
Kristijan Maček, Dizan Vasquez, Thierry Fraichard, Roland Siegwart

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

UDK
IFAC

629.3.073.2
5.7.1;1.2.1 Original scientific paper

This paper describes the deliberative part of a navigation architecture designed for safe vehicle navigation in
dynamic urban environments. It comprises two key modules working together in a hierarchical fashion: (a) the
Route Plannerwhose purpose is to compute a validitinerary towards the a given goal. An itinerary comprises a
geometric path augmented with additional information based on the structure of the environment considered and
traffic regulations, and (b) thePartial Motion Plannerwhose purpose is to ensure the proper following of the
itinerary while dealing with the moving objects present in the environment (egother vehicles, pedestrians).

In the architecture proposed, a special attention is paid tothe motion safety issue,ie the ability to avoid collisions.
Different safety levels are explored and their operationalconditions are explicitly spelled out (something which is
usually not done).

Key words: Motion planning, Dynamic environment, Motion safety, Urban navigation

Prema sigurnoj navigaciji vozila u dinamičkim urbanim scenarijima. Ovaj članak opisuje ciljno orijentirani
dio navigacijske arhitekture za sigurnu navigaciju vozilima u dinamǐckim urbanim sredinama. Sastoji se od dva
važna modula, koji su hierarhijski povezani: (a) Planer puta koji je odgovoran za pronalaženje valjane globalne
rute prema zadanom cilju – ta ruta se sastoji od geometrijskog puta sa dodatnim informacijama u odnosu na zadanu
strukturu okoline i regulaciju prometa; (b) Parcijalni planer gibanjǎciji zadatak je slijeđenje zadane globalne rute
uz navigaciju u prisutnosti pokretnih objekata u okolini (npr. ostala vozila i pješaci).

U predloženoj arhitekturi posebna pažnja se pridodaje sigurnosti gibanja, dakle sposobnosti izbjegavanja sudara.
Razmotrene su različite razine sigurnosti uz izričiti opis njihovih zadanih režima rada (što je uobičajeno izostavljeno
u analizama).

Klju čne riječi: planiranje gibanja, dinamička okolina, sigurnost gibanja, urbana navigacija

1 INTRODUCTION

1.1 Background and Motivations

Autonomous mobile robots/vehicles navigation has a
long history by now. Remember Shakey’s pioneering ef-
forts in the late sixties [1]. Today, the situation has dramat-
ically changed as illustrated rather brilliantly by the 2007
DARPA Urban Challenge1. The challenge called for au-
tonomous car-like vehicles to drive 96 kilometers through
an urban environment amidst other vehicles (11 self-
driving and 50 human-driven). Six vehicles finished the
race thus proving that autonomous urban driving could be-
come a reality. Note however that, despite their strengths,
the Urban Challenge vehicles have not yet met the chal-
lenge of fully autonomous urban driving (how about han-
dling traffic lights or pedestrians for instance?).

Another point worth mentioning is that at least one col-
lision took place between two competitors. It was nothing

1http://www.darpa.mil/grandchallenge

serious but it raises the important issue ofmotion safety,
ie the ability for an autonomous robotic system to avoid
collision with the objects of its environment. With robotic
systems designed to operate in the real world among hu-
man beings in many cases, motion safety becomes critical.
The size and the dynamics of the Urban Challenge vehi-
cles make them potentially dangerous for themselves and
their environment (especially when driving at high-speed).
Therefore, before letting such autonomous systems move
among people, it is vital to assert their operational motion
safety.

In the last forty years, the number and variety of au-
tonomous navigation schemes that have been proposed is
huge (cf [2]). In general, these navigation schemes aims at
fulfilling two key purposes: reaching a goal while avoid-
ing collision with the objects of the environment. When
it comes to collision avoidance, once again, many colli-
sion avoidance schemes have been proposed. Their aim of
course is to ensure the robotic systems’ safety. However

ISSN 0005-1144
ATKAFF 50(3–4), 184–194(2009)

184 AUTOMATIKA 50(2009) 3–4, 184–194

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios K. Maček, D. Vasquez, T. Fraichard, R. Siegwart

the analysis carried out in [3] of the most prominent navi-
gation schemes (ie the ones currently used by robotics sys-
tems operating in real environments,eg [4–7]) shows that,
especially in dynamic environments,motion safety is not
guaranteed(in the sense that it is easy to find situations
where collisions will eventually occur). To some extent,
this is due to the fact that safety is a concept that is taken
for granted. In other words, the meaning of safety is never
formally stated and, above all, the operational conditions
of such collision avoidance schemes are seldom (if never)
spelled out.

1.2 Contributions and Paper Outline

In the past few years, the Autonomous Systems Lab.
of the Swiss Federal Institute of Technology have been
active with self-driving cars through the SmartTer initia-
tive2. It has developed a navigation architecture that has
evolved over the years. The primary purpose of this pa-
per is to present the latest developments of the deliberative
part of this navigation architecture. These developments
are geared towards autonomous driving in dynamic urban
environments with a particular focus on the motion safety
issue.

The deliberative part of the architecture features two key
modules working together in a hierarchical fashion: the
Route Planner(high-level) and thePartial Motion Planner
(low-level).

The purpose of the Route Planner is to provide the Par-
tial Motion Planner with a valid route towards a given goal.
A route in this case comprises a geometric path augmented
with additional information based on the structure of the
environment considered. Such a route should comply with
the standard regulations for vehicles driving in a urban set-
ting. This means that factors such as speed limits and stop
signs should be taken into account.

