ON SOME FUNCTIONAL EQUATIONS ON STANDARD OPERATOR ALGEBRAS

Irena Kosi-Ulbl and Joso Vukman
University of Maribor, Slovenia

Abstract

The main purpose of this paper is to prove the following result. Let X be a real or complex Banach space, let $L(X)$ be the algebra of all bounded linear operators on X, let $A(X) \subseteq L(X)$ be a standard operator algebra, and let $T: A(X) \rightarrow L(X)$ be an additive mapping satisfying the relation $T\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} A^{i-1} T(A) A^{2 n+1-i}$, for all $A \in A(X)$ and some fixed integer $n \geq 1$. In this case T is of the form $T(A)=A B+B A$, for all $A \in A(X)$ and some fixed $B \in L(X)$. In particular, T is continuous.

Throughout, R will represent an associative ring. Given an integer $n>1$, a ring R is said to be n-torsion free, if for $x \in R, n x=0$ implies $x=0$. An additive mapping $x \mapsto x^{*}$ on a ring R is called an involution if $(x y)^{*}=y^{*} x^{*}$ and $x^{* *}=x$ hold for all pairs $x, y \in R$. A ring equipped with an involution is called a ring with involution or ${ }^{*}$-ring. Recall that a ring R is prime if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=0$. Let A be an algebra over the real or complex field and let B be a subalgebra of A. A linear mapping $D: B \rightarrow A$ is called a linear derivation in case $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in B$. In case we have a ring R an additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called a Jordan derivation in case $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner in case there exists $a \in R$, such that $D(x)=a x-x a$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [7] asserts that any

[^0]Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack [4] generalized Herstein's result to 2 -torsion free semiprime rings. It should be mentioned that Beidar, Brešar, Chebotar and Martindale have considerably generalized Herstein's theorem (see [2, Theorem 4.4]. For explanation of the symmetric Martindale ring of quotients of a semiprime ring R, which will be denoted by $Q_{S}(R)$, we refer to [1]. Let X be a real or complex Banach space, and let $L(X)$ and $F(X)$ denote the algebra of all bounded linear operators on X, and the ideal of all finite rank operators in $L(X)$, respectively. An algebra $A(X) \subseteq L(X)$ is said to be standard in case $F(X) \subseteq A(X)$. Let us point out that any standard algebra is prime, which is a consequence of Hahn-Banach theorem. A projection $P \in L(H)$, where H is a complex Banach space, is called bicircular in case all mappings of the form $e^{i \alpha} P+e^{i \beta}(I-P)$, where I denotes the identity operator, are isometric for all pairs of real numbers α, β.

Vukman, Kosi-Ulbl and Eremita [14] have proved the following result.
Theorem 1 ([14, Theorem 2.1]). Let R be a 2-torsion free semiprime ring. Suppose that $T: R \rightarrow R$ is an additive mapping satisfying the relation

$$
\begin{equation*}
T(x y x)=T(x) y x-x T(y) x+x y T(x) \tag{1}
\end{equation*}
$$

for all pairs $x, y \in R$. In this case T is of the form

$$
2 T(x)=q x+x q,
$$

for all $x \in R$ and some fixed $q \in Q_{s}(R)$.
Putting in the relation (1) $y=x$ we obtain

$$
\begin{equation*}
T\left(x^{3}\right)=T(x) x^{2}-x T(x) x+x^{2} T(x), \quad x \in R \tag{2}
\end{equation*}
$$

Fošner and Vukman [6] have recently proved the following result.
Theorem 2 ([6, Theorem 3.2]). Let R be a 2 -torsion free prime ring. Suppose that $T: R \rightarrow R$ is an additive mapping satisfying the relation (2) for all $x \in R$. In this case T is of the form

$$
4 T(x)=q x+x q
$$

for all $x \in R$ and some fixed $q \in Q_{s}(R)$.
From the relation (2) one obtains by induction the following generalization

$$
\begin{equation*}
T\left(x^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} x^{i-1} T(x) x^{2 n+1-i}, \quad x \in R \tag{3}
\end{equation*}
$$

where $n \geq 1$ is some fixed integer. In this paper we consider the relation (3) in standard operator algebras.

