| Rudarsko-geološko-naftni zbornik | Vol. 21 | str. 83-92 |  |
|----------------------------------|---------|------------|--|
|                                  |         |            |  |

UDK 622.522:622.276.346 UDC 622.244.442

Jezik/Language :Hrvatski/Croatian

Originalni znanstveni rad Original scientiic paper

Zagreb, 2009.

# IZRAČUNAVANJE INDIKATORSKE KRIVULJE PRI PROIZVODNJI POVREMENIM PLINSKIM LIFTOM

# IPR CURVE CALCULATING FOR A WELL PRODUCING BY INTERMITTENT GAS-LIFT METHOD

## ZORAN MRŠIĆ<sup>1</sup>, MARIN ČIKEŠ<sup>2</sup>

<sup>1</sup>INA – Industrija nafte, d.d., Šubićeva 29, Zagreb, Hrvatska <sup>2</sup>Rudarsko-geološko-naftni fakultet Sveučilišta u Zagrebu, Pierottijeva 6, 10000 Zagreb, Hrvatska

**Ključne riječi**: indikatorska krivulja, sistemska analiza, mehaničke metode podizanja fluida, povremeni plinski lift, dinamički tlak na dnu bušotine, mehanika ventila plinskog lifta.

**Key words**: inflow performance curve, system analysis, artificial lift, intermittent gas lift, flowing bottomhole pressure, gas-lift valve mechanics.

#### Sažetak

U magistarskom radu (Mršić Z., 2009.) prikazan je detaljan postupak izračunavanja indikatorske krivulje pri proizvodnji povremenim plinskim liftom, koji se temelji na podacima izmjerenim i prikupljenim na ušću bušotine. U ovom članku dan je sažeti opis pristupa i sukus rezultata i zapažanja proizašlih tijekom izrade rada.

Kako bi se procijenila ispravnost predložene metode izračunavanja srednjeg dinamičkog tlaka kao ključnog parametra izračuna indikatorske krivulje, obavljena su mjerenja dinamičkog tlaka i proizvodnje tri proizvodne bušotine naftnih polja Šandrovac i Bilogora: Šandrovac-75 $\alpha$ , Bilogora-52 i Šandrovac-34. Izračunata je apsolutna razlika izmjerenih i izračunatih vrijednosti te je za prve dvije razmatrane bušotine apsolutna razlika tlakova iznosila:  $\Delta p$ =0,64 bar i  $\Delta p$ =0,06 bar, a relativna pogrješka  $\varepsilon$ =0,072 i  $\varepsilon$ =0,0038.

Zbog kvara ventila plinskog lifta utvrđenog prilikom mjerenja u bušotini vrijednost izračunatog tlaka za bušotinu Šandrovac-34 ne može se smatrati valjanom, stoga rezultat proračuna nije uspoređivan sa izmjerenim podacima.

Mjerenjem dinamičkog tlaka u bušotinama dobiven je uvid u stvarne vrijednosti ostalih parametara povremenog lifta koje se uobičajeno pretpostavljaju na temelju iskustvenih vrijednosti ili se izračunavaju na temelju empirijskih jednadžbi objavljenih u literaturi.

Značajna razlika pri tome je utvrđena za veličinu  $t_2$ - duljina perioda dosezanja minimalnog tlaka u bušotini, za koju se izmjerene vrijednosti kreću u rasponu od 10,74 do 16 min, a izračunavanjem primjenom empirijske jednadžbe dobivene su vrijednosti u rasponu od 1,23 do 1,75 min. Na temelju izmjerenih vrijednosti izvedena je nova empirijska jednadžba za izračunavanje ovog parametra.

#### Abstract

Master degree thesis (Mršić Z., 2009) shows the detailed procedure of calculating inflow performance curve for intermittent gas lift, based entirely on the data measured at surface. This article explains the detailed approach of the mentioned research and the essence of the results and observations acquired during the study.