It is up to the Partial Motion Planner to take care of
all the gory details of the actual driving. It relies upon
the route and a local model of the vehicle’s environment
(with up to date information about the fixed and the moving
objects) in order to determine the next motion command to
apply to the vehicle.

As the name suggests, a Partial Motion Planning
scheme is used [8], [9] in order to (a) take into account
thedecision time constraintimposed by dynamic environ-
ments and (b) improve convergence towards the desired
goal.

Motion safety is dealt with by the Partial Motion Plan-
ner. Two safety levels respectively calledPassiveandPas-
sive Friendlyare explored and their operational conditions
are explicitly stated.

2http://www.smart-team.ch

Fig. 1. Overview of the proposed navigation architecture

The paper is organized as follows: §2 briefly overviews
the complete navigation architecture. The Route Planner
and the Partial Motion Planner are respectively presented
in §3 and §4. §5 details the particular diffusion technique
used by the Partial Motion Planner whereas §6 focuses on
the safety issues. The experimental platform is overviewed
in §7 and preliminary navigation results are finally pre-
sented in §8.

2 NAVIGATION ARCHITECTURE

Fig. 1 presents an overview of the navigation architec-
ture of the SmartTer platform. It is structured in layers,
where, in most cases, higher level components interact
with all the lower level layers in the hierarchy. The only
exception is the world model, which is directly accessed
by all the levels of hierarchy. Given that this paper focuses
on route planning and partial motion planning we will just
briefly discuss the high-level components and their inter-
action here.

1. Mission Manager. It is responsible of translating
high-level tasks (eg pick-up a person at an address)
into initial and a goal configurations that the vehicle
should reach in order to accomplish those tasks.

2. Route planning. It is concerned with finding a global
route for the vehicle between the initial and goal con-
figurations given by the mission manager, using infor-
mation about the static characteristics of the environ-
ment (e.g. lane geometry, speed limits). We assume
that knowledge about these characteristics is available
a priori so that it is possible to perform at least part
of the computations off-line.

3. Partial Motion Planning. It is responsible of exe-
cuting routes computed by the route planning mod-
ule including collision avoidance and –for unstruc-
tured environments– motion planning. It integrates
knowledge about the dynamic elements of the envi-
ronment,and interacts tightly with the world model.

4. World model. The world model gathers all the avail-
able information about the environment, including the

AUTOMATIKA 50(2009) 3–4, 184–194 185

K. Maček, D. Vasquez, T. Fraichard, R. Siegwart Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

vehicle’s localization, the environment structure and
the current and predicted states of the other objects
that are present in the environment. As mentioned
above, it is different from other modules because it
interacts with all the levels of the hierarchy.

The next two sections respectively describe Route Plan-
ning and Partial Motion Planning.

3 ROUTE PLANNING

The goal of route planning is to exploit prior knowledge
about the environment in order to provide local navigation
with a feasible and valid path between two points of the
environment. In this context, valid means that the path
should be collision free and comply with traffic regulations
for vehicles driving in a urban setting, where factors such
as speed limits and stop signs should be taken into account
by the planner.

More specifically, prior knowledge comes in the form
of a slightly augmented3 Route Network Definition File
(RNDF) [10]. This information may be seen as a directed
graph (see fig 2) where we distinguish between two types
of nodes,waypoints, having a special meaning (eg an in-
tersection or a parking entrance) and standard nodes which
are used as a piecewise linear approximation to describe
higher order curves. Additionally, unstructured, open ar-
eas of the environment are described as polygons having
entry and exit points that are connected to other nodes of
the graph.

From this graph, route planning is straightforward by
applying the A* graph search algorithm using the length
of the graph’s edges as a cost function. Once a path has
been found, it is smoothed out in order to guarantee its fea-
sibility. The output of the module consists of a list of con-
figurationsQg = {q1

g , · · · , q
Ng
g } that the vehicle should

3RNDF’s have been augmented by including speed limits.

Fig. 2. Detail of final DARPA’s RNDF file showing way-
points (red), standard nodes (blue) and unstructured areas
(green polygons)

Fig. 3. Partial motion planning iterative scheme

reach. Each configuration can be described as a position,
orientation and curvature:

qi
g = {xi

g, y
i
g, θ

i
g, κ

i
g} (1)

Associated with every configuration, there is a con-
straint vector describing the bounds within which the vehi-
cle’s motion is considered as acceptable with respect to the
task at hand and the traffic rules (egspeed limits), as well
as a Boolean flagwpi, whose value is true when the con-
figuration corresponds to a waypoint and false otherwise:

ci = {ri
max, ∆θi

max, ∆κi
max, v

i
min, v

i
des, v

i
max, wpi} (2)

whereri
max stands for the maximum distance between the

object’s actual position and the desired one;∆θi
max and

∆κi
max are the maximum error tolerated for the heading

angle and the curvature, respectively; andvi
min, vi

des and
vi
max are the minimum, desired and maximum velocities

associated to the given configuration.

4 PARTIAL MOTION PLANNING

The Partial Motion Planner (PMP) is the core naviga-
tional module of the architecture.

Its primary purpose is to determine the motion com-
mandu that is sent to the vehicle controller at every time
cycle.

The motion commandu must meet the following re-
quirements:

186 AUTOMATIKA 50(2009) 3–4, 184–194

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios K. Maček, D. Vasquez, T. Fraichard, R. Siegwart

• Feasibility: it must take into account the dynamic
constraints of the vehicle;

• Goal Convergence:it must eventually drive the vehi-
cle towards the desired goal.

