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Abstract. The main purpose of this paper is to prove the following
result. Let X be a real or complex Banach space, let L(X) be the algebra of
all bounded linear operators on X, let A(X) ⊆ L(X) be a standard operator
algebra, and let T : A(X) → L(X) be an additive mapping satisfying the

relation T (A2n+1) =
2n+1
∑

i=1
(−1)i+1Ai−1T (A)A2n+1−i, for all A ∈ A(X)

and some fixed integer n ≥ 1. In this case T is of the form T (A) = AB+BA,

for all A ∈ A(X) and some fixed B ∈ L(X). In particular, T is continuous.

Throughout, R will represent an associative ring. Given an integer n > 1,
a ring R is said to be n-torsion free, if for x ∈ R, nx = 0 implies x = 0. An
additive mapping x 7→ x∗ on a ring R is called an involution if (xy)∗ = y∗x∗

and x∗∗ = x hold for all pairs x, y ∈ R. A ring equipped with an involution
is called a ring with involution or ∗-ring. Recall that a ring R is prime if for
a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is semiprime
in case aRa = (0) implies a = 0. Let A be an algebra over the real or
complex field and let B be a subalgebra of A. A linear mapping D : B → A is
called a linear derivation in case D(xy) = D(x)y + xD(y) holds for all pairs
x, y ∈ B. In case we have a ring R an additive mapping D : R → R is called a
derivation if D(xy) = D(x)y +xD(y) holds for all pairs x, y ∈ R and is called
a Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R.
A derivation D is inner in case there exists a ∈ R, such that D(x) = ax − xa

holds for all x ∈ R. Every derivation is a Jordan derivation. The converse
is in general not true. A classical result of Herstein [7] asserts that any
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Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack [4]
generalized Herstein’s result to 2-torsion free semiprime rings. It should be
mentioned that Beidar, Brešar, Chebotar and Martindale have considerably
generalized Herstein’s theorem (see [2, Theorem 4.4]. For explanation of the
symmetric Martindale ring of quotients of a semiprime ring R, which will be
denoted by QS(R), we refer to [1]. Let X be a real or complex Banach space,
and let L(X) and F (X) denote the algebra of all bounded linear operators on
X, and the ideal of all finite rank operators in L(X), respectively. An algebra
A(X) ⊆ L(X) is said to be standard in case F (X) ⊆ A(X). Let us point out
that any standard algebra is prime, which is a consequence of Hahn-Banach
theorem. A projection P ∈ L(H), where H is a complex Banach space, is
called bicircular in case all mappings of the form eiαP + eiβ(I −P ), where I

denotes the identity operator, are isometric for all pairs of real numbers α, β.
Vukman, Kosi-Ulbl and Eremita [14] have proved the following result.

Theorem 1 ([14, Theorem 2.1]). Let R be a 2-torsion free semiprime
ring. Suppose that T : R → R is an additive mapping satisfying the relation

(1) T (xyx) = T (x)yx − xT (y)x + xyT (x)

for all pairs x, y ∈ R. In this case T is of the form

2T (x) = qx + xq,

for all x ∈ R and some fixed q ∈ Qs(R).

Putting in the relation (1) y = x we obtain

(2) T (x3) = T (x)x2
− xT (x)x + x2T (x), x ∈ R.

Fošner and Vukman [6] have recently proved the following result.

Theorem 2 ([6, Theorem 3.2]). Let R be a 2-torsion free prime ring.
Suppose that T : R → R is an additive mapping satisfying the relation (2)
for all x ∈ R. In this case T is of the form

4T (x) = qx + xq

for all x ∈ R and some fixed q ∈ Qs(R).