To evaluate the proposed method of calculating the average bottom hole flowing pressure (BHFP) as the key parameter of inflow performance calculation, downhole pressure surveys have been conducted in three producing wells at Šandrovac and Bilogora oil fields: Šandrovac-75 $\alpha$ , Bilogora-52 and Šandrovac-34. Absolute difference between measured and calculated values of average BHFP for first two wells was  $\Delta p$ =0,64 bar and  $\Delta p$ =0,06 bar while calculated relative error was  $\varepsilon_r$ =0,072 and  $\varepsilon_r$ =0,0038 respectively.

Due to gas-lift valve malfunction in well Šandrovac-34, noticed during downhole pressure survey, value of calculated BHFP cannot be considered correct to compare with measured value.

Based on the measured data the information have been revealed about actual values of a certain intermittent gas lift parameters that are usually assumed based on experience gained values or are calculated using empirical equations given in literature.

The significant difference has been noticed for a parameter  $t_2$ . The length of a minimum pressure period for which the measured values were in range of 10,74 min up to 16 min, while empirical equation gives values in the range of 1,23 min up to 1,75 min. Based on measured values of above mentioned parameter a new empirical equation has been established.

# Uvod

Indikatorsku krivulju zasićenih naftnih ležišta, iz kojih se uglavnom odvija proizvodnja povremenim plinskim liftom, moguće je izračunati Vogelovom jednadžbom (Vogel J.V., 1968.) za čije je rješavanje potrebno poznavati ležišni tlak, proizvodnju i pripadajući dinamički tlak na dnu bušotine.

Za naftne bušotine koje eruptiraju ili rade nekom od mehaničkih metoda podizanja koje karakterizira ustaljeni protok kroz niz uzlaznih cijevi, određivanje indikatorske krivulje Vogelovom jednadžbom relativno je jednostavno – na temelju dinamičkog tlaka na ušću i proizvodnje bušotine moguće je izračunavanjem dinamičkog gradijenta tlaka odrediti vrijednost dinamičkog tlaka na dnu bušotine, a zatim na temelju poznatog ležišnog tlaka definirati indikatorsku krivulju.

U slučaju povremenog plinskog lifta bušotina ne radi kontinuirano, vrijednost dinamičkog tlaka na dnu je promjenjiva pa je način njegovog određivanja složeniji.

Pri proizvodnji povremenim liftom uobičajeno je mjerenje i registriranje radnih parametara na ušću bušotine - tlaka prstenastog prostora i uzlaznih cijevi, proizvedenih količina fluida i utisnutih količina plina. Mogućnost izračunavanja dinamičkog tlaka na temelju ovih, lako dostupnih, podataka omogućilo bi brz i jednostavan način određivanja indikatorske krivulje. Time bi se na praktičan način, bez dodatnih troškova hidrodinamičkih mjerenja i izlaganja riziku koji sa sobom nosi obavljanje radova u bušotini, dobilo konkretna saznanja o proizvodnim karakteristikama bušotine što je osnova za optimalizaciju njezinog rada. U radu je prikazan način kako na temelju podataka registriranih na ušću bušotine, poznavajući zakonitosti protjecanja fluida u uvjetima jednofaznog i višefaznog protoka, hidrauličko stanje u bušotini uslijed nestacionarnog protoka te karakteristike ugrađenih ventila plinskog lifta i princip njihovog rada, izračunati vrijednost srednjeg dinamičkog tlaka i odrediti indikatorsku krivulju bušotine primjenom Vogelove jednadžbe ili nekom od ostalih metoda za čiji su izračun potrebni rezultati jednog uvjeta mjerenja ( složena indikatorska krivulja, Standingova jednadžba, itd.).

#### Proizvodnja nafte povremenim plinskim liftom

Povremeni plinski lift je metoda podizanja fluida pri kojoj se fluid akumuliran u uzlaznim cijevima ciklički iznosi iz bušotine djelovanjem ekspanzije plina utiskivanog kroz ventil plinskog lifta. Radni ciklus povremenog lifta sastoji se iz tri perioda:

I. period – traje od trenutka otvaranja radnog ventila do prolaska obroka kapljevine kroz ušće bušotine,

- II. period rasterećenje bušotine i dosezanje minimalnog tlaka nakon zatvaranja radnog ventila i prolaska obroka kapljevine kroz ušće bušotine,
- III. period ventil plinskog lifta je zatvoren, fluid pritječe iz ležišta u bušotinu uslijed čega dolazi do porasta razine fluida u uzlaznim cijevima.