Theorem 3. Let X be a real or complex Banach space and let $A(X)$ be a standard operator algebra on X. Suppose $T: A(X) \rightarrow L(X)$ is an additive mapping satisfying the relation

$$
T\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} A^{i-1} T(A) A^{2 n+1-i}
$$

for all $A \in A(X)$ and some fixed integer $n \geq 1$. In this case T is of the form

$$
T(A)=A B+B A
$$

for all $A \in A(X)$ and some fixed $B \in L(X)$. In particular, T is continuous.
Let us point out that in the theorem above we obtain as a result the continuity of T under purely algebraic assumptions concerning the mapping T. Therefore, the above result might be of some interest from the automatic continuity point of view. In the proof of Theorem 3 we shall use Theorem 2.

Proof of Theorem 3. We have the relation

$$
\begin{equation*}
T\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} A^{i-1} T(A) A^{2 n+1-i}, \quad A \in A(X) . \tag{4}
\end{equation*}
$$

Let A be from $F(X)$ and let $P \in F(X)$ be a projection with $A P=P A=$ A. Putting $A+m P(m \in \mathbb{N})$ for A in the relation (4) and comparing the coefficients of $m^{2 n}$, we obtain

$$
\begin{aligned}
(2 n+1) & T \\
= & (A) \\
& (T(A) P+2 n T(P) A)+(P T(A)+2 n A T(P)) \\
& +(-P T(A) P+P T(A) P-\cdots+P T(A) P-P T(A) P) \\
& +(-1+2-\cdots+(2 n-2)-(2 n-1))(A T(P) P+P T(P) A) .
\end{aligned}
$$

The above equation reduces to

$$
\begin{align*}
(2 n+1) T(A)= & T(A) P+P T(A)-P T(A) P \\
& +n(2 T(P) A+2 A T(P)-A T(P) P-P T(P) A) \tag{5}
\end{align*}
$$

Multiplying the above relation from both sides by P we obtain

$$
\begin{equation*}
2 P T(A) P=A T(P) P+P T(P) A \tag{6}
\end{equation*}
$$

which reduces (5) to

$$
\begin{align*}
(2 n+1) T(A)= & T(A) P+P T(A)-P T(A) P \\
& +2 n(T(P) A+A T(P)-P T(A) P) \tag{7}
\end{align*}
$$

Left multiplication of the above relation by P gives

$$
\begin{equation*}
P T(A)=P T(P) A+A T(P)-P T(A) P . \tag{8}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
T(A) P=A T(P) P+T(P) A-P T(A) P \tag{9}
\end{equation*}
$$

Adding up (8) and (9), and applying (6), we obtain

$$
T(A) P+P T(A)=A T(P)+T(P) A
$$

Inserting this in (7), we get

$$
\begin{equation*}
T(A)=T(P) A+A T(P)-P T(A) P \tag{10}
\end{equation*}
$$

From (10) and (6) we obtain

$$
2 T(A)=A(2 T(P)-T(P) P)+(2 T(P)-P T(P)) A
$$

Hence $2 T(A)=A Q+R A$ with $Q=2 T(P)-T(P) P$ and $R=2 T(P)-P T(P)$; note that $A Q A=A R A$. Direct calculation yields

$$
\begin{equation*}
T\left(A^{3}\right)=T(A) A^{2}-A T(A) A+A^{2} T(A) \tag{11}
\end{equation*}
$$

From the relation (10) one can conclude that T maps $F(X)$ into itself. Therefore we have an additive mapping $T: F(X) \rightarrow F(X)$ satisfying the relation (11) for all $A \in F(X)$. Since $F(X)$ is prime one can apply Theorem 2 , which means that T is of the form

$$
4 T(A)=A C+C A
$$

for all $A \in F(X)$ and some $C \in Q_{s}(F(X))$. Since $Q_{s}(F(X))=L(X)$ (this is the direct consequence of $[1$, Theorem 4.3.8] and [8, p.78, Example 5]), one can conclude that T is of the form

$$
\begin{equation*}
T(A)=A B+B A \tag{12}
\end{equation*}
$$

for all $A \in F(X)$ and some $B \in L(X)$. It remains to prove that the relation (12) holds on $A(X)$ as well. Let us introduce $T_{1}: A(X) \rightarrow L(X)$ by $T_{1}(A)=$ $A B+B A$ and consider $T_{0}=T-T_{1}$. The mapping T_{0} is, obviously, linear and satisfies the relation (4). Besides, T_{0} vanishes on $F(X)$. It is our aim to prove that T_{0} vanishes on $A(X)$ as well. Let $A \in A(X)$, let P be an one-dimensional projection and