From the relation (2) one obtains by induction the following generalization

(3) T (x2n+1) =
2n+1
∑

i=1

(−1)i+1xi−1T (x)x2n+1−i, x ∈ R,

where n ≥ 1 is some fixed integer. In this paper we consider the relation (3)
in standard operator algebras.
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Theorem 3. Let X be a real or complex Banach space and let A(X) be
a standard operator algebra on X. Suppose T : A(X) → L(X) is an additive
mapping satisfying the relation

T (A2n+1) =

2n+1
∑

i=1

(−1)i+1Ai−1T (A)A2n+1−i,

for all A ∈ A(X) and some fixed integer n ≥ 1. In this case T is of the form

T (A) = AB + BA,

for all A ∈ A(X) and some fixed B ∈ L(X). In particular, T is continuous.

Let us point out that in the theorem above we obtain as a result the
continuity of T under purely algebraic assumptions concerning the mapping
T. Therefore, the above result might be of some interest from the automatic
continuity point of view. In the proof of Theorem 3 we shall use Theorem 2.

Proof of Theorem 3. We have the relation

(4) T (A2n+1) =
2n+1
∑

i=1

(−1)i+1Ai−1T (A)A2n+1−i, A ∈ A(X).

Let A be from F (X) and let P ∈ F (X) be a projection with AP = PA =
A. Putting A + mP (m ∈ N) for A in the relation (4) and comparing the
coefficients of m2n, we obtain

(2n + 1)T (A)

= (T (A) P + 2nT (P )A) + (PT (A) + 2nAT (P ))

+ (−PT (A)P + PT (A) P − · · · + PT (A) P − PT (A)P )

+ (−1 + 2 − · · · + (2n − 2) − (2n− 1)) (AT (P )P + PT (P )A) .

The above equation reduces to

(5)
(2n + 1)T (A) = T (A)P + PT (A) − PT (A) P

+ n (2T (P )A + 2AT (P ) − AT (P )P − PT (P )A) .

Multiplying the above relation from both sides by P we obtain

(6) 2PT (A)P = AT (P )P + PT (P )A,

which reduces (5) to

(7)
(2n + 1)T (A) = T (A)P + PT (A) − PT (A)P

+ 2n (T (P )A + AT (P ) − PT (A) P ) .

Left multiplication of the above relation by P gives

(8) PT (A) = PT (P )A + AT (P ) − PT (A) P.

Similarly, we obtain

(9) T (A)P = AT (P )P + T (P )A − PT (A) P.
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Adding up (8) and (9), and applying (6), we obtain

T (A)P + PT (A) = AT (P ) + T (P )A.

Inserting this in (7), we get

(10) T (A) = T (P )A + AT (P ) − PT (A)P.

From (10) and (6) we obtain

2T (A) = A(2T (P ) − T (P )P ) + (2T (P ) − PT (P ))A.

Hence 2T (A) = AQ+RA with Q = 2T (P )−T (P )P and R = 2T (P )−PT (P );
note that AQA = ARA. Direct calculation yields

(11) T (A3) = T (A)A2
− AT (A)A + A2T (A).

From the relation (10) one can conclude that T maps F (X) into itself. There-
fore we have an additive mapping T : F (X) → F (X) satisfying the relation
(11) for all A ∈ F (X). Since F (X) is prime one can apply Theorem 2, which
means that T is of the form

4T (A) = AC + CA,

for all A ∈ F (X) and some C ∈ Qs(F (X)). Since Qs(F (X)) = L(X) (this is
the direct consequence of [1, Theorem 4.3.8] and [8, p.78, Example 5]), one
can conclude that T is of the form

(12) T (A) = AB + BA,

for all A ∈ F (X) and some B ∈ L(X). It remains to prove that the relation
(12) holds on A(X) as well. Let us introduce T1 : A(X) → L(X) by T1(A) =
AB +BA and consider T0 = T −T1. The mapping T0 is, obviously, linear and
satisfies the relation (4). Besides, T0 vanishes on F (X). It is our aim to prove
that T0 vanishes on A(X) as well. Let A ∈ A(X), let P be an one-dimensional
projection and

S = A + PAP − (AP + PA).