U slučaju regulacije količine i tlaka plina za podizanje podesivom sapnicom, u cilju kontrole ispravnosti rada bušotine uobičajeno je registriranje promjene tlaka na ušću bušotine (slika 1.).



Slika 1. Dijagram tlaka na ušću prstenastog prostora pri regulaciji utiskivanja plina podesivom sapnicom *Figure 1* Wellhead pressure for adjustable choke injection gas regulation

Natemeljuvrijednostitlaka otvaranja ventila izmjerenoj na ušću prstenastog prostora moguće je Bernoullijevom jednadžbom za izračunavanje tlaka uslijed težine stupca plina izračunati tlak otvaranja ventila na dubini njegove ugradnje:

$$p_1 = p_2 \exp\left(\frac{\gamma_g M_a g D}{\overline{zRT}}\right) \tag{1}$$

gdje su:

- $p_1$  tlak uslijed težine stupca plina na razmatranoj dubini, Pa;
- $p_2$  tlak plina na površini, Pa;
- $\gamma_{\varphi}$  relativna gustoća plina;
- $M_a$  molekularna masa zraka, kg/mol;
- g ubrzanje sile teže, m/s<sup>2</sup>;
- D razmatrana dubina bušotine, m;
- z srednja vrijednost koeficijenta odstupanja ponašanja plina;
- R opća plinska konstanta, J/mol K;
- $\overline{T}$  srednja temperatura na razmatranom intervalu, K.

Iz ove vrijednosti moguće je pomoću jednadžbi koje opisuju mehaniku rada ventila plinskog lifta izračunati tlak u uzlaznim cijevima na dubini ugradnje ventila, u trenutku neposredno prije njegovog otvaranja, čija vrijednost je polazna točka za izračunavanje raspodjele faza i srednjeg dinamičkog tlaka bušotine.

#### Mehanika ventila plinskog lifta

Prema slici 2. jednadžba ravnoteže sila koje djeluju na ventil glasi:

$$p_d \cdot A_b = p_{\boldsymbol{v}} \cdot (A_b - A_s) + p_{\boldsymbol{v}} \cdot A_s \tag{2}$$

gdje su:

 $\begin{array}{l} p_{d} - {\rm tlak} \; {\rm u} \; {\rm mijehu} \; {\rm ventila, \; bar} \\ p_{cv} - {\rm tlak} \; {\rm u} \; {\rm prstenastom} \; {\rm prostoru} \; {\rm na} \; {\rm dubini} \; {\rm ventila, \; bar} \\ p_{v} - {\rm tlak} \; {\rm u} \; {\rm uzlaznim} \; {\rm cijevima} \; {\rm na} \; {\rm dubini} \; {\rm ventila, \; bar} \\ A_{b} - {\rm površina} \; {\rm poprečnog} \; {\rm presjeka} \; {\rm mijeha} \; {\rm ventila, \; mm^{2}} \\ A_{s} - {\rm površina} \; {\rm poprečnog} \; {\rm presjeka} \; {\rm sjedišta} \; {\rm ventila, \; mm^{2}} \end{array}$ 

Izvršni element krmilnog ventila razmatranog u radu je opruga, a mijeh je ispunjen zaštitnom kapljevinom bez tlaka pa vrijedi:

$$p_d = p_v \tag{3}$$

gdje je:

Omjer površina sjedišta kuglice i mijeha označava se kao:

$$F_{b} = \frac{A_{s}}{A_{b}} \tag{4}$$

Uvrštenjem jednadžbi (3) i (4) u jednadžbu (2), nakon uređivanja može se pisati:

$$p_{v} = p_{v} - F_{s} \cdot \left(p_{v} - p_{v}\right) \tag{5}$$

Iz jednadžbe (5) moguće je odrediti tlak u uzlaznim cijevima na razini ventila u trenutku neposredno prije njegova otvaranja:

$$p_{\nu} = \frac{p_{\nu} - p_{\nu} \cdot (1 - F_{\nu})}{F_{\nu}} \tag{6}$$



Slika 2. Ravnoteža sila ventila plinskog lifta Figure 2 Forces acting on gas lift valve

