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A B S T R A C T

The cancellous bone effective properties relations are analysed on multiscale across two aspects; properties of repre-

sentative volume element on micro scale and statistical measure of trabecular trajectory orientation on mesoscale. Aniso-

tropy of the microstructure is described across fabric tensor measure with trajectory orientation tensor as bridging scale

connection. The scatter measured data (elastic modulus, trajectory orientation, apparent density) from compression test

are fitted by stochastic interpolation procedure. The engineering constants of the elasticity tensor are estimated by last

square fitt procedure in multidimensional space by Nelder-Mead simplex. The multiaxial failure surface in strain space

is constructed and interpolated by modified super-ellipsoid.
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Introduction

For many years, researchers have been trying to
quantify the effects of disease and drug treatment on the
strength of bone. Changes in the three dimensional (3D)
architecture of trabecular bone play an important role in
determining the mechanical competence of bone1. Un-
derstanding the age-related microstructure changes in
trabecular bone and their consequence on mechanical
properties may be essential in bone fracture and osteopo-
rosis prevention. Cancellous bone is a biphasic structure
consisting of a continuous three-dimensional network of
interconnected rods and plates and a pore space filled by
a viscous fluid phase. There are strong indications that
this fluid flow is responsible for the mechano-trans-
duction from external mechanical loads to the cells re-
sponsible for bone apposition or removal. When bone is
mechanically loaded, bone fluid flow induces shear stres-
ses on bone cells involved in bone’s mechanosensory
system2. From the engineering point of view, the bone is
a functionally graded structure with complex microstruc-
ture optimized for withstanding external loads. The bone
continually adapts to its mechanical environment and for
cancellous bone these adaptation results in varying tra-
becular architecture3. It was shown that adaptation to
mechanical deformation energy leads to an architecture,
which is an optimal configuration with respect to maxi-

mal stiffness and minimal mass. The aim of this work is
to develop a relationship between morphology multiscale
descriptors and mechanical macroscopic properties. Also
we suggest a three dimensional yield surface in strain
space by carefully analyzing experimental measurements.

Morphology-properties relationship

Cancellous bone microstructure is characterized by
morphometric measures such as bone volume fraction,
trabecular spacing, fabric tensors, and trajectory orienta-
tion to mention a few among many others. Bone mechan-
ical response depend on some morphometric descriptors
on macroscale, too4. Cancellous bone is hierarchically
structured to provide maximum performance with a mi-
nimum of materials. Several trabecular bone microstruc-
ture models have been developed such as irregular 3D
Voronoi cellular solids, 3D array of tetrakaidecahedra
cells, strut-like random structure, fractal-like network5.
Today, the relationship between local microstructure and
global macroscopic properties of the bone is an important
task in medical engineering6. Some approaches have
been recently proposed in order to derive overall behav-
ior heterogeneous materials5. There are two procedures
relating to local and global behavior. The first case mate-
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rial can be described as spatially periodic using homoge-
nization theory for periodic media7. In the second in-
stance, the global behavior may be approached from the
knowledge of certain statistic of the distribution of the
local descriptors, which characterize the micro behavior.
There is no unified method to bridge micro and macro
scales. Cancellous bone on macroscale is inherently ani-
sotropic suggesting the trabeculae to follow the major
stress lines (Wolff's law). The rule, which determines the
design of biological structures, is the constant stress ax-
iom, meaning that biological load carriers always try to
grow into a state of constant stress on a time average8.
Many researches showed a significant correlation be-
tween trabecular orientation and principal stress direc-
tion3. The trabecular trajectories directions may be de-
fined by the material unit vectors

�
a (Figure 1). There-

fore, we suppose that the trajectory is meso quantity
which connects micro with macro scale. The orientation
state of a group of trajectories can be described by a prob-
ability distribution function +( )

�
a , which provides a gen-

eral description of the orientation state. Orientation ten-
sors are widely used to provide a more compact repre-
sentation of the trajectory orientation state, defined as
the dyadic product of vector

�
a averaged over orientation

space, with +, as the weighting function.

A a a d dij i j� ,, y f J J f J( , )sin (1)

The trajectories direction
�
a determines the preffered

direction of the material. The relationship between the
elasticity tensor Cijkl and structural tensor Aij, for trans-
versely isotropic bone become as follow9:

Cijkl = Cijkl(I1,I2,I3,I4,I5) (2)

where are I1,I2…I5 invariants of the strain tensor 	ij and
trajectory orientation tensor Aij. The integrity basis in

this case are the three principal invariants of 	ij and two
aditional invariants.

