - L has no minimal nonnilpotent subgroups
(see [B2, Theorem 10.8]) so it is nilpotent [I, Theorem 9.18]; in that case b
centralizes L.

Our proof of Theorem 1 uses fairly deep results of finite p-group theory
and so it is essentially differed from the proof of [MS, Lemma 4.9] which is
based on intricate computations with elements of L and the given automor-
phism a of L of order p.

COROLLARY 2. Suppose that p > 2 and L is an abelian group of type
(™, p"), m > 1,n>1. An element a € Aut(L) of order p does not centralize
Q1(L) if and only if [/m —n| < 1, p = 3 and the natural semidirect product
G = {a) - L is a 3-group of mazimal class.

To deduce Corollary 2 from Theorem 1, it suffices to apply Remark 4,
below.

We use standard notation of finite p-group theory (see [B1-B5]).

In Lemma 3 we gathered all known results which are used in what follows.

LEMMA 3. Let G > {1} be a p-group.

(a) If G is regular, then exp(Q1(G)) = p and |G/U1(G)| = |Q1(G)|.

(b) Blackburn; see also [B1, Theorem 6.1]. If p > 2 and G has no nor-
mal elementary abelian subgroup of order p>, then one of the following
holds:

(bl) G is metacyclic.

(b2) G = CO4(G), where Q1(G) is nonabelian of order p*> and ex-
ponent p and C is cyclic (in particular, G/Q1(G) is cyclic and
U1(C) <Z(@G)).

(b3) G is a 3-group of maximal class not isomorphic to a Sylow 3-
subgroup of the symmetric group of degree 3%.2

(¢) Blackburn; see also [B2, Theorems 9.5 and 9.6]. Let a p-group G
of maximal class be of order greater than pP. Then G is irregular,
01 (®(Q)) is of order pP~1 and exponent p and |G /U1 (G)| = pP. If, in
addition, |G| > pPTL, then there is in G a unique regular mazimal sub-
group, say G1, and it is absolutely reqular; all other mazximal subgroups
of G are of mazximal class.?

(d) A p-group of mazimal class and order > p> has no normal cyclic sub-
group of order p?, unless p = 2.

(e) Blackburn; see also [B3, Theorem 7.5]. Suppose that a non-absolutely
reqular p-group G has an absolutely reqular mazimal subgroup H. Then

2A Sylow 3-subgroup of the symmetric group of degree 32 is the unique 3-group of
maximal class that contains an elementary abelian subgroup of order 33.

3A p-group X is absolutely regular if | X/U1(X)| < pP; then X is regular, by Hall’s
regularity criterion [B2, Theorem 9.8(a)]. It follows that, if p > 2, then metacyclic p-groups
are absolutely regular.
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either G is irreqular of mazimal class or G = HQ1(G), where Q1(G)
is of order pP and exponent p.

(f) Blackburn; see also [J, Theorem 7.1] and [BJ, Theorem 7.1]. If a
2-group G is minimal nonmetacyclic, then G is one of the following
groups: (i) Eg, (i) Qg x Cq, (iii) Dg*Cy (central product) of order 16,
(iv) a special group of order 25 with |Z(G)| = 27.

(g) [B4, Proposition 19(a)]. If B is a nonabelian subgroup of order p> of
a p-group G such that Cq(B) < B, then G is of mazimal class.

(h) If a metacyclic p-group G has a nonabelian subgroup B of order p3,
then either G is a 2-group of maximal class or G = B.

(i) [BJ, Lemma 3.2(a)] If G is a nonabelian two-generator p-group and
G' < (Z(G)), then G is minimal nonabelian.

(j) Blackburn; see also [B3, Theorem 7.6]. If a p-group G has no normal
subgroup of order pP and exponent p, then it is either absolutely reqular
or of maximal class.

(k) Huppert; see also [B5, Corollary 13]. If p > 2 and G is such that
|G/U1(G)| < p?, then G is metacyclic.

(1) Redei ([R]); see also [B2, Exercise 1.8a]. If G is a metacyclic minimal
nonabelian p-group of order p™, then either G = Qg or G = {a,b |
a?" =" =1, a" =o', If G is nonmetacyclic minimal non-
abelian of order > p3, then Q1(G) 2 Es.

Let us prove Lemma 3(d). Let p > 2 and X a p-group of maximal class
and order > p3. Then X has only one normal subgroup of order p?; since this
subgroup is abelian of type (p,p) [B2, Lemma 1.4], we are done.

Let us prove Lemma 3(h). Assume that |G| > p* and Cg(B) £ B, where
B is nonabelian of order p* and G is metacyclic. If FF < Cg(B) is of order p?,
then d(BF') > 2 so BF is a nonmetacyclic subgroup of a metacyclic group G,
a contradiction. Thus, Cz(B) < B. Then, by Lemma 3(g), G is of maximal
class so |G : G'| = p? which is impossible for metacyclic p-groups of order
> p3 with p > 2; in case p = 2, our G is of maximal class (Taussky).

