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An approach for registration of sparse feature sets detéotevo stereo image pairs taken from two different
views is proposed. Analogously to many existing image tegfisn approaches, our method consists of initial
matching of features using local descriptors followed byANRAC-based procedure. The proposed approach is
especially suitable for cases where there is a high pergemffalse initial matches. The strategy proposed in this
paper is to modify the hypothesis generation step of thecHRBNSAC approach by performing a multiple-step
procedure which uses geometric constraints in order taceethe probability of false correspondences in generated
hypotheses. The algorithm needs approximate informationtethe relative camera pose between the two views.
However, the uncertainty of this information is allowed ® tather high. The presented technique is evaluated
using both synthetic data and real data obtained by a staraera system.
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Registracija stereo slika postupkom zasnovanim na RANSACtgategiji s geometrijskim ograni¢enjem na
generiranje hipoteza. U radu je predloZen jedan pristup registraciji skupovacajia detektiranih na dva para
stereo slika snimljenih iz dva raglta pogleda. S&ino mnogim postojgm pristupima registraciji slika, predlo-
Zena se metoda sastoji odgeotnog sparivanja zgajki na temelju lokalnih deskriptora iza kojeg slijedi pos
pak temeljen na RANSAC-strategiji. PredlozZeni je prist@sgbno prikladan za fajeve kada rezultat getnog
sparivanja sadrzi veliki postotak pogreSno spareniltajka Strategija koja se predlaZze u ovditanku je da
se korak RANSAC-algoritma u kojem se &hjnim uzorkovanjem generiraju hipoteze zamijeni posbapki ko-
jem se hipoteza generira u viSe koraka, @mu se u svakom koraku, koriStenjem odgovaihjigeometrijskih
ograntenja, smanjuje vjerojatnost izbora pogresno sparenibagkia Algoritam treba pribliznu informaciju o re-
lativnom poloZaju kamera izrmi@ dva pogleda, prtemu je dopusStena nesigurnost te informacije i velika.
Predstavljena strategija je provjerena koriStenjem sitkién podataka te pokusima sa slikama snimljenim pomo
stereo sustava kamera.

Klju €ne rijeCi: registracija slika, stereo vizija, pranje znéajki, RANSAC

1 INTRODUCTION The most often used approach to registration of the data
] ) ] o obtained by stereo images taken from two different views
Registration of data obtained by viewing a scene fromg t perform stereo reconstruction for each view thus ob-
two or more different views is a fundamental problem inaining two sets of 3D points and then to perform regis-
computer vision. The solution to that problem provides &ration of these two feature sets. This can be achieved by
means for motion estimation and 3D scene reconstructlogxtracting from image a sparse set of distinguishable point
by integration of the data obtained from multiple views. In\ynich can be reliably tracked across a sequence of images.
this article, the registration of the data obtained by stere gy matching the local descriptors [1] assigned to each ex-
vision is addr_essed. _Stereo vision is a powerful tool fory5cteq point, a set of pairs is obtained, where the first el-
obtaining 3D information from camera images. The stereQment of the pair is a 3D point from the first stereo im-
vision system considered in this paper consists of two Ca'age and the second element is a 3D point from the second
ibrated cameras and appropriate software which uses thgareq image. A pair whose both elements represent the

images taken by both cameras to perform 3D reconstrugame 3p point in the scene is a correct correspondence.
tion of a set of left camera image points. A pair of images