We have T0(S) = T0(A) and SP = PS = 0. We have

T0(A
2n+1) =

2n+1
∑

i=1

(−1)i+1Ai−1T0(A)A2n+1−i,
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for all A ∈ A(X). Applying the above relation we obtain

2n+1
∑

i=1

(−1)i+1Si−1T0(S)S2n+1−i

= T0(S
2n+1) = T0(S

2n+1 + P ) = T0((S + P )2n+1)

=

2n+1
∑

i=1

(−1)i+1(S + P )i−1T0(S + P )(S + P )2n+1−i

= T0(A)
(

S2n + P
)

+

2n
∑

i=2

(−1)i+1
(

Si−1 + P
)

T0(A)
(

S2n+1−i + P
)

+
(

S2n + P
)

T0(A)

= T0(A)S2n + T0(A)P +

2n
∑

i=2

(−1)i+1Si−1T0(A)S2n+1−i

+

2n
∑

i=2

(−1)i+1PT0(A)S2n+1−i +

2n
∑

i=2

(−1)i+1Si−1T0(A)P

+S2nT0(A) + PT0(A) − PT0(A)P

=

2n+1
∑

i=1

(−1)i+1Si−1T0(A)S2n+1−i +

2n
∑

i=2

(−1)i+1PT0(A)S2n+1−i

+

2n
∑

i=2

(−1)i+1Si−1T0(A)P + T0(A)P + PT0(A) − PT0(A)P.

We have therefore

(13)

2n
∑

i=2

(−1)i+1PT0(A)S2n+1−i +

2n
∑

i=2

(−1)i+1Si−1T0(A)P

+ T0(A)P + PT0(A) − PT0(A)P = 0.

Multiplying the above relation from both sides by P we obtain

PT0(A)P = 0,

which reduces the relation (13) to

2n
∑

i=2

(−1)i+1PT0(A)S2n+1−i+
2n
∑

i=2

(−1)i+1Si−1T0(A)P +T0(A)P +PT0(A) = 0.

Right multiplication of the above relation by P gives

(14)

2n
∑

i=1

(−1)i+1Si−1T0(A)P = 0.
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Putting in the above relation −A for A (note that in this case S becomes −S),
and comparing the relation so obtained with the relation (14), we obtain

(15)

n
∑

i=1

S2(i−1)T0(A)P = 0.

Inserting mA (m ∈ N) instead of A we get (since S is then replaced by mS)

n
∑

i=1

S2(i−1)T0(A)Pm2i−1 = 0.

The coefficient of m is equal to T0(A)P. We have therefore T0(A)P = 0. Since
P is an arbitrary one-dimensional projection, it follows that T0(A) = 0, for
any A ∈ A(X), which completes the proof of the theorem.

In [9] one can find the following result.

Theorem 4 ([9, Theorem 1]). Let X be a real or complex Banach space
and let A(X) be a standard operator algebra on X. Suppose D : A(X) → L(X)
is a linear mapping satisfying the relation

D(An) =

n
∑

i=1

Ai−1D(A)An−i,

for all A ∈ A(X) and some integer n > 1. In this case D is of the form

D(A) = AB − BA,

for all A ∈ A(X) and some B ∈ L(X), which means that D is a linear
derivation. In particular, D is continuous.

The history of the above result goes back to the classical result of Chernoff
[3] (see also [12,13,16]) which states that in case there exists a linear derivation
D, which maps a standard operator algebra A(X) into L(X), where X is a
real or complex Banach space, then D is of the form D(A) = AB − BA, for
all A ∈ A(X) and some B ∈ L(X). Theorem 4 generalizes the result we have
just mentioned above. Let us point out that in Theorem 3 we assumed that
T is an additive mapping, while in Theorem 4 we have stronger assumption
that D is linear. In general Chernoff’s result and therefore also Theorem 4
cannot be proved by assuming that D is additive as shown by Šemrl in [12].

In the proof of our next result we apply Theorem 3 and Theorem 4.