$$
S=A+P A P-(A P+P A) .
$$

We have $T_{0}(S)=T_{0}(A)$ and $S P=P S=0$. We have

$$
T_{0}\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} A^{i-1} T_{0}(A) A^{2 n+1-i},
$$

for all $A \in A(X)$. Applying the above relation we obtain

$$
\begin{aligned}
\sum_{i=1}^{2 n+1}(& -1)^{i+1} S^{i-1} T_{0}(S) S^{2 n+1-i} \\
= & T_{0}\left(S^{2 n+1}\right)=T_{0}\left(S^{2 n+1}+P\right)=T_{0}\left((S+P)^{2 n+1}\right) \\
= & \sum_{i=1}^{2 n+1}(-1)^{i+1}(S+P)^{i-1} T_{0}(S+P)(S+P)^{2 n+1-i} \\
= & T_{0}(A)\left(S^{2 n}+P\right)+\sum_{i=2}^{2 n}(-1)^{i+1}\left(S^{i-1}+P\right) T_{0}(A)\left(S^{2 n+1-i}+P\right) \\
& +\left(S^{2 n}+P\right) T_{0}(A) \\
= & T_{0}(A) S^{2 n}+T_{0}(A) P+\sum_{i=2}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) S^{2 n+1-i} \\
& +\sum_{i=2}^{2 n}(-1)^{i+1} P T_{0}(A) S^{2 n+1-i}+\sum_{i=2}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) P \\
& +S^{2 n} T_{0}(A)+P T_{0}(A)-P T_{0}(A) P \\
= & \sum_{i=1}^{2 n+1}(-1)^{i+1} S^{i-1} T_{0}(A) S^{2 n+1-i}+\sum_{i=2}^{2 n}(-1)^{i+1} P T_{0}(A) S^{2 n+1-i} \\
+ & \sum_{i=2}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) P+T_{0}(A) P+P T_{0}(A)-P T_{0}(A) P
\end{aligned}
$$

We have therefore

$$
\begin{gather*}
\sum_{i=2}^{2 n}(-1)^{i+1} P T_{0}(A) S^{2 n+1-i}+\sum_{i=2}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) P \tag{13}\\
+T_{0}(A) P+P T_{0}(A)-P T_{0}(A) P=0
\end{gather*}
$$

Multiplying the above relation from both sides by P we obtain

$$
P T_{0}(A) P=0,
$$

which reduces the relation (13) to
$\sum_{i=2}^{2 n}(-1)^{i+1} P T_{0}(A) S^{2 n+1-i}+\sum_{i=2}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) P+T_{0}(A) P+P T_{0}(A)=0$.
Right multiplication of the above relation by P gives

$$
\begin{equation*}
\sum_{i=1}^{2 n}(-1)^{i+1} S^{i-1} T_{0}(A) P=0 \tag{14}
\end{equation*}
$$

Putting in the above relation $-A$ for A (note that in this case S becomes $-S$), and comparing the relation so obtained with the relation (14), we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} S^{2(i-1)} T_{0}(A) P=0 \tag{15}
\end{equation*}
$$

Inserting $m A(m \in \mathbb{N})$ instead of A we get (since S is then replaced by $m S$)

$$
\sum_{i=1}^{n} S^{2(i-1)} T_{0}(A) P m^{2 i-1}=0
$$

The coefficient of m is equal to $T_{0}(A) P$. We have therefore $T_{0}(A) P=0$. Since P is an arbitrary one-dimensional projection, it follows that $T_{0}(A)=0$, for any $A \in A(X)$, which completes the proof of the theorem.

In [9] one can find the following result.
Theorem 4 ([9, Theorem 1]). Let X be a real or complex Banach space and let $A(X)$ be a standard operator algebra on X. Suppose $D: A(X) \rightarrow L(X)$ is a linear mapping satisfying the relation

$$
D\left(A^{n}\right)=\sum_{i=1}^{n} A^{i-1} D(A) A^{n-i},
$$

for all $A \in A(X)$ and some integer $n>1$. In this case D is of the form

$$
D(A)=A B-B A
$$

for all $A \in A(X)$ and some $B \in L(X)$, which means that D is a linear derivation. In particular, D is continuous.