#### Dinamički tlak pri proizvodnji povremenim plinskim liftom

Nestacionarni protok fluida kroz bušotinu uzrokuje promjenu dinamičkog tlaka na dnu bušotine kroz trajanje jednog radnog ciklusa. Na slici 3. punom linijom je prikazan dijagram promjene tlaka u bušotini na razini ležišta za slučaj bušotine s ugrađenim protupovratnim ventilom u peti uzlaznih cijevi, poput bušotina razmatranih u radu. Crtkana linija označava promjenu tlaka za bušotine bez ugrađenog protu-povratnog ventila i posljedično veću vrijednost srednjeg dinamičkog tlaka.

Trajanje pojedinog perioda prikazanog na slici 3. određuje se mjerenjem ili izračunom na temelju iskustvenih jednadžbi (Brown K.E., 1973.) koje se temelje na eksperimentalno utvrđenoj vrijednosti brzine kretanja obroka kapljevine ka ušću od  $v_l = 1000 f / \min$ , odnosno  $v_l = 305 m / \min$ :

$$t_1 = \frac{1,5 \cdot D_v}{v_i} \tag{7}$$

$$t_2 = \frac{0.5 \cdot D_v}{v_l} \tag{8}$$

$$t_3 = t_{cikl_1} - (t_1 + t_2) \tag{9}$$

gdje su:

- $t_1$  period podizanja obroka fluida (I. period), min
- $t_2$  period dosezanja minimalnog dinamičkog tlaka (II. period), min
- $t_3$  period pritjecanja fluida iz ležišta u uzlazne cijevi (III. period), min
- $t_{cikl}$  ukupno trajanje jednog radnog ciklusa, min
- $D_{v}$  dubina ugradnje radnog ventila, m
- $v_l$  brzina kretanja obroka kapljevine od dna ka ušću bušotine, m/min

Srednji dinamički tlak jednog radnog ciklusa, odnosno bušotine, računa se na temelju srednjih vrijednosti tlakova pojedinog perioda ponderiranih sa duljinom trajanja pojedinog perioda:

$$\bar{p}_{f} = \frac{\left(\frac{p_{t_1} + p_{t_2}}{2}\right) \cdot t_1 + \left(\frac{p_{t_2} + p_{\min}}{2}\right) \cdot t_2 + \left(\frac{p_{\min} + p_{t_1}}{2}\right) \cdot \cdot t_3}{t_{cikl}}$$
(10)

Tlak pojedinog perioda ovisi o raspodjeli faza u bušotini na početku i na kraju razmatranog perioda.



Slika 3. Dinamički tlak bušotine s i bez ugrađenog protupovratnog ventila (Brown K.E., 1973.) *Figure 3 Flowing bottomhole pressure for well with and without check valve (Brown K. E., 1973.)* 

# Izračunavanje srednjeg dinamičkog tlaka na dnu bušotine na temelju mjerenja na ušću

Postupak proračuna grafički je prikazan na slici (4):

- 1. Na temelju izmjerene vrijednosti tlaka ušća prstenastog prostora u trenutku neposredno prije otvaranja ventila  $p_{vo}$  (slika 1.), primjenom jednadžbe (1) izračunava se tlak prstenastog prostora na dubini ugradnje ventila  $p_{cv}$ .
- 2. Početna vrijednost proračuna tlak na početku

prvog perioda  $p_{t_{\parallel}}$  izračunava se jednadžbom (6) na temelju karakteristika ventila i vrijednosti tlakova u bušotini u trenutku otvaranja ventila. Iz ove vrijednosti tlaka moguće je nekom od poznatih jednadžbi za proračun pada tlaka pri višefaznom protoku izračunati krivulju gradijenta dinamičkog tlaka u uzlaznim cijevima.