Corollary 5. Let X be a real or complex Banach space and let A(X) be
a standard operator algebra on X. Suppose D, G : A(X) → L(X) are linear
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mappings satisfying the relations

D(A2n+1) = D(A)A2n + AG(A)A2n−1 + A2D(A)A2n−2 + · · ·(16)

+A2n−1G(A)A + A2nD(A),

G(A2n+1) = G(A)A2n + AD(A)A2n−1 + A2G(A)A2n−2 + · · ·(17)

+A2n−1D(A)A + A2nG(A),

for all A ∈ A(X) and some fixed integer n ≥ 1. In this case D and G are of
the form

D(A) = AB − CA, G(A) = AC − BA,

for all A ∈ A(X) and some B and C from L(X). In particular, D and G are
continuous.

Proof. Adding up (16) with (17) we obtain

(18) F (A2n+1) =

2n+1
∑

i=1

Ai−1F (A)A2n+1−i,

for all A ∈ A(X), where F stands for D + G. Subtracting (17) from (16) we
obtain

(19) H(A2n+1) =

2n+1
∑

i=1

(−1)i+1Ai−1H(A)A2n+1−i,

for all A ∈ A(X), where H denotes D − G. Now, applying Theorem 3 and
Theorem 4, we obtain

(20) F (A) = D(A) + G(A) = AB − BA,

and

(21) H(A) = D(A) − G(A) = AC + CA,

for all A ∈ A(X) and some fixed B and C from L(X). From (20) and (21) we
obtain 2D(A) = A (B + C) + (C − B) A, 2G(A) = A (B − C) − (B + C)A.

Replacing 1
2 (B + C) by B and 1

2 (B − C) by C we obtain D(A) = AB − CA,

G(A) = AC−BA for all A ∈ A(X), which completes the proof of the corollary.

Stachó and Zalar ([10, 11]) investigated bicircular projections on C∗-
algebra L(H), the algebra of all bounded linear operators on a complex
Hilbert space H. According to Proposition 3.4 in [10] every bicircular pro-
jection P : L(H) → L(H) satisfies the relation

(22) P (xyx) = P (x)yx − xP (y∗)∗x + xyP (x)

for all pairs x, y ∈ L(H). Fošner and Ilǐsević [5] investigated the above func-
tional equation in 2−torsion free semiprime ∗-rings. They expressed the solu-
tion of the equation (22) in terms of derivations and so-called double central-
izers. Vukman showed that applying more direct approach makes it possible
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to prove a more general result ([15]). Fošner and Vukman ([6]) investigated
the following system of functional equations on 2-torsion free prime ∗-rings

P (x3) = P (x)x2 + xQ(x∗)∗x + x2P (x), x ∈ R,(23)

Q(x3) = Q(x)x2 + xP (x∗)∗x + x2Q(x), x ∈ R.(24)

The observations above lead to our next result.

Corollary 6. Let H be a real or complex Hilbert space and let A(H) be
a standard operator algebra on H which is closed under the adjoint operation.
Suppose P, Q : A(H) → L(H) are linear mappings satisfying the relations

P (A2n+1) = P (A)A2n + AQ(A∗)∗A2n−1 + A2P (A)A2n−2 + · · ·

+A2n−1Q(A∗)∗A + A2nP (A),(25)

Q(A2n+1) = Q(A)A2n + AP (A∗)∗A2n−1 + A2Q(A)A2n−2 + · · ·

+A2n−1P (A∗)∗A + A2nQ(A),(26)

for all A ∈ A(H) and some integer n ≥ 1. In this case P and Q are of the
form

P (A) = AB − CA, Q(A) = −AB∗ + C∗A,

for all A ∈ A(H) and some fixed B, C ∈ L(H). In particular, P and Q are
continuous.

Proof. Put D(A) = P (A) and G(A) = Q(A∗)∗ for all A ∈ A(H) and
apply Corollary 5. There exist B, C ∈ L(H) such that

P (A) = AB − CA, Q(A∗)∗ = AC − BA

for all A ∈ A(H), that is

P (A) = AB − CA, Q(A) = −AB∗ + C∗A

for all A ∈ A(H). The proof of the corollary is complete.
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