• Safety:it must ensure the safety of the vehicle,ie its
ability to avoid collisions.

PMP operates iteratively with a time periodTd which is
determined by the environment (in an environment featur-
ing moving objects, you have a limited time only to decide
upon your future course of action otherwise you run the
risk of being hit by a moving object).Td constitutes the
decision time constraint.

To determineu, PMP (as the name suggests) applies
the Partial Motion Planning principle [8]: it tries to make
the best possible use of the decision timeTd available by
computing a partial motion towards the goal. To that end, a
diffusion technique is used to explore the state×time space
of the vehicle and determine a partial motionπ that is used
during the next time cycle to drive the vehicle towards its
goal.

Fig. 3 illustrates how PMP operates. Lettk denote the
current time instant and the beginning of thekth PMP cy-
cle. The previous PMP cycle has computed the partial mo-
tion π(tk−1) that starts at timetk. Thekth PMP cycle then
has to computeπ(tk) that will start at timetk+1 = tk +Td.
The process is repeated until the goal is reached.

At every cycle, PMP takes as input an updated model of
the environment that comprises:

• the route computed by the Route Planner,ie the list
Qg = {q1

g , · · · , q
Ng
g } and the corresponding con-

straintsci, i = 1 · · ·Ng (cf §3),

• a listOs of static objects: it is assumed that the static
part of the environment is known from the road net-
work structure and is described by a list of forbidden
regions represented by closed polygons;

• a listOd of dynamic objects: one fundamental task of
the World Modelling module is to provide PMP with
an updated model of the environment of the vehicle
at every time cycle. PMP must know what are the
moving objects present in the environment and, most
important, what their future behaviour will be. To that
end, the World Modelling module features a Predic-
tion module whose purpose is to estimate the future
behaviour of the moving objects. It is assumed that
the prediction is valid over a givenprediction horizon
of durationTp. The moving objects are described by
a list of forbidden regions whose position varies over

time. Their shape is modelled by rectangular bound-
ing boxes which is suitable for vehicles and pedestri-
ans alike (more general shapes could be used). The
notationOd(t) is used to indicated the fact that their
position varies over time.

Each partial motionπ computed respects the dynamic
constraints of the vehicle considered thus meeting the Fea-
sibility requirement.

By nature, PMP aims at maximizing the lookahead of
the navigation process (the exploration of the future is car-
ried out as far as possible given the decision timeTd avail-
able). In our opinion, this is one way to meet the Goal
Convergence requirement.

Finally, each partial motionπ computed will be safe in
a predefined way (for instance, it will be guaranteed that
the vehicle always have the possibility to brake down and
stop before a collision occurs). This is the answer to the
Safety requirement.

The next two sections respectively describe the diffu-
sion technique used and how motion safety is handled.

5 DIFFUSION TECHNIQUE

The partial motion,ie the trajectory, that is to be com-
puted for the vehicle can be described as a single paramet-
ric curve,egpolynomial or spline curve, or a concatenation
of several geometrical primitives such as arcs or clothoids.
The kinematic vehicle model is described by the Acker-
mann model:

ẋ = cos θ vl , ẏ = sin θvl , θ̇ =
vl

L
tanφ , (3)

with {x, y, θ} being the robot pose and{vl, φ} the lon-
gitudinal velocity and steering angle. Therefore the full
vehicle state at the current navigation cycletk can be de-
scribed as:

s(tk) = {x(tk), y(tk), θ(tk), vl(tk), φ(tk)} (4)

The dynamic update of the system can be described in
the discrete general form:

ṡ(tk) = f(s(tk), ud(tk−1)) (5)

where the dynamic level control input vectorud is the
longitudinal acceleratioṅvl(tk−1) and the steering rate
θ̇(tk−1). The dynamic update functionf encapsulates the
physical dynamic model of the vehicle, including inertia
and physical forces acting on the vehicle itself.

AUTOMATIKA 50(2009) 3–4, 184–194 187

K. Maček, D. Vasquez, T. Fraichard, R. Siegwart Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

If a low-level control is implemented separately (cas-
cade control) which handles directly the actuators of the
vehicle, ie gas pedal (longitudinal acceleratioṅvl) and
steering wheel torque (steering rateθ̇), the system function
f represents the closed-loop response of the vehicle with
low-level control. Therefore, the actual commands issued
from the Partial Motion Planning level are the kinematic
control reference values:

u = {vl,ref , φref} (6)

The control vectoru is derived directly from the planned
trajectoryπ at each navigation cycle. Moreover, if the la-
tency of the low-level control is very small in compari-
son to the navigation cycleTd, the closed-loop vehicle re-
sponse to a kinematic control reference valueu can be de-
scribed with circular arcs (ie if the steering angleφref is
kept fixed during timeTd. Using arc geometric primitives
largely reduces the computational costs that would be in-
curred if the full numerical integration through the system
functionf would be performed for possible inputu.

In order to explore different possible trajectories, the ge-
ometric arc primitives are concatenated in a randomized
sampled diffusion scheme, where the trajectory structure
grows in a RRT (“Rapidly-Exploring Random Tree”) man-
ner [11]. The motion exploration phase starts with the
current vehicle states(tk)) and the control input (trajec-
tory) from the previous cycleu(tk−1), the goal configura-
tion(s)Qg, the set of dynamic obstaclesOd(t) and static
obstaclesOs. The new exploration states are inserted into
a search treeT as can be seen in Table 1. The avail-
able decision time for exploration is of durationTd, af-
ter which a valid trajectory with associated control inputs
u(tk) = {vl,ref (tk), φref (tk)} is returned or failure is sig-
nalled.