- 3. Primjenom jednadžbe (1), poznavajući vrijednost tlaka ušća bušotine  $p_{wh}$  izračunavamo krivulju gradijenta tlaka uslijed težine stupca plina u uzlaznim cijevima. Sjecište krivulja gradijenata daje raspodjelu faza u uzlaznim cijevima i razinu kapljevine.
- 4. Tlak na kraju prvog perioda izračunava se uvažavajući aproksimaciju da tijekom podizanja stupca kapljevine, za vrijeme dok je protupovratni ventil zatvoren, ležišni fluid pritječe iz ležišta u kanal bušotine, a u trenutku

otvaranja protupovratnog ventila trenutno ulazi u uzlazne cijevi i stvara ekvivalentni stupac kapljevine i protutlak na ležište. Stoga se tlak na kraju prvog perioda računa pomoću jednadžbe:

$$p_{t_{p}} = p_{v} + p_{p_{n}} \tag{11}$$

gdje je:

 $p_{p_n}$  - tlak uslijed pritoka za vrijeme perioda  $t_l$ , bar

Pripadajuća vrijednost tlaka izračunava se na temelju srednje vrijednosti gradijenta izračunatog u točki 2. i jediničnog obujma uzlaznih cijevi:

 Empirijske vrijednosti povratnog slijevanja kapljevine kreću se u rasponu od 1,5 % do 3 % početnog obujma kapljevine na 100 m podizanja (Zelić M., 1977.). U radu je ova vrijednost pretpostavljena na temelju početnog obujma stupca kapljevine određenog u točki 3.



Slika 4. Određivanje raspodjele faza u bušotini Figure 4 Determining well phase distribution

|                                           | Ša-75α | Bl-52 | Ša-34 |
|-------------------------------------------|--------|-------|-------|
| Početni obujam kapljevine, m <sup>3</sup> | 0,316  | 0,631 | 0,546 |
| Pretpostavljena vrijednost, (%/ 100 m)    | 1,5    | 3,0   | 1,5   |
| Ukupna vrijednost, (%)                    | 12,9   | 32,04 | 11,3  |

**Tablica 1.** Pretpostavljene vrijednosti povratnog slijevanja kapljevine**Table 1** Assumed values of fall back

6. Minimalni tlak u bušotini, koji nastaje za vrijeme drugog perioda, izračunava se na temelju raspodjele faza u bušotini nakon iznošenja obroka kapljevine iz bušotine, određene pretpostavljenom vrijednošću povratnog slijevanja kapljevine i pritokom za vrijeme perioda  $t_2$ . Raspodjela faza određuje se grafički iz sjecišta krivulja gradijenata tlaka kapljevine i tlaka uslijed težine stupca plina u tubingu uvažavajući novu razinu kapljevine nakon iznošenja obroka kapljevine iz bušotine.

Minimalni tlak u bušotini  $p_{\min}$ , nakon iznošenja obroka kapljevine, čine tlak uslijed težine stupca plina u uzlaznim cijevima, hidrostatski tlak uslijed stupca nastalog povratnim slijevanjem kapljevine i tlak uslijed pritoka iz ležišta u kanal bušotine za vrijeme perioda  $t_1$  i  $t_2$ :

 $p_{\min} = p_g + p_{f} + p_{p_{(n+2)}} \tag{14}$ 

#### Mjerenje u bušotinama

Sve razmatrane bušotine opremljene su pakerom, uzlaznim cijevima nazivnog promjera d=0,0508 m i spojnicom za odlaganje u koju je odložen protu-povratni ventil. Za potrebe mjerenja dinamičkog tlaka u bušotinu je ugrađen dubinski manometar koji je navojnim spojem pričvršćen za donji dio tijela protupovratnog ventila, ispod kuglice koja zatvara protok fluida kroz ventil. Ovaj sklop odložen je potom u spojnicu za odlaganje. Tlak je registriran 24 sata uz istovremeno mjerenje i registriranje tlakova na ušću uzlaznih cijevi i prstenastog prostora i mjerenje proizvedenih fluida. Iz izmjerenih i registriranih podataka o dinamičkom tlaku u bušotini za potrebe analize odabran je jedan reprezentativni ciklus, bez uočenih poremećaja u radu bušotine čiji su podaci iskorišteni za usporedbu sa računski dobivenom vrijednosti dinamičkog tlaka. Rezultati mjerenja u bušotini Ša-75α prikazani su na slici 5.