taken by a the two calibrated stereo cameras is referred to Assuming that the correct correspondences between the
in this paper as atereo image 3D point features in two sets are available, the registnatio
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of those two sets can be obtained by the closed-form s@and its uncertainty are used to formulate geometric con-
lution presented in [2, 3]. That approach, however, failsstraint for the selection of the next match candidate. The
to give optimal solutions because it does not consider thprocedure is repeated until a sufficient number of matches
uncertainty of the stereo reconstruction caused by non hare considered in the hypothesis. Recursive pose estima-
mogenous and non isotropic noise. The methods that deibn from a set of feature pairs, where the selection of the
with non homogenous and non isotropic noise are prenext data is constrained by currently computed pose and
sented in [4,5]. The same problem is solved in [6] by aits uncertainty, is already applied in the approaches pre-
maximume-likelihood estimator used later in [7] for navi- sented in [12] and [13] which use Kalman Filter formal-
gation of a mobile robot. ism. In this paper, the pose refinement is performed using
Nevertheless, all these methods assume that correct feaversion of the Levenberg-Marquardtalgorithm ([14]) de-
ture correspondences are available or that the percerftagessribed in [15].
possible false correspondences is relatively low. However The article is structured as follows. In the next sec-
matching methods based on local descriptors can result ifpn, the problem of stereo image registration given a set
a significant number of false correspondences, referred igf features and a set of possible feature matches is defined.
in this paper also asutliers Therefore, the set of the point |n Section 3, a geometrically constrained RANSAC algo-
pairs obtained by matching their descriptors, which is rerithm for solving the considered problem is proposed. The
ferred to in this paper asitial correspondence setust  presented technique is evaluated using both synthetic data
be pruned before using it for estimation of the motion paand real data obtained by a stereo camera system. The re-

rameters. sults of these experiments are reported in Section 4.
One approach which can be used to deal with false cor-
respondences is RANSAC. 2 PROBLEM DEEINITION

RANSAC (RANdom SAmple Consensus) [8] is a very
popular method widely used in robotics to fit a model to A common approach to the problem of registration of
a set of data corrupted by outliers. Among other applifwo sets of 3D points obtained from two different views
cations, it has been used for registration of image dat@f a scene is to determine the correspondences between
obtained by a single camera [9] or a stereo camera sy&he features detected in the stereo image pairs taken from
tem [10, 11]. The idea of RANSAC is to generate a sethese two views and then to compute the relative camera
of model hypotheses by selecting randomly subsets of theose between the views.
given data set containing the minimum number of data et P, ; =1, ..., N be a set of 3D points observed
points sufficient to define a model. For each hypothesis gy a stereo camera pair, as shown in Fig. 1, and)let;
set of data points which fits the hypothesized model withirgnd Qr.; be the points representing the projectionsFpf

a certain tolerance is determined, called the consensus sghto the left and right camera image respectively. Each
The hypothesis corresponding to the greatest consensus set

is considered to be the most probable one. The probability e
of generating a false hypothesis from a randomly selected Ps
data set increases with the number of outliers in the input
data set as well as with the size of the selected set. Dy

The strategy proposed in this paper is to modify hypoth- &
esis generation step of the basic RANSAC approach by left 99/(,&
performing a multiple-step procedure which uses geomet- Cameri,,»g:@?f"“”

ric constraints in order to reduce the probability of false
correspondences in the hypothesis. The procedure star
with a prior information about the relative camera pose be-
tween the two views whose uncertainty is allowed to be
rather high. This information can be estimated e.g. fromygica V2
the motion commands given to the robot. Alternatively,center
the initial translation and rotation of the robot can be get t

zero, and the uncertainty of the change in robot’s pose can

be estimated from the known maximum translational and
rotational velocity of the robot. This initial camera poseFig. 1. A set of points observed by a moving stereo camera
together with its uncertainty is corrected recursivelyly t system

information provided by a feature pair randomly selected

from the input set of match candidates. The corrected poseamera is assigned a reference coordinate frame centered
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in the optical center of the camera with z-axis identical towith similar local descriptors. Although the correspon-

the optical axis. Lef, andSr be the reference frames of dences obtained using the descriptors of the detected fea-

the left and right camera respectively. tures provided by SIFT and SURF are very reliable, there
The 3D coordinates; = [ 2; u 2 |T of each IS still possibility of false correspondences, especiaily

puted from the image coordinates of its projectigps;  SCTiptors are detected.
andQ g ; by triangulation. Let T;,,; be the set of correspondendgs;) obtained