Firstly, the newly formed treeT is initialized by its root
nodeτroot, where the information contained in each node
is of the form:

τ = {s, u, wτ ,tτ , dτ} (7)

The s represents the state of the vehicle,u the refer-
ence input that induced the states, wτ the overall cost to
reach the nodeτ, tτ the cumulative time with respect to
the root of the treeT anddτ the node depth within the tree.
Therefore,τroot which contains the predicted states(tk+1)
(PREDICT_STATE) for the given control inputu(tk−1)
from the previous navigation cycle and zeroed cost, cumu-
lative time and tree depth. The state prediction for the root
node is necessary due to the fact that the currently com-
puted trajectoryπ(k) will be available only at the end of
the current navigation cycle (see Fig.3). TheL1 contains
all the nodes that are appended to the current tree depthdT .

PMP_SEARCH(s(tk), π(tk−1),Qg ,Od(t),Os,Td)
1 ts=0.0,dT =0;
2 s(tk+1)← PREDICT_STATE(s(tk), π(tk−1));
3 τroot.init(s(tk+1), u(tk−1), 0.0, 0.0,dT);
4 T .init(τroot), L1.init(τroot), L2=∅, τ⋆=∅;
5 while ts ≤ Td do
6 for n=1 to |L1|
7 τext ←L1.pop();
8 p← RAND();
9 if (p < T .pr)
10 qrand

g ← RAND_STATE_SPACE(Os);
11 τnew ← EXTEND_STATE_SPACE(qrand

g ,. . .);
12 if not (τnew = ∅) then
13 INSERT_WITH_COST(τnew,Qg , T , L2, dT , τ⋆);
14 if (T .pr ≤ p < T .pr + T .pg)
15 qrand

g ← RAND_SELECT(Qg);
16 τnew ← EXTEND_STATE_SPACE(qrand

g ,. . .);
17 if not (τnew = ∅) then
18 INSERT_WITH_COST(τnew,Qg , T , L2, dT , τ⋆);
19 else
20 urand← RAND_COM_SPACE(u(tk−1));
21 τnew ← EXPAND_COM_SPACE(τext, urand,. . .);
22 if not (τnew = ∅) then
23 INSERT_WITH_COST(τnew,Qg , T , L2, dT , τ⋆);
24 end
25 dT =dT +1;
26 swap(L1, L2);
27 UpdateTime(ts);
28 end
29 if not τ⋆ = ∅ then
30 return PATH(T , τ⋆);
31 else return failure;

EXTEND_COM_SPACE(τ, u,Od,Os)
32 if (τ.dτ == 0) then
33 τnew ← EXTEND_WITH_SAFETY_CHECK(τ, u,Od,Os);
34 else
35 τnew ← EXTEND_WITH_COLLISION_CHECK(τ, u,Od,Os);
36 if not (τnew==∅) then
37 τnew .dτ =τ.dτ +1;
38 T ← T ∪ τnew ;
39 return τnew ;
40 else return ∅;

EXTEND_STATE_SPACE(qg, T ,Od,Os)
41 τnear ← NEAREST_NEIGHBOR(qg, T);
42 unear ← NEAREST_COMMAND(τnear , qg);
43 return EXTEND_COM_SPACE(τnear,Od,Os);

INSERT_WITH_COST(τ,Qg , T , L, dT , τ⋆)
44 COMPUTE_COST(τ,Qg , τ⋆);
45 T ← T ∪ τ;
46 if (τ.dτ ==dT +1) then
47 L.push(τnew);

Table 1. Diffusion process of the Partial Motion Planner

188 AUTOMATIKA 50(2009) 3–4, 184–194

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios K. Maček, D. Vasquez, T. Fraichard, R. Siegwart

Fig. 4. Node expansion

The overall computation timets can only be within theTd

span (Table 1.L5).
There are three tree expansion methods implemented in

the current PMP scheme:

1. exploration: expansion towards a random configura-
tion in the environment -qrand (Table 1.L9-L13);

2. goal search: expansion towards a goal configuration -
qgoal (Table 1.L14-L18);

3. exhaustive search: extension from a given tree node
(state) using a randomized control input -urand (Ta-
ble 1.L19-L23).

These cases are depicted further in Fig. 4. In case 1,
the predicted states(tk+1) is expanded towards a ran-
dom configurationqrand in the workspace (s1(tk+2)),
whereas in case 2 the treeT is expanded towards the goal
configurationqgoal (s2(tk+2)). In both cases the func-
tion EXTEND_STATE_SPACE first finds the nodeτnear

in the treeT which is the closest to the chosen config-
uration according to a predefined distance metrics and
than chooses the nearest feasible command with NEAR-
EST_COMMAND function. The case 3 represents the
direct search in the control space of currently kinody-
namically feasible commands with RAND_COM_SPACE
(s3(tk+2)).