I1 = tr	ij

I2 =
1

2
�(tr	ij)

2 – tr	 ij

2 �

I3 = det 	 ij

3 (3)

I4 = Aij : 	ij

I5 = Aij : 	 ij

2

The invarijant I4 is associated with deformation in the
trajectory direction, while I5 is associated with deforma-
tion perpendicular to the preferred direction. The orienta-
tion tensor is convenient to be replaced by orientation
averaging parameters10

f1 = -cos 2
.

f2 = 2 / -cos2 2
. – 1
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3
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15

2
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15

2
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where bracket - . is orientation averaging operator. The
elasticity tensor Cijkl on macro level on trajectory defined

by angles (
� �) has the following form

Cijkl = Cijkl (cijkl, f1, f2, f3, f4) (5)

where cijkl elasticity tensor of the periodic microstructu-
ral unit on trajectory. The tissue material of the cancel-
lous bone is assumed to be isotropic and anisotropy comes
from the geometry only, and architectural anisotropy on
micro level are quantified by second-rank fabric tensor


ij. The elasticity tensor cijkl depend on density � and on

microscale descriptors, such as fabric tensor 
ij
11

cijkl = cijkl (�, 
kl) (6)

Now the elasticity tensor Cijkl on macro level can be
expresed in separable multiscale form

Cijkl = �Cijkl (f1, f2, f3, f4) 0 cijkl (�, 
ij) (7)

The inverse of cijkl is the compliance tensor, which can
be expressed using engineering coefficients11. For the
cancellous bone on local micro level Cowin suggest, that
Young’s Ei and shear module Gi, with Poisson’s ratio’s �ij

are proportional to the density � and fabric tensor 
ij as
follows

1

Ei

= D1 + 2D6 + (D2 + 2D7) /� + 2 / (D3 + 2D8) / 
ii +

(2D4 + D5 + 4D9) / 
 ii

2

1

Gij

= 4 / �D6 + D7 / � + D8 / (
ii + 
jj) +

D9 / (
 ii

2 + 
 jj

2 ) (8)

–
nij

ijE
= D1 + D2 / � + D3 / (
ii + 
jj) + D4 / (
 ii

2 + 
 jj

2 )

� = 
11
22 + 
11
33 + 
22
33, i, j = 1, 2, 3

The constants Di depend on density � and on de-
scriptors at nanoscale (trabeculae lamelae). Another im-
portant quantity is the trajectory curvature tensor. Pro-
perty variations on the mesoscale can be introduced
through use high–order continuum theories, such as
micropolar theory, couple stress theory12. The elastic
modulus and yield strain can be used as a good property
predictor for all sites and loading modes.

Materials and Methods

For the purpose of the study, a novel compression
device with optical system was constructed to measure
stress, strain and trabecular trajectory orientation in
bone specimens13. The series of 10-mm cubes of can-
cellous bone specimens from human femur were pre-
pared using a fine diamond saw. The microstructure unit
follows trabecular trajectories according Wolff’s law, and
principal axes are determined by Euler angles 
 and �.
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The slope on stress-strain curve defines Young’s modulus
in loading direction (Figure 2). Supposing that principal
elastic axes coincide with trabecular trajectory orienta-
tions, loading direction in space is defined by the spheri-
cal coordinates 
 and �. The specimens are prepared and
the trajectory lies in specimen plane (� = 0). For every
compression tests were measured, elastic module E in
loading direction, trajectory orientations 
 and apparent
density �. The complex load hystory and bone geometry
need a sofisticated opto-mechanical measuring equip-

ment14. The influence of the end effects and boundary
conditions (i.e. friction effects) are carefully considered
in the experimental procedure.

Parameter’s estimation

Spatial interpolation is used to construct relationship
E = 1(�, 
) from irregularly scatter data. Among many
interpolation procedures kriging is chosen as the most
possible. Scatter and irregularly distributed measure-
ments are mapped on a regular grid by kriging pro-
cedure. A straightforward way to estimate the value of
the modulus E at an unknown location (�0, 
0) (a point of
the grid) is to make a linear combination of the of
weights at known neighboring locations (�i, 
i), i = 1, M.

E(�0, 
0) = mi
i

M

�
�

1

/ �(�i, 
i) (9)

M is number measured neighboring points. The pro-
blem is to compute the weights �i in order to minimize
the estimation error15. Kriging uses a semivariogram, a
measure of spatial correlation between two points, so the
weights change according to the spatial arrangement of
points. In Figure 3 graphically presented relationship
between Young modulus, trabeculae orientation 
 and
structural density � is constructed by kriging.

In order to establish cancellous bone structure-func-
tion properties relationship we need to determine un-
known parameters in structure-properties relationships.

On the other side, the Young’s module in any direction
defined by spherical angles 
 and � is possible calculate
knowing the principal elastic constants by transforma-
tion formula
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where Ei, Gij i, j = 1, 2, 3 are longitudinal and shear

module, �ij are Poisson ratio’s according principal axes.
The power-law approximation for engineering constant
Gi or Ei are chosen, with a, b, c and n as constants

Gi = a + b / �n + c / cos2 f (11)

Curve fitting across experimental point by expres-
sions (10) for modulus, with use of formula (11) gives the
possibility to determine modules and Poisson ratio’s,
better to say, the unknown material constants a, b, c and
n for each module set. The main idea of parameter
estimation is the space transformation from (E, �, 
) to
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Fig. 1. Trabecular pattern in the proximal femur.