In this work, the uncertainty of stereo reconstruction is€-9- Py comparing the local descriptors and let us assume
modeled by 3D Gaussian distribution as proposed in [16]thatZini CONtains a significant number of false correspon-
The point coordinates; obtained by stereo reconstruction dences. The problem considered in this paper is to prune
are regarded as random variables with mparand co-  the setl;,; in order to obtain the largest possible $gt,
variance matrixCy.;. Let F = {p;,i = 1,...,n} repre- Containing only correct correspondences. A set of corre-
sent the set of all features detected in the scene and recofondences’ such that for any two pair§, j) € T and
structed by stereo vision from a stereo image pair. Noté?»J') € T holdsi’ 7 i andj" 7 j is referred to herein
that, in generalp < N since the vision system can some- @S aset of unique correspondencehe setl’y;;, must be
times fail to detect some of the featurBs Let us now & Setof unique correspondences.
consider the case where the same scene is observed by theOne approach to solve the considered problem is to
stereo camera system from another viewpoint, as shown igearch for the largest st C T;,; for which a pose
Fig. 1. LetS) andsS%, be the reference frames of the left w exists such thake;;(w) is sufficiently small for all
and right camera respectively corresponding to the secorld,j) € 7. The termse;;(w) can be assessed by a mea-
view and letF’ = {p;.,j =1,...,m} be a set of vec- surer(p;, Cpi; p;, Cp, ;; w) Which takes into account the
tors p/; defining the positions of 3D points reconstructeduncertainties of the coordinatgs andp;.
from the second stereo image pair relativesfa The un- Let us define theconsensus sets the setV (w) of
certainties in the coordinatgs; are described by the co- unique correspondencés ;) assigned to a pose such
variance matrices?';,J. Let the pose ofS} relative to  that for every paifi, j) € W (w)

S;, be described by vectow = [ ¢T T |7, where o

¢ =[a B 6]"is a vector of three angles defining r(Pi; Cp.i3Pj, Cp i w) < €0 )

the orientation a”d,: [tz ty t. |"isavectordefin- \yheres is a predefined threshold. The problem of reg-
ing the position of5, relative toSy.. istration of two 3D point sets can thus be formulated as

Two featuregp; € F andp;- € F’ which represent the the search for the pose with the greatest consensus set
same pointP; in the scene are referred to hereincasre- W (w) C Tj,;. This consensus set can be considered as
sponding featuredn the ideal case, for two corresponding the most probable set of correct correspondences.
featuregp; andp; the following holds

, 3 RANSAC WITH GEOMETRICALLY
pi —R(¢)p; -t =0, 1) CONSTRAINED HYPOTHESIS GENERATION

where R(¢) is the rotation matrix whose elements are A straightforward approach to apply RANSAC to the
functions of¢. In reality, however, due to the uncertainty problem described in Section 2 would be the following.

in stereo reconstruction, the term Let the feature set8’ and I’ obtained from two views be
, the input data set and a relative camera pasbetween
eij(w) = p; _R(¢)pj -t (2)  these two views the model which is fitted to that data set.

mostly differs fromo. Let_us assume that qn_ initial feature correspond@&hngds _
available, although it is allowed to be corrupted by a sig-
The correspondence between the features detected ficant amount of false correspondences. Since three 3D
the first stereo image pair and the features detected in theyints are sufficient for constraining the camera pose, a set
second stereo image pair can be defined by @'s#tpairs {7 of three pairs of corresponding points is randomly se-
(,7) wherep; andp/; are corresponding features. Find- |ected fromT},, for generating a hypothesis. The pase
ing correct feature correspondences is critical for peecis computed from these three points can then be used to trans-
estimation of the relative camera pase form all featureg’, € F” to the reference framgy, of the
If the features are detected using the Scale Invariarfirst view and the hypothesis can be evaluated by the size
Feature Transform (SIFT) proposed by [17] or Speededf the corresponding consensus Bé{w). The distance
Up Robust Features (SURF) proposed by [18] their corremeasure used herein to define the consensus setlidathe
spondences can be obtained by searching for feature painglanobis distancelet p; be the coordinates of a 3D point
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relative to the reference frant, and Ietp;. be the coor- function is
dinates of a 3D point relative to the reference frafije

Furthermore, letv = [ ¢7 t7 ]7 be the pose of/, rel- S(w,U)= > |eij(w)]?, (8)
ative to S7.. The Mahalanobis distance between the first (i,5)eU
point and the second point whose coordinates are trans- ) ) . ]
formed to the reference franfa, are given by a closed-form solution to this problem exists [2, 3], which
enables very efficient computation of the pase This
r(pi, Cpi; P} Cp i w) = ei5(w)" Ct (h)eij(w), approach, however, does not consider the uncertainty of
(4)  the stereo reconstruction caused by non homogenous and
where non isotropic noise. Alternatively, the cost function
/ T
Cia(#) = Cos + RGBS B S(w,U)= Y ey(w) O (d)ey(w),  (©)
In that case, condition (3) becomes (i,9)€U
€ij (w)TCigl(qb)eij(w) < &o. (6) can be used which takes into account the uncertainpy of