The history of the above result goes back to the classical result of Chernoff [3] (see also $[12,13,16])$ which states that in case there exists a linear derivation D, which maps a standard operator algebra $A(X)$ into $L(X)$, where X is a real or complex Banach space, then D is of the form $D(A)=A B-B A$, for all $A \in A(X)$ and some $B \in L(X)$. Theorem 4 generalizes the result we have just mentioned above. Let us point out that in Theorem 3 we assumed that T is an additive mapping, while in Theorem 4 we have stronger assumption that D is linear. In general Chernoff's result and therefore also Theorem 4 cannot be proved by assuming that D is additive as shown by Šemrl in [12].

In the proof of our next result we apply Theorem 3 and Theorem 4.
Corollary 5. Let X be a real or complex Banach space and let $A(X)$ be a standard operator algebra on X. Suppose $D, G: A(X) \rightarrow L(X)$ are linear
mappings satisfying the relations

$$
\begin{align*}
D\left(A^{2 n+1}\right)= & D(A) A^{2 n}+A G(A) A^{2 n-1}+A^{2} D(A) A^{2 n-2}+\cdots \tag{16}\\
& +A^{2 n-1} G(A) A+A^{2 n} D(A), \\
G\left(A^{2 n+1}\right)= & G(A) A^{2 n}+A D(A) A^{2 n-1}+A^{2} G(A) A^{2 n-2}+\cdots \tag{17}\\
& +A^{2 n-1} D(A) A+A^{2 n} G(A),
\end{align*}
$$

for all $A \in A(X)$ and some fixed integer $n \geq 1$. In this case D and G are of the form

$$
D(A)=A B-C A, \quad G(A)=A C-B A
$$

for all $A \in A(X)$ and some B and C from $L(X)$. In particular, D and G are continuous.

Proof. Adding up (16) with (17) we obtain

$$
\begin{equation*}
F\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1} A^{i-1} F(A) A^{2 n+1-i} \tag{18}
\end{equation*}
$$

for all $A \in A(X)$, where F stands for $D+G$. Subtracting (17) from (16) we obtain

$$
\begin{equation*}
H\left(A^{2 n+1}\right)=\sum_{i=1}^{2 n+1}(-1)^{i+1} A^{i-1} H(A) A^{2 n+1-i} \tag{19}
\end{equation*}
$$

for all $A \in A(X)$, where H denotes $D-G$. Now, applying Theorem 3 and Theorem 4, we obtain

$$
\begin{equation*}
F(A)=D(A)+G(A)=A B-B A, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
H(A)=D(A)-G(A)=A C+C A \tag{21}
\end{equation*}
$$

for all $A \in A(X)$ and some fixed B and C from $L(X)$. From (20) and (21) we obtain $2 D(A)=A(B+C)+(C-B) A, 2 G(A)=A(B-C)-(B+C) A$. Replacing $\frac{1}{2}(B+C)$ by B and $\frac{1}{2}(B-C)$ by C we obtain $D(A)=A B-C A$, $G(A)=A C-B A$ for all $A \in A(X)$, which completes the proof of the corollary.

Stachó and Zalar ($[10,11]$) investigated bicircular projections on C^{*} algebra $L(H)$, the algebra of all bounded linear operators on a complex Hilbert space H. According to Proposition 3.4 in [10] every bicircular projection $P: L(H) \rightarrow L(H)$ satisfies the relation

$$
\begin{equation*}
P(x y x)=P(x) y x-x P\left(y^{*}\right)^{*} x+x y P(x) \tag{22}
\end{equation*}
$$

for all pairs $x, y \in L(H)$. Fošner and Ilišević [5] investigated the above functional equation in 2 -torsion free semiprime *-rings. They expressed the solution of the equation (22) in terms of derivations and so-called double centralizers. Vukman showed that applying more direct approach makes it possible
to prove a more general result ([15]). Fošner and Vukman ([6]) investigated the following system of functional equations on 2 -torsion free prime ${ }^{*}$-rings

$$
\begin{array}{ll}
P\left(x^{3}\right)=P(x) x^{2}+x Q\left(x^{*}\right)^{*} x+x^{2} P(x), & x \in R \\
Q\left(x^{3}\right)=Q(x) x^{2}+x P\left(x^{*}\right)^{*} x+x^{2} Q(x), & x \in R \tag{24}
\end{array}
$$