**Slika 5.** Dinamički tlak u bušotini Ša-75 $\alpha$  izmjeren dubinskim manometrom *Figure 5 Measured Flowing bottomhole pressure in well Ša-75* $\alpha$ 

#### Rasprava

Na temelju teoretskih postavki, obavljenih mjerenja i rezultata proračuna može se izdvojiti nekoliko elemenata koji bitno utječu na krajnji rezultat.

#### Povratno slijevanje kapljevine

Veličina povratnog slijevanja kapljevine utječe prvenstveno na vrijednost minimalnog tlaka u bušotini kroz raspodjelu faza nakon iznošenja obroka kapljevine iz bušotine. U tablici 2. prikazana je razlika izmjerene i izračunate vrijednosti minimalnog tlaka na temelju pretpostavljene vrijednosti povratnog slijevanja kapljevine prikazane u tablici 1.

Zbog nestacionarne prirode protoka kroz uzlazni niz i složenih odnosa između faza vrijednost ove veličine vrlo je teško egzaktno odrediti izračunom. U literaturi je objavljeno više radova iz područja povratnog slijevanja kapljevine kod povremenog lifta ali još uvijek nije definirano jednoznačno rješenje. Rješavanju ovog problema potrebno je pristupiti kroz prethodna mjerenja na bušotinama određenog polja, a potom na temelju analize rezultata definirati metode izračuna te odabrati konkretne empirijske jednadžbe koje će se s dovoljnom točnošću moći koristiti za daljnja predviđanja.

Pretpostavljene vrijednosti povratnog slijevanja uzrokovale su znatnu razliku izmjerene i izračunate vrijednosti minimalnog tlaka (tablica 2.) no, s obzirom

na malu duljinu perioda  $t_2$  u odnosu na ukupnu duljinu ciklusa, utjecaj pogreške na vrijednost srednjeg dinamičkog tlaka na dnu nije značajan. Može se reći da se za potrebe projektiranja instalacije plinskog lifta sa zadovoljavajućom točnosti mogu koristiti prethodno prikazane empirijske vrijednosti.

#### Duljina perioda dosezanja minimalnog tlaka u bušotini

Prikazane empirijske jednadžbe (7) i (8) za izračun duljine perioda  $t_1$  i  $t_2$  povremenog lifta dobivene su na temelju mjerenja u uzlaznim cijevima nazivnog promjera

 $d_t = 0.0508$  mm koje su ugrađene i u bušotinama razmatranim u ovom radu. U tablici 3. prikazane su vrijednosti trajanja perioda dosezanja minimalnog tlaka u bušotini dobivene primjenom jednadžbe (8) te vrijednosti dobivene mjerenjem.

**Tablica 2.** Minimalni tlak u bušotini na dubini mjerenja

 **Table 2** Minimum downhole pressure

|                              | Ša-75α | B1-52 | Ša-34 |
|------------------------------|--------|-------|-------|
| Izračunata vrijednost, (bar) | 7,51   | 11,07 | 8,65  |
| Izmjerena vrijednost, (bar)  | 6,3    | 13,4  | 8,05  |
| Pogrješka, (%)               | 19,2   | 17,4  | 7,5   |

 Tablica 3. Duljina perioda dosezanja minimalnog tlaka u bušotini

 Table 3 Length of minimum pressure period

| Duljina perioda<br>(min) | Ša-75α | B1-52 | Ša-34 |
|--------------------------|--------|-------|-------|
| Izračunata vrijednost    | 1,4    | 1,75  | 1,23  |
| Izmjerena vrijednost     | 16     | 11    | 10,74 |