] ] ] andp’,. Nevertheless, to the best of our knowledge, the
A pseudocode of an algorithm for registration of 3D ¢josed-form solution to minimization of (9) does not ex-
point sets based on the standard RANSAC approach (stggt, which means thai must be computed by an iterative
RANSAC) is given in the following. approach such as Levenberg-Marquardt algorithm. There-
fore, the hypothesis generation using (9) is much slower
than the one based on minimization of (8).

Algorithm 1 RANSAC-based stereo image registration
Parameters:eq, kmaz

Input: F, F', Tip;

Output: wyin, Trin

The probability of generating a false hypothesis from a
randomly selected sét of feature pairs increases with the
percentage of outliers in the input data set as well as with

L Thest < 0 the number of pairs /. In the case of a high percentage

2. k<0

3 ¢ of false correspondences 1#,,;, the number of random

- repea . samplings for a reliable performance can be large.

4.  Generate pose hypothesisSelect randomly a sub- _ . _
setU of 3 unique correspondences from the Eg§ The strategy proposed in this paper is to perform a
and determine the pose which minimizes a par- mUltlple'Step hypOtheSlS generatlon, which uses geomet-
ticular cost function ric constraints in order to reduce the probability of false

correspondences in the hypothesis. Instead of randomly
S(w,U) = Z f(ps, Cm;p;-, C;,J-; w) (7) selecting a minimum data sét needed to define camera
(4,4)€U pose (see step 4 of Algorithm 1), détis formed sequen-
tially by takingu pairs fromT;,,; one by one in such a way
where f is a function defining the contribution of that the information provided by the feature pairs curgentl
one feature pair to the overall cost. If the obtainedcontained in is used to formulate a geometric constraint

posew is invalid, repeat this step. . for selection of the next pair.
5. Determine the consensus $€{w) according to the . . .
condition (3). The proposed algorithm needs a prior information about
6. if W (w)| > [Thest| then the relative camera pose between the two views. However,
- Tpooy o W(we)‘”t this information is allowed to have a rather high uncer-
8. wbes’f —w tainty. Letw be the pose of relative toS;, and let the
9' end ”f“ uncertainty of this information be described by covariance
10' ke ka1 matrix C,,. This information can be used to reject false

correspondences ifi;,,;. Assuming thatw, p; andp;. are
statistically independent, selection of the pairs frép;

can be reduced to only those pafis;j) which satisfy the
following condition

11. until k& = kes

12. Determine the posevs;, which minimizes (7) over
the setl}..;.

13. Determine the consensus $8(wy;,, ).

14. Tfm — W('wfin)

.. T -1 ..
15. return wyin, 1'rin eij(w) 2 (¢p)eij(w) < eo, (10)
where
A pose hypothesis is generated by determining the pose
w which minimizes a particular cost function. If this cost Yii(¢) =Ci(o) +Jj(¢)CijT(qb), (11)
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7:(6) = 9 (Rgp)p;_) poxa| (12) :tligo?lrlthm 2 Geometrically constrained hypothesis gener-
¥ = Parameters:eg, u

Let the prior pose be denoted hy;.; and let its uncer- NPUt: ', 7, Tini, wini
tainty be described by covariance maifi, ;,,;. First pair Output: w

in U can be selected froff,,; according to the constraint 1. repeat

(10), wherew = w;y; andCyy = Cip ini- ASsuming that ~ 2- W < Win;

this pair (i, j) represents a correct match, the coordinates 3 VI‘— F )

i andp;. as well as the initial pose;,,; can be used to 4. V< F

update the pose information. The pose consistent with this®- U0
information can be determined by minimizing the follow- 6. repeat