The observations above lead to our next result.
Corollary 6. Let H be a real or complex Hilbert space and let $A(H)$ be a standard operator algebra on H which is closed under the adjoint operation. Suppose $P, Q: A(H) \rightarrow L(H)$ are linear mappings satisfying the relations

$$
\begin{align*}
P\left(A^{2 n+1}\right)= & P(A) A^{2 n}+A Q\left(A^{*}\right)^{*} A^{2 n-1}+A^{2} P(A) A^{2 n-2}+\cdots \\
& +A^{2 n-1} Q\left(A^{*}\right)^{*} A+A^{2 n} P(A) \tag{25}\\
Q\left(A^{2 n+1}\right)= & Q(A) A^{2 n}+A P\left(A^{*}\right)^{*} A^{2 n-1}+A^{2} Q(A) A^{2 n-2}+\cdots \\
& +A^{2 n-1} P\left(A^{*}\right)^{*} A+A^{2 n} Q(A) \tag{26}
\end{align*}
$$

for all $A \in A(H)$ and some integer $n \geq 1$. In this case P and Q are of the form

$$
P(A)=A B-C A, \quad Q(A)=-A B^{*}+C^{*} A,
$$

for all $A \in A(H)$ and some fixed $B, C \in L(H)$. In particular, P and Q are continuous.

Proof. Put $D(A)=P(A)$ and $G(A)=Q\left(A^{*}\right)^{*}$ for all $A \in A(H)$ and apply Corollary 5 . There exist $B, C \in L(H)$ such that

$$
P(A)=A B-C A, \quad Q\left(A^{*}\right)^{*}=A C-B A
$$

for all $A \in A(H)$, that is

$$
P(A)=A B-C A, \quad Q(A)=-A B^{*}+C^{*} A
$$

for all $A \in A(H)$. The proof of the corollary is complete.

Acknowledgements.

The authors wish to express thanks to the referee for helpful suggestions which considerably improved the paper.

References

[1] K. I. Beidar, W. S. Martindale III and A.V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc. New York, 1996.
[2] K. I. Beidar, M. Brešar, M.A. Chebotar and W. S. Martindale 3 rd, On Herstein's Lie map conjectures II, J. Algebra 238 (2001), 239-264.
[3] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973), 275-289.
[4] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[5] M. Fošner and D. Ilišević, On a class of projections on *-rings, Commun. Algebra 33 (2005), 3293-3310.
[6] M. Fošner and J. Vukman, On some equations in prime rings, Monatsh. Math. 152 (2007), 135-150.
[7] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[8] G. N. Jacobson, Structure of rings, American Mathematical Society, New York, 1956.
[9] I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator algebras and semisimple H^{*}-algebras, CUBO A Math. J., to apper.
[10] L. L. Stachó and B. Zalar, Bicircular projections on some matrix and operator spaces, Linear Algebra Appl. 384 (2004), 9-20.
[11] L. L. Stachó and B. Zalar, Bicircular projections and characterization of Hilbert spaces, Proc. Amer. Math. Soc. 132 (2004), 3019-3025.
[12] P. Šemrl, Ring derivations on standard operator algebras, J. Funct. Anal. 112 (1993), 318-324.
[13] J. Vukman, On automorphisms and derivations of operator algebras, Glasnik Mat. Ser. III 19(39) (1984), 135-138.
[14] J. Vukman, I. Kosi Ulbl and D. Eremita, On certain equations in rings, Bull. Austral. Math. Soc. 71 (2005), 53-60.
[15] J. Vukman, On functional equations related to bicircular projections, Glasnik Mat. Ser. III 41(61) (2006), 51-55.
[16] J. Vukman, On derivations of standard operator algebras and semisimple H^{*} - algebras, Studia Sci. Math. Hungar. 44 (2007), 57-63.
I. Kosi-Ulbl

Faculty of Mechanical Engineering
University of Maribor
Smetanova ul. 17, Maribor
Slovenia
E-mail: irena.kosi@uni-mb.si
J. Vukman

Department of Mathematics and Computer Science, FNM
University of Maribor
Koroška 160, Maribor

Slovenia

E-mail: joso.vukman@uni-mb.si
Received: 10.12.2008.
Revised: 7.1.2009.

[^0]: 2000 Mathematics Subject Classification. 46K15, 39B05.
 Key words and phrases. Prime ring, semiprime ring, Banach space, standard operator algebra.

 This research has been supported by the Research Council of Slovenia.