REMARK 4 (Blackburn). Suppose that G is a 3-group of maximal class
and order > 3% and G; < G is absolutely regular; then G; is noncyclic
(Lemma 3(c)) and metacyclic (Lemmas (c,k)). Assume that G; has a cyclic
subgroup of index 3. In that case, Q2(U1(G1)) is cyclic of order 32, contrary
to Lemma 3(d). Suppose that G; is abelian of type (3™,3™) with m > n.
Then U, (G1) is G-invariant and cyclic of order 3™~ ™ so m —n < 1 (Lemma
3(d)). Now suppose that G is nonabelian. Then G is cyclic and G-invariant
so |G} = 3 (Lemma 3(d)). In that case, G; is minimal nonabelian and
Gy =(a,b|a®" =" =1,a" =a'*™""") (Lemma 3(i,])). The center Z(G1)
is abelian of type (3™~1,3"~1) and G-invariant. Let k = min {m — 1,n — 1}.
Then U1(Z(Gy)) is G-invariant and cyclic of order 3™~ so |m —n| < 1
(Lemma 3(d)).
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Let G be a 3-group of maximal class and order > 3* and let L < G be
absolutely regular maximal subgroup of G (Lemma 3(c)). By Remark 4, L is
either abelian or minimal nonabelian; in addition, L has no cyclic subgroup
of index 3. In any case, the abelian subgroup 4 (L) of type (3, 3) is contained
in Z(L) (see Lemma 3(1)) so Ce(21(L)) = L since |Z(G)| = 3. Therefore, if
x € G — L is of order 3 (note that, in general, such x need not exist), then x
does not centralize 4 (L), and then such pair {x, L} satisfies the hypothesis
of Theorem 1.

PrOOF OF THEOREM 1. By Remark 4 and the paragraph following the
remark, it suffices to prove that the natural semidirect product G = (a) -
L is a 3-group of maximal class (obviously, this semidirect product is not
metacyclic). We have |L| > p* since the metacyclic subgroup L has no cyclic
subgroup of index p.

Suppose that an element a € Aut(L) of order p does not centralize Q2 (L).
Let G be defined as in the previous paragraph. By Lemma 3(a), Q1 (L) and
L/Qq(L) are abelian of type (p,p), and €1(L)<G. Since p > 2, the subgroup
H = (a,Q1(L)) is nonabelian of order p> and exponent p, by assumption. We
have G = LH since H £ L and L is maximal in G. Clearly, G has no subgroup
of order p* and exponent p (otherwise, the intersection of that subgroup with
L will be of order > p? and exponent p, which is impossible).

Assume that G is regular. Then exp(Q;(G)) = p (Lemma 3(a)) so, by
the previous paragraph, |Q1(G)| = p® = |H| hence Q1(G) = H. It follows
that G has no elementary abelian subgroup of order p3 so G is as in part (b2)
of Lemma 3(b) (the group (b3) of Lemma 3(b) is irregular, by Lemma 3(c)).
In that case, however, every metacyclic subgroup of that group has a cyclic
subgroup of index p, contrary to the hypothesis.

Thus, G is irregular. In view of Remark 4 and the paragraph following
it, one may assume that G is not a 3-group of maximal class. It follows from
Lemma 3(c) that G is not of maximal class for all p > 3 (indeed, ®(G) < L
and Q1 (®(G)) is of exponent p and order pP~t > p? = [Q;(L)|). As we have
noticed, L is absolutely regular. Therefore, by Lemma 3(e), G = LQ1(G),
where Q1 (G) is of order pP and exponent p. Since L N Q(G) = Qi (L) is
abelian of order p?, we get p = 3. It follows that Q(G) = H = (z,Q;(L))
is nonabelian of order p3 and exponent p so G has no elementary abelian
subgroup of order p®. In that case, G is an irregular 3-group of maximal class
(since, as we have noticed, any group of part (b2) of Lemma 3(b) has no such
a subgroup as L), contrary to the assumption. O