For all the three possible expansion methods, the
newly obtained nodes/states and the arcsa that con-
nect them to their predecessor nodes in the tree have
to be checked for collision against all the dynamic and
static obstacles. This is done by discretizing the con-
necting arc trajectoriesa in time and verifying pos-
sible polygonal intersections resulting from the vehi-
cle and obstacles intermediate configurations in the EX-
TEND_WITH_COLLISION_CHECK function. More-
over, if the predecessor of an expanded node is at the
depthdτ = 0, additional safety check has to be performed
in the function EXTEND_WITH_SAFETY_CHECK (Ta-
ble 1.L32-L40) - the vehicle must be able to come to a
full-stop without collision (the state is therefore ICS safe,
further details in §6). In Fig. 4 this is depicted by the exam-
ple of the break-states3(tk+2 + Tb) originating from state
s3(tk+2), where the collision-check test is performed for
the duration of the breaking manoeuvre. The brake time
Tb is related to the dynamic capabilities of the vehicle,ie
max linear deceleratioṅvl,decc:

Tb =
vl

v̇l,decc
(8)

where the longitudinal velocity depends on each given
state, in this cases3(tk+2).

As already mentioned, the diffusion process computa-
tion is limited to ts ≤ Td, where at each new computa-
tional increment another layer of nodes is added to the tree
T . The final depth ofT is not determined a-priori, nor
how close the best trajectory will be with respect to the
goal configuration. In Fig. 4 the final best trajectory is de-
picted withπ(tk), referring to the navigation cycle when it
was computed, whereas the trajectory’s final states̃(tk+n)
can be arbitrarily far in the future (n is a free parameter).

Regarding the goal search,ie finding a trajectory to-
wards a goal configuration, there are two approaches dis-
tinguished here:

1. waypoint following: the current set of waypointsQg is
the next topological node to reach in the environment
(see Sec.3), such as an intersection, route crossing,
lane changing waypoint, etc.;

2. route following: the current set of waypointsQg is a
collection of intermediate configurations, which to-
gether describe a route between topological nodes.

In case 1 the cost function of a node to determine the
best trajectory is based on a distance metric‖s̃−{qg, cq} ‖
between the goal waypoint with its constraints and the last
states̃ on a trajectory:

wτ (s̃) = αg · ‖s̃− {qg, cq} ‖+ αt · tτ (s̃) (9)

AUTOMATIKA 50(2009) 3–4, 184–194 189

K. Maček, D. Vasquez, T. Fraichard, R. Siegwart Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

αg andαt are the weighting factors between minimizing
the distance to the waypoint and minimizing the cumula-
tive timetτ (s̃) to reach it, respectively.

In case 2 there is more information available based on
the environment structure, in the form of a route. These
geometrical configurations can be followed with a type of
path following technique, with the possibility of deviat-
ing from the route based on the tree structure, if the dy-
namic obstacles trajectories require such evasive manoeu-
vres. However, in the absence of dynamic obstaclesOd

and proper route definition according to the a-priori knowl-
edge of static obstaclesOs, the vehicle should follow the
route as close as possible. Assuming that a path following
controller (implementation details on the controller can be
found in [12, 13]) computes an error functionE which de-
scribes the discrepancy between a particular vehicle states
and the routeQg, then the cost of a node can be computed
in the error terms as:

wτ (s̃) =
Ns̃∑
j=1

‖E(sj ,Qg)‖ (10)

where the set of discretized states
{sj=1 = s(k + 1) . . . sj . . . sNs̃ = s̃} with the associ-
ated arcsa forms a trajectorỹπ. The cost calculation step
is performed in the INSERT_WITH_COST function (Tab.
1.L44-L47). The best trajectoryπ⋆ = π(k) which will
be applied in the next navigation cycle can be therefore
determined from nodeτ⋆ with minimum overall costwτ ,
iff τ⋆ 6= ∅.

6 SAFETY ISSUES

The purpose of this section is to explore the safety issues
related to the navigation scheme proposed.

The diffusion technique presented in §5 aims at building
a tree embedded in the state×time space of the systemR
and to extract from this tree a partial motionπ that is used
during the next time cycle to drive the system towards its
goal.

The concept of Inevitable Collision State (ICS)4 [14]
and the motion safety criteria introduced in [3] show that it
does not suffice that each partial motionπ be collision-free
to ensure the safety ofR.

From a theoretical point of view, the safety ofR is guar-
anteed if and only eachπ is ICS-free up to the timeTd (that
corresponds to the initial state of the partial motion that is
to be computed at the next navigation cycle), because then,
at the next navigation cycle, the navigation modulealways
has a safe evasive manoeuvre available.

4A state is an ICS iff a collision eventually occurs no matter howR
moves.

Now, checking whether a given state ofπ is an ICS or
not requires in theory thefull knowledge of the environ-
ment ofR and its future evolution,ie the knowledge of the
space-timeW × [0,∞). In practice however, one has to
deal with the sensors’ limited field of views and the elusive
nature of the future. Knowledge about the environment of
R is thus limited bothspatiallyandtemporally: it is lim-
ited toWp × [0, Tp] whereWp ⊂ W denotes the subset of
the environment which is perceived andTp the prediction
horizon.

To further ensure safety with respect to the objects that
lie outside ofWp, its boundary is treated in a manner sim-
ilar to [14] or [15] as a potentially moving object whose
motion direction is unknown but whose velocity is upper-
bounded.
Wp × [0, Tp] and the objects within, fixed and moving,

yields in the state×time space ofR a set of ICS which is
only an approximation of the true set of ICS generated by
W × [0, Tp].

This is the very reason why it is impossible to guaran-
tee an absolute level of safety (absolute in the sense that it
can be guaranteed thatR will never end up in an ICS and
therefore crash eventually).

This intrinsic impossibility compels us to settle for
weaker levels of safety. Although weaker, the important
thing is that such levels of safety will be guaranteed given
the information thatR knows about its environment,ie
givenWp × [0, Tp]. We have explored two different levels
of safety, they are detailed in the next two sections.