U sva tri slučaja odstupanja između računski dobivene i izmjerene vrijednosti su značajna. Na temelju izmjerenih vrijednosti, uvrštavanjem u jednadžbu (8) za bušotinu Ša- $75\alpha$  može se izračunati vrijednost empirijskog množitelja

varijable dubina radnog ventila  $D_{v}$ :

$$t_2 = \frac{0.5 \cdot D_v}{305}$$
$$t_2 = \frac{x \cdot D_v}{305}$$
$$x = \frac{305 \cdot t_{izmj}}{D_v}$$

$$x = \frac{305 \cdot 16}{860}$$

$$x = 5,7 \min$$

Na isti način dobivaju se vrijednosti i za preostale dvije bušotine:

$$Bl - 52$$
  $x = 3,1 \min$ 

$$Sa - 34$$
  $x = 4,3 \min$ 

Iz vrijednosti izračunatih za sve tri bušotine može se izračunati srednja vrijednost prema jednadžbi:

$$\overline{x} = \frac{5,7+3,1+4,3}{3} = 4,4 \tag{15}$$

Uvrštenjem srednje vrijednosti izmjerenih veličina za navedene bušotine može se napisati jednadžba za izračunavanje duljine perioda dosezanja minimalnog tlaka u bušotini kao:

$$t_2 = \frac{4.4 \cdot D_v}{305}$$
(16)

$$t_2 = 1.5 \cdot 10^{-2} \cdot D_v \text{ (min)} \tag{17}$$

# Rezultati proračuna

#### Srednji dinamički tlak u bušotini

U tablici 4. prikazana je usporedba izmjerenih i izračunatih vrijednosti dinamičkog tlaka i pripadajućih odstupanja.

#### Izračunavanje indikatorskih krivulja

Indikatorske krivulje izračunate su primjenom jednadžbi odabranih na prema proizvodnim karakteristikama bušotina. Za bušotinu Ša-75 $\alpha$  koja proizvodi naftu sa zanemarivim udjelom vode primijenjena je Vogelova jednadžba, a za bušotinu Bl-52 izračunata je složena indikatorska krivulja (Brown K.E., 1984.) koja se primjenjuje za bušotine sa značajnim udjelom vode u proizvodnji.

 Tablica 4. Usporedba izračunatih i izmjerenih vrijednosti dinamičkog tlaka

 Table 4 Calculated and measured flowing bottomhole pressures

|                            | Ša-75α | BI-52  |
|----------------------------|--------|--------|
| Izračunata vrijednost, bar | 8,86   | 15,76  |
| Izmjerena vrijednost, bar  | 8,22   | 15,7   |
| Apsolutna razlika, bar     | 0,64   | 0,06   |
| Relativna pogreška         | 0,072  | 0,0038 |
| Postotna pogreška, %       | 7,2    | 0,38   |



**Slika 6.** Indikatorska krivulja bušotine Ša-75α

Figure 6 Inflow performance curve for well Ša-75a



Slika 7. Indikatorska krivulja bušotine Bl-52 Figure 7 Inflow performance curve for well Bl-52

#### Zaključak

U radu je prikazan način kako, na temelju lako dostupnih ulaznih podataka, izračunati indikatorsku krivulju pri proizvodnji povremenim plinskim liftom. Iz podataka prikupljenih mjerenjem u pogonskim uvjetima, odabrani su reprezentativni podaci koji su uspoređivani s proračunski dobivenim vrijednostima, a odbačeni su oni na koje su utjecali poremećaji u proizvodnom sustavu ili radu bušotine. Na temelju veličine odstupanja između izmjerenih i proračunski dobivenih vrijednosti srednjeg dinamičkog tlaka potvrđena je početna teza da se na temelju navedenih ulaznih podataka, primjenom prikazanog postupka proračuna može izračunati srednji dinamički tlak na dnu bušotine, koji se potom koristi za izračunavanje indikatorske krivulje. Za daljnje vrednovanje prikazanog postupka potrebno je obaviti dodatna mjerenja, kako bi razmatrani uzorak bušotina bio što veći, a time i točnost procjene kvalitete proračuna.