Fig. 2. The bone compression test.



(Eij, �, cos2 f ) as shematic ilustrated by Figure 4. The
sum over all experimental points, the square of the
difference between theoretical expression for module
(10) and experimental value module must be minimal.

� = min
, , ,n a b cl

[ ]E a b c n Etheoretical l
i

N

( , cos , , , , )r f2

1

�
�
� experimenta

2
(12)

The method of optimization chosen for this problem
was the Nelder and Mead simplex algoritam16. The main
idea of the algorithm is to replace the vertex of the cur-
rent simplex that has the highest function value by a new
and better point. Scatter and irregularly distributed
measurements are mapped on a regular grid by kriging
in order to give possibility establish simplex everywhere.

Results and Discussion

In Figure 5, for given experimental data points are
shown isoclines of constant modulus as function of den-
sity and trabeculae orientation determined by kriging.
Some experimental points with strong property gradi-
ents are removed. Significant correlation of apparent
density and different mechanical properties of cancellous
bone have been demonstrated for large populations using
power-law regressions The different power exponent
suggests an influence other structural parameters such
as trajectory orientation and fabric tensor.

Taking the plane perpendicular on trajectory as the
plane of isotropy material becomes transversely isotro-
pic. The five independent constants of elastic tensor (C11,
C33, C12, C13, C44) are determined by the above optimiza-
tion procedure. The final results expressed in engineer-
ing constants are:

E1 = 60 + 816 / �3.08 – 26 / cos2 f �MPa�

(E2 = E1)

E3 = 100 + 1146 / �2.23 – 35 / cos2 f �MPa� (13)

G23 = 30 + 180 / �1.46 – 14 cos4 f �MPa�

�12 = 0.3

�13 = 0.25

The interpolation surface E(�, 
) is divided in patches
for surface fitting by transformation formula (10). The
results on Figure 6 ilustrated average trends on macro
level for femur bone. This results based on nonlinear
regression analysis can be improved material model for
numerical remodeling bone processes.

During estimatio procedure Poisson's ratios are keept
constant. Careffuly validation results it is find that Pois-
son's ratio depend on density too, what is shown by Fig-
ure 7. Measured normal strain data along each direction
of samples are recalculated, and scatter data points are
interpolated by closed curve. Yield envelopes in three bi-
axial normal strain planes are constructed. This enve-
lopes are cross-section four parameter modified yield
surface. The yield surface in strain space has the modi-
fied super-ellipsoid form17 (see Figure 8)
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Fig. 4. Transformation of space.

Fig. 5. Spatial interpolations by kriging.

Fig. 3. Modulus dependence on density and orientation-

experimental data.



The 0.2 % offset lines used to determine yield strains
along each loading axis. The compression octant is flat-
tened in order to include tension-compression strength
asymmetry.

Conclusion

The cancellous bone effective properties on macro-
scopic level are described by microscopic properties des-
criptors for representative volume element with trajec-
tory orientation tensor as measure on meso scale. The
scatter experimental data are replaced by stochastic in-
terpolation procedure. The engineering constants for
elasticity tensor are determined by last square fit of ex-
perimental data on multistage. The multiaxial failure
surface in strain space is constructed and interpolated by
modified super-ellipsoid.
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Fig. 6. Modulus dependence on density and trajectory orientation.

Fig. 7. The Poisson’s ratio dependence on density.

Fig. 8. The failure surface in strain space.
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RELACIJE MORFOLOGIJA-ELASTI^NOST ZA SPU@VASTU KOST VI[ESTRUKE MATERIJALNE

SKALE

S A @ E T A K

Makroskopska svojstva spu`vaste kosti na vi{estrukoj materijalnoj skali odre|ena su svojstvima reprezentativnog
volumnog elementa na mikroskali i tenzorom orjentacije trajektorija kao mjerom na mezoskali. Anizotropnost mikro-
strukture opisana je strukturnim tenzorom i tenzorom orijentacije trajektorija kao povezmicom na vi{estrukoj materi-
jaloj skali. Mjerni podaci (modul elasti~nosti, kut trajektorije, gusto}a kosti) testa tla~enja interpolirani su stohasti~kom
interpolacionom procedurom. In`enjerske konstante tenzora elasti~nosti odre|ene su kao minimum funkcionala gre{ke
koriste}i Nelder-Mead simplex metodu. Ploha te~enja u prostoru tenzora deformacije je interpolirana modificiranim
trodimenzijskim super-elipsoidom.
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