6.1 Safety Level #1

The first safety level we have seeked to enforce is the
simplest one maybe. It guarantees that, should a collision
ever occur,R will be at rest. In other words, if a collision
is inevitable, it can be guaranteed thatR always have the
possibility to brake down and stop before the collision oc-
curs. Such a safety level is a form ofpassivesafety in the
sense thatR will never actively collide with an object. It
is henceforth calledPassive Safetyand denoted by PS.

Under PS, a states is considered as being safe iff there
exists at least one braking manoeuvre starting ats which
is collision-free until the time whereR has stopped. PS
yields the following definition for a safe state:

Def. 1 (Passive Safety)a state s is safe under PS (or
p-safe) iff there exists at least one braking manoeuvre
starting ats and collision-free untilTb, with Tb the time
whereR is at rest (the braking time).

In practice, the function EXTEND.WITH.SAFETY.-
CHECK (cf Table 1) samples a finite and discrete set of
braking manoeuvres and checks them for collision against
Wp × [0, Tp]. If one collision-free manoeuvre exists the
state considered is labeled as p-safe and unsafe otherwise.

190 AUTOMATIKA 50(2009) 3–4, 184–194

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios K. Maček, D. Vasquez, T. Fraichard, R. Siegwart

6.2 Safety Level #2

In a way, PS leaves most of the collision-avoidance bur-
den to the other objects. In certain situations however, this
is unsatisfactory:R may for instance decide to move on
a railway track to reach its goal because, under PS, it is
safe to do so (indeedR would have the time to stop before
being hit by the train). Unfortunately, the train in spite of
its best efforts may not be able to avoid crashing intoR
because of its own dynamics.

In an environment where the moving objects are as-
sumed to befriendly, ie seeking to avoid collisions, and
for which a certain knowledge about their dynamic prop-
erties is available, it can be desirable to enforce a stronger
level of safety. This second safety level guarantees that,
should a collision ever occur,R will be at rest and the col-
liding object would have had the time to slow down and
stop before the collision had it wanted to. This safety level
is henceforth calledPassive Friendly Safetyand is denoted
PFS. It yields the following definition for a safe state:

Def. 2 (Passive Friendly Safety)a states is safe under
PFS (orpf-safe) iff there exists at least one braking ma-
noeuvre starting ats and collision-free untilTb +Tob, with
Tb the braking time ofR, andTob the maximum braking
time of the moving objects present in the environment.

The conservative nature of Def. 2 should be noted. It
is possible in practice to refine it in order for example to
take into account the dynamics of the particular moving
objects that would collide withR when it follows a partic-
ular braking manoeuvre. For the time being, Def. 2 is left
as is.

Other safety levels could be proposed. The ultimate one
of course is to determine safety with respect to the set of
ICS which is defined byWp × [0, Tp]. Given the com-
plexity of characterizing this ICS set, Passive Safety and
Passive Friendly Safety constitutes interesting alternatives
in the sense that they can be computed efficiently and pro-
vide an adequate level of safety.

7 EXPERIMENTAL PLATFORM

7.1 SmartTer

The SmartTer is a passenger car equipped for au-
tonomous driving. The system has a localization module
based on sensor fusion, in the line of that described in [16].
To accurately localize the vehicle, four different sensors
are used: DGPS, IMU, optical gyro and vehicle sensors
(wheel encoders and steering angle sensor). The combi-
nation of their measurements allows the estimation of the
vehicle’s 6 degrees of freedomeg the 3D position (x, y, z)
and the attitude (roll, pitch, heading).

Fig. 5. The SmartTer passenger car equipped for au-
tonomous driving. Behind the windscreen we have the
camera system, on the sides of the roof we have the tilted
laser scanners for corner protection. Currently, the front
Sick has been replaced by an Alasca Scanner

The details of the localization system used are described
in [17].

For environment detection we use one IBEO Alasca XT
laser scanner mounted at the front of the vehicle and two
Sick LMS 291 mounted on the roof to protect the vehicle
corners as well as a Sony Camera for vision.

7.2 Simulator

In order to facilitate system integration and to per-
form tests where the ground truth is available, we have
performed our experiments using the Morsel simulator.
Morsel has been developed in our laboratory and is based
on the Panda3d engine [18].

Morsel features emulation for the two lower level lay-
ers of fig. 1. This includes cameras, range sensors, and
standard cinematic models such as Ackermann, differen-
tial, etc.

The simulator can be easily extended using Python or
C++. Another interesting feature is its ability run in “real”
or “virtual” time modes. In the former mode, the simulator
will try to produce sensor output at the real frequency; in
the second mode time is emulated by putting world events
in a priority queue according to their frequency.

Since our system uses the Carmen [19] library for com-
munications, low-level sensor and actuator driver modules
are effectively decoupled from high-level algorithm. This
makes it possible to plug the simulator to those algorithms
in a transparent fashion.