ing cost function 7. Select randomly’; € V" and remove it fronl’.
8. Form the setX C V containing allp; such that
J(w) = > eij(w)Tc;jl(@eij (w)+ (i,7) € Tin; and the condition (10) is satisfied.
(i,4) €U 9. if X # (Jthen
+ (Wini — w)T C;}W (Wini — w) . 10. Select randomlyp; € X and remove it from
(13) V.
and the uncertainty of the obtained pogecan be de- 11. Insert(s, j) intoU.
scribed by the covariance matrix 12. Determine the posa which minimizes (13).
. 13. ComputeC,, by (14).
14. if U ¢ W(w) then continue from line 1.
Cw=| Y. J(#)C; (6);(¢)+Crlini | - 15.  endif
(i,5)€U 16. until [U|=uorV' =10

(14)  17. until [W(w)NU|=u
as proposed in [6]. Selection of the next pair of the set18. return w
U is constrained to the pairs, j) € T;,; which satisfy
(10), wherew is the pose obtained in the previous step and
the covariance matric,, used in computation of;; is  those equations and reformulated them in the form of the
given by (14). This geometrically constrained hypothesid.evenberg-Marquardt (LM) algorithm [14]. Since the op-
generation reduces the probability of selecting a false cottimization is performed: times for each hypothesis, its ef-
respondence in the sét. Algorithm 1 with Algorithm 2 ficiency influences the performance of the GCRANSAC
used instead of step 4 is referred to in this paper as ge@lgorithm significantly. Efficient execution of Step 12 is

metrically constrained RANSAC (GCRANSAC). achieved by stopping the optimization process when the
condition (6) is satisfied. Only after the last pair is inedrt
4 TEST RESULTS into the setl/, the optimization is allowed to proceed un-

til the vicinity of a local minimum of the cost function is
The proposed GCRANSAC has been tested on botheached.

synthetic and experimental data. The benefits of the in-
troduced geometrically constrained hypothesis generatiog.1  Evaluation on Synthetic Data

have been shown by the performance of GCRANSAC to L
the performance of std. RANSAC. All experiments pre- In order to quantitatively evaluate the proposed method,

sented herein are performed using a 3.40GHz Intel Pert S€t Of synthetic data with appropriate properties was
tium 4 Dual Core CPU with 2GB of RAM. generated and used as input to both std. RANSAC and

) ] ) GCRANSAC. Asetof 3D point& = {z;,i =1,...,3n}
In the experiments reported in the following, the nuM-55 generated using a pseudorandom number generator.

ber « of pairs used to generate a pose hypothesis iy points were inside the field of view of the left cam-

GCRANSAC is chosen to be 5. The reason for using eXgr4 of a virtual stereo camera system. The resolution of

actly that number of pairs is that five pairs of point featurespe camera wag20 x 240 pixels. The camera was as-

detected in the images taken from two distinct viewpoint§igned a reference framgy, centered in the optical cen-

by a single calibrated camera is sufficient for determininge, of the camera with z-axis identical to the optical axis.

the relative camera pose [19]. The z-coordinate of the points with respect to the ref-
The optimization in Step 12 of Algorithm 2 and Step erence frame;, was uniformly distributed over the range

12 of Algorithm 1 is performed by a method based onof 2 to 6 meters. The firstn points from the sefZ were

the equations proposed in [6]. We have slightly modifiedthen projected onto the stereo image. The image coordi-
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nates of the obtained image projections were perturbed bgmbiguous feature correspondences, the experiments were
Gaussian noise with zero mean and variafice 1 pix°. performed withT;,,; containing intentionally introduced
After performing stereo reconstruction, a set of 3D pointfalse feature correspondences. All false correspondences
featuresF’ = {p;,i = 1,...,2n} was obtained, wherp;  were selected among the paifis;) for which the condi-

was computed from the perturbed stereo image projectiotion (10) is satisfied wherey = w;,,; andC.,, = Ciy ini-

of z; by triangulation. Each featupe, was assigned a co- Hence, the prior pose information did not help in selecting
variance matrixC}, ; describing its uncertainty due to the the first feature pair in hypothesis generation procedure. |
influence of the noise to the stereo reconstruction. Thishe experiments reported below;,,; = 0.

uncertainty was determined using the approach proposed |n the case of GCRANSAC, the threshold for