REMARK 5. Here we consider a similar, but more complicated, situation
for p = 2. Suppose that a metacyclic 2-group L without cyclic subgroups of
index 2 is maximal in a 2-group G; then Q4 (L) is a G-invariant four-subgroup
(this follows immediately from Lemma 3(h)), and so G is not of maximal
class. Let, in addition, (L) < Z(L). Suppose that there is an involution
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a € G — L that does not centralize Q4 (L). Since (z,;(L)) = Dsg, it follows
that G is not metacyclic (otherwise, G is of maximal class, by Lemma 3(h)).
By hypothesis, C¢(1(L)) = L. If E < G is elementary abelian of order 8,
then LN E = Qi(L) so Cq(Q1(L)) > LE = G, a contradiction. Let H be a
minimal nonmetacyclic subgroup of GG; then H £ L. Since H has no subgroup
= Eg, we get |H| > 8 and exp(H) = 4 (Lemma 3(f)). If Z(H) = E4, then
Z(H) is contained in every abelian subgroup of H of order > 8 (Lemma 3(f))
so, since H N L contains an abelian subgroup of order 8 (Lemma 3(h)), we get
Z(H) = (L) and Cq(u (L)) > HL = G, a contradiction. Thus, Z(H) is
cyclic so, by Lemma 3(f), H = Dg % C4 is of order 16. A similar argument
shows that if A < G and A £ L is minimal nonabelian, then A has a cyclic
subgroup of index 2. Indeed, A is metacyclic (Lemma 3(1)) so, if |4]| > 8,
then |Q1(A)] < 4 and, if Q1(A) = E4, then Q(A4) £ Z(A) = $(A)(L L)
so ®(A) = U1(A4) is cyclic. Now we construct a group G = (a, L), where
a € G — L is an involution and L is metacyclic without cyclic subgroups of
index 2 and such that Q4 (L) < Z(L) and (L) £ Z(G). Let G = ZwrC
(wreath product), where Z is cyclic of order 2" > 2 and C = (a) is of order
2; then |G| = 22"+ and Z(G) is cyclic of order |Z| = 2". Let L = Z x Z be
the base of the wreath product G. We see that a does not centralize (L)
and L is abelian of type (2™,2").

Suppose that an abelian 2-group L of type (2",2), n > 2, is maximal
in a 2-group G = (a, L) and involution a does not centralize €21(L). Then
H = {(a,2(L)) = Dg. We have C5(Q21(L)) = L so G has no subgroups
>~ Eg (see Remark 5). Let Z < L be cyclic of index 2. We claim that
HNZ =7Z(H). Indeed, HN L = Q(L) is abelian of type (2,2) so cyclic
HNZ < HNL, and our claim follows, since €;(Z) <G (consider the kernel of
representation of G by permutations of left cosets of Z and take into account
that |G : Z| =4 and n > 2). Thus, G = HZ, by the product formula. By the
modular law, H * Q(Cg(H)) is minimal nonmetacyclic of order 2%. Assume
that M < G is minimal nonmetacyclic; then M is nonabelian, 23 < |M| < 2°
and exp(M) = 4 (Lemma 3(f)) so M N L (of order > 4) is abelian noncyclic
(Lemma 3(g)). It follows that Q4(L) < M N L so, if Z(M) is noncyclic, we
get Z(M)) € M N L (otherwise, Q1 (L) = Z(M) < Z(G), a contradiction). It
follows from Lemma 3(f) that Z(M) is cyclic so M = Dg * C4. As in Remark
5,if A < G is minimal nonabelian, then A has a cyclic subgroup of index 2.

Suppose that a nonmetacyclic subgroup U is maximal in a p-group G =
(x,U), where o(z) = p > 2 and Q;(U) = Ep2; then p = 3 and U is of maximal
class and order > 3% (Lemma 3(b)). Suppose, in addition, that there is an
element of order 3 in G — U, and all such elements do not centralize 1 (U) (if
there are no such elements, then G is of maximal class, by the same Lemma
3(b)). Then Cg(Q1(U)) = L is maximal in G since Q4 (U) € Z(U), and G
has no elementary abelian subgroups of order 33. Therefore, L is metacyclic
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and G is as in parts (b2) or (b3) of Lemma 3(b). However, a group of part
(b2) has no maximal subgroup such as U. Thus, G is a 3-group of maximal
class, and L is such as the subgroup (G; in Remark 4.

[AS]

(B1]
(B2]
(B3]

[B4]
(B5]

(BJ]

(Hup]
[

[J]
[MS]

[R]

REFERENCES

M. Aschbacher and S.D. Smith, The classification of quasithin groups. 1. Structure of
strongly quasithin K-groups, Mathematical Surveys and Monographs 111. American
Mathematical Society, Providence, RI, 2004.

Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198-240.

Y. Berkovich, Groups of prime power order. Vol. 1. With a foreword by Zvonimir
Janko, de Gruyter Expositions in Mathematics 46, Walter de Gruyter GmbH & Co.
KG, Berlin, 2008.

Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra
248 (2002), 472-553.

Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
Y. Berkovich, Short proofs of some basic characterization theorems of finite p-group
theory, Glas. Mat. Ser. III 41(61) (2006), 239-258.

Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Con-
temp. Math. 402 (2006), 13-93.

B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.

I. Isaacs, Algebra. A graduate course, Brooks/Cole Publishing Co., Pacific Grove,
CA, 1994.

Z. Janko, Finite 2-groups with ezxactly four cyclic subgroups of order 2™, J. Reine
Angew. Math. 566 (2004), 135-181.

U. Meierfrankenfeld and B. Stellmacher, The generic groups of p-type, preprint,
Michigan State University, 1997.

L. Redei, Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die
endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergrup-
pen und die Ordnungzahlen, zu denen nur kommutative Gruppen gehéren, Com-
ment. Math. Helv. 20 (1947), 225-264.

Y. Berkovich

Department of Mathematics
University of Haifa

Mount Carmel, Haifa 31905
Israel

Received: 22.11.2008.
Revised: 15.1.2009.