8 SIMULATION RESULTS

Simulation results are presented for different structured
and unstructured urban environment scenarios including
intersection handling (Fig.6 to Fig. 9), in-lane driving
(Fig.10 and Fig. 11) and parking lot negotiation (Fig.12

AUTOMATIKA 50(2009) 3–4, 184–194 191

K. Maček, D. Vasquez, T. Fraichard, R. Siegwart Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

Fig. 6. Intersection handling I (scene view)

Fig. 7. Intersection handling I (navigation view)

and Fig. 13). The dynamic obstacles presented in different
scene views are pedestrians and static and moving vehicles,
whose shapes are described as polygons, more specifically
rectangular shapes. Their estimated positions and future
trajectories are depicted in navigation views which also in-
cludes the static part of the environment that is described
via polylines (for instance lane and parking lot bound-
aries). Collision checking between the ego-vehicle and en-
vironemental obstacles has to be performed for the whole
given time horizon. The navigation scheme presented in
the results is based on waypoint following (see §5, case 1)
for goal search where the currently active goal waypoint is
drawn in the navigation views as a circular region with a
specified orientation (according to the given constraints).
The trajectory diffusion starting from the ego-vehicle con-
tains tree nodes that are free of obstacles (green) and pro-
hibited nodes (marked red), whereas the currently best tra-
jectory towards the waypoint is marked in magenta. Note
that the given navigation snapshots are based on a certain
time instanttkand that the prohibited regions depend on
all the future motions of the obstacles. It can be seen from
the results that the ego-vehicle is both able to reach the
waypoint within given constraints while negotiating mov-
ing obstacles and preventing head-on collisions. Further-
more, no adaptation of the navigation scheme is needed for

Fig. 8. Intersection handling II (scene view)

Fig. 9. Intersection handling II (navigation view)

a particular environment, proving its generic applicability.

9 CONCLUSION AND OUTLOOK

This paper has presented the deliberative part of the nav-
igation architecture for the SmartTer platform, comprising
two main component: (a)route planning, which finds a
set of configurations between two given points of the envi-
ronment while taking into account given traffic rules; and
(b) partial motion planning, which handles the actual ex-
ecution of the plan while taking into account the dynamic
elements of the world.

A key aspect of the navigation architecture proposed is
that a special attention is paid to the motion safety issue,
ie the ability to avoid collisions. Different safety levels
are explored and their operational conditions are explicitly
spelled out (something which is usually not done).

The results depict safe navigation in dynamic scenar-
ios which include both moving vehicles and pedestrians,
where the architecture has been implemented in both real
and simulated platforms, although only simulation results
are provided at the time of paper writing.

On the theoretical side, an interesting research direc-
tion is the exploration of more advanced motion prediction
techniques in order to improve both the accuracy and the
time horizon of our safety checks.

192 AUTOMATIKA 50(2009) 3–4, 184–194

Towards Safe Vehicle Navigation in Dynamic Urban Scenarios K. Maček, D. Vasquez, T. Fraichard, R. Siegwart

Fig. 10. In lane (scene view)

Fig. 11. In lane (navigation view)

ACKNOWLEDGMENTS

This work has partly been supported by the EC under
contract number FP6-IST-027140-BACS, as well as by the
European project URUS (Ubiquitous Networking Robots
in Urban Settings).

REFERENCES

[1] N. J. Nilsson,Shakey the robot, Technical note 323, AI
Center, SRI International, Menlo Park, CA, USA, April
1984.

[2] R. Siegwart and I. R. Nourbakhsh,Introduction to Au-
tonomous Mobile Robots, MIT Press, 2004.

[3] Th. Fraichard,A short paper about motion safety, in Proc.
of the IEEE Int. Conf. on Robotics and Automation, Rome,
Italy, April 2007.

[4] J. Borenstein and Y. Korem,The vector field histogram —
fast obstacle avoidance for mobile robots, IEEE Trans. on
Robotics and Automation, vol. 7, no. 3, June 1991.

[5] J. Minguez and L. Montano,Nearness diagram (ND) nav-
igation: collision avoidance in troublesome scenarios,
IEEE Trans. on Robotics and Automation, vol. 20, no. 1,
pp. 45–59, Feb. 2004.

Fig. 12. Parking lot (scene view)

Fig. 13. Parking lot (navigation view)

[6] D. Fox, W. Burgard, and S. Thrun,The dynamic window
approach to collision avoidance, IEEE Robotics and Au-
tomation Magazine, vol. 4, no. 1, March 1997.

[7] P. Fiorini and Z. Shiller,Motion planning in dynamic
environments using velocity obstacles, Int. Journal of
Robotics Research, vol. 17, no. 7, July 1998.

[8] S. Petti and Th. Fraichard,Partial motion planning frame-
work for reactive planning within dynamic environ-
ments, in Proc. of the IFAC/AAAI Int. Conf. on Informat-
ics in Control, Automation and Robotics, Barcelona, Spain,
September 2005.

[9] K. Maček, M. Becker, and R. Siegwart,Motion planning
for car-like vehicles in dynamic urban scenarios, in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS), 2006.

[10] Route network definition file (RNDF) and mission data
file (MDF) formats, Mar. 2007, http://www.darpa.mil/
grandchallenge/docs.

[11] S. LaValle and J. Kuffner,Randomized kinodynamic
planning, Int. Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, May 2001.

[12] R. Solea and U. Nunes,Trajectory planning with velocity
planner for fully-automated passenger vehicles, in Proc.
of the IEEE Intelligent Transportation Systems Conference
(ITSC), 2006.

AUTOMATIKA 50(2009) 3–4, 184–194 193

K. Maček, D. Vasquez, T. Fraichard, R. Siegwart Towards Safe Vehicle Navigation in Dynamic Urban Scenarios

[13] K. Maček, R. Philippsen, and R. Siegwart,Path following
for autonomous vehicle navigation with inherent safety
and dynamics margin, in Proc. of the IEEE Int. Vehicles
Symposium (IV), 2008.

[14] Th. Fraichard and H. Asama,Inevitable collision states. a
step towards safer robots?, Advanced Robotics, vol. 18,
no. 10, 2004.