S obzirom na veličine odstupanja izmjerenih i izračunatih vrijednosti tlaka i neznatne razlike u obliku izračunatih indikatorskih krivulja, postupak se može sa zadovoljavajućom točnošću primjenjivati za potrebe projektiranja podzemne proizvodne opreme i optimalizaciju rada bušotina.

Uslijed nestacionarnog protjecanja u uzlaznim cijevima nije moguće analitički odrediti sve pokazatelje rada povremenog lifta. Za potrebe projektiranja instalacije i dalje će se koristiti empirijske jednadžbe za određivanje nekih veličina. No, nakon inicijalnog projektiranja te opremanja bušotine potrebno je obaviti mjerenja u bušotini te potom usporediti projektirane i ostvarene radne parametre i utvrditi uzrok odstupanja. Nakon toga moguće je optimalizirati rad bušotine kroz promjenu karakteristika ugrađene opreme, prije svega propusne moći i raspona tlakova radnog ventila.

Mjerenjem u bušotinama razmatranim u ovom radu utvrđeno je da duljina perioda dosezanja minimalnog tlaka u bušotini traje znatno dulje nego je to predviđeno postojećom empirijskom jednadžbom (8), što u određenoj mjeri utječe na vrijednost srednjeg dinamičkog tlaka u bušotini, a time i na oblik indikatorske krivulje i procjenu proizvodnog potencijala bušotine. Na temelju rezultata mjerenja izvedena je nova empirijska jednadžba (16) na temelju srednjih vrijednosti izmjerenih podataka u tri bušotine.

Parametar s najvećim utjecajem na rezultate proračuna je povratno slijevanje kapljevine. Ujedno je to i parametar kojeg je najteže analitički odrediti. Za njegovo egzaktno određivanje potrebno je obaviti mjerenja u konkretnim bušotinama te na temelju rezultata definirati način i jednadžbe za predviđanje budućih vrijednosti.

Iz izmjerenih i izračunatih vrijednosti dinamičkih tlakova te izračunatih indikatorskih krivulja uočljivo je da sve tri bušotine rade pri velikim depresijama. Uzrok tome je dizajn proizvodne opreme koji je prilagođen uvjetima slabo-propusnih i iscrpljenih ležišta. Točka utiskivanja plina spuštena je na maksimalno moguću dubinu, neposredno iznad perforacija. U ovakvom slučaju optimalizacija rada bušotine odnosi se prvenstveno na smanjenje gubitaka uložene energije, a ne na povećanje proizvodnje. U tom smislu potrebno je utjecati na smanjenje povratnog slijevanja kapljevine kroz ugradnju radnog ventila takvih karakteristika koji će osigurati dovoljnu brzinu iznošenja obroka kapljevine do ušća kako bi se smanjilo povratno slijevanje, ali gdje istovremeno neće doći do razbijanja početnog obroka kapljevine uslijed prevelike razlike tlakova u prstenastom prostoru i uzlaznim cijevima na razini ventila.

Ispitivanja vezana uz optimalizaciju povremenog lifta na razmatranim naftnim poljima treba nastaviti u tom smjeru.

Accepted: 29.10.2009. Received: 15.09.2009.

## Literatura

- Brown, K. E. (1973): Gas Lift Theory and Practice, Tulsa, Oklahoma, The Petroleum Publishing Company, 1973.
- Brown, K. E. (1984): The Technology of Artificial Lift Methods, Vol. 4, Tulsa, Oklahoma, PennWell Publishing Company, 1984.
- Mršić, Z. (2009): Određivanje indikatorske krivulje pri proizvodnji povremenim plinskim liftom, magistarski rad, Sveučilište u Zagrebu, Rudarsko-geološko naftni fakultet, Zagreb, 2009.
- Vogel, J. V. (1968): Inflow Performance Relationship for Solution-Gas Drive Wells, // Journal of Petroleum Technology, 20, 1 (1968.), 83-92.
- Zelić, M. (1977): Tehnologija pridobivanja nafte i plina eruptiranjem i gas liftom, INA-Naftaplin, Zagreb, 1977.