[15] R. Alami, T. Simeon, and K. Madhava Krishna,On the in-
fluence of sensor capacities and environment dynamics
onto collision-free motion plans, in Proc. of the IEEE-RSJ
Int. Conf. on Intelligent Robots and Systems, Lausanne,
Switzerland, October 2002.

[16] G Dissanayake, S Sukkarieh, E. Nebot, and H. Durrant-
Whyte,The aiding of a low-cost strapdown inertial mea-
surement unit using vehicle model constraints for land
vehicle applications, IEEE Transactions on Robotics and
Automation, 2001.

[17] P. Lamon, S. Kolski, and R. Siegwart,The SmartTer - a
vehicle for fully autonomous navigation and mapping in
outdoor environments, in Proc. of the CLAWAR, Brussels,
Belgium, 2006.

[18] Mike Goslin and Mark R. Mine,The panda3d graphics
engine, Computer, vol. 37, no. 10, pp. 112–114, 2004.

[19] M. Montemerlo, N. Roy, and S. Thrun,Carmen: Carnegie
mellon robot navigation toolkit , http://www.cs.cmu.edu/
carmen.

Kristijan Ma ček has obtained his B.S. and
M.S. Degree in Electrical Engineering at
the Faculty of Electrical Engineering and
Computing, Zagreb, in 1999 and 2004,
respectively. He is currently a PhD student at
the Autonomous Systems Lab, Swiss Federal
Institute of Technology, Zurich. His main
research topic is in secure navigation of au-
tonomous vehicles in dynamic environments,
in particular hierarchical on-line planning

schemes and dynamic scene interpretation.

Dizan Vasquez received the Ph.D. degree
in computer graphics, computer vision, and
robotics from the Institut National Poly-
technique de Grenoble, Grenoble, France,
in February 2007. He is a Postdoctoral
Fellow with the Autonomous Systems Labo-
ratory, Swiss Federal Institute of Technology,
Zurich, Switzerland. His main research
interest is the automatic construction of
motion models and maps from sensor data.

Other research interests include computer vision, computational geome-
try, and self-organizing systems. Dr. Vasquez is the recipient of the 2007
EURON Georges Giralt award for the best European thesis on robotics.

Thierry Fraichard received the Ph.D. degree
in computer science, with a dissertation on
motion planning for a nonholonomic mobile
in a dynamic workspace, and the Habilitation
a Diriger des Recherches (Accreditation to
Supervise Research) degree for his work
entitled Contributions to motion planning,
from the Institut National Polytechnique de
Grenoble, Grenoble, France, in April 1992 and
March 2006, respectively. From September

2007 to August 2008, he was a Visiting Professor with the Autonomous
Systems Laboratory, Swiss Federal Institute of Technology, Zurich,
Switzerland. From December 1993 to November 1994, he was a Post-
doctoral Fellow with the Manipulation Laboratory, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA. From November2000 to
January 2001 and then again in November 2001, he was a Tan ChinTuan
Fellow with the Intelligent Systems Laboratory, Nanyang Technological
University, Singapore. From September to December 2002, hewas a
Japan Society for the Promotion of Science Fellow with the Distributed
Adaptive Research Unit, Riken Institute, Tokyo, Japan. He is currently a
Research Fellow with the e-Motion Project Team, French National Insti-
tute for Research in Computer Science and Control Rhone-Alpes, Greno-
ble, France. His research focuses on motion autonomy for vehicles, with
a special emphasis on safe navigation, motion planning, prediction of the
future motion of moving objects, and the design of control architectures
for autonomous vehicles.

Roland Siegwart (1959) is full professor for
Autonomous Systems at ETH Zurich since
July 2006. He has a Diploma in Mechanical
Engineering (1983) and PhD in Mechatronics
(1989) from ETH Zurich. In 1989/90 he
spent one year as postdoctoral fellow at
Stanford University. After that he worked
part time as R&D director at MECOS Traxler
AG and as lecturer and deputy head at the
Institute of Robotics, ETH Zurich. In 1996

he was appointed as associate and later full professor for autonomous
micro-systems and robots at the Ecole Polytechnique Federale de Lau-
sanne (EPFL). During his period at EPFL he was co-initiator and found-
ing Chairman of Space Center EPFL and Vice Dean of the School of
Engineering. In 2005 he held a visiting position at NASA Amesand
Stanford University. Roland Siegwart is member of the SwissAcademy
of Engineering Sciences and board member of the European Network of
Robotics (EURON). He served as Vice President for TechnicalActivities
(2004/05) and is currently Distinguished Lecturer (2006/07) and AdCom
Member (2007-2009) of the IEEE Robotics and Automation Society. He
coordinates two FP-projects and he founded several spin-off companies.

AUTHORS’ ADDRESSES

Kristijan Ma ček, M.Sc.
Dizan Vasquez, Ph.D.
Prof. Roland Siegwart, Ph.D.
Institute for Robotics and Intelligent Systems,
Swiss Federal Institute of Technology,
Tannenstrasse 3, CH-8092 Zurich, Switzerland
emails: kristijan.macek@mavt.ethz.ch,
dizan.vasquez@mavt.ethz.ch, rsiegwart@ethz.ch
Thierry Fraichard, Ph.D.
INRIA Rhône-Alpes,
655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier
Cedex, France
email: thierry.fraichard@inria.fr

Received: 2009-11-02
Accepted: 2009-11-27

194 AUTOMATIKA 50(2009) 3–4, 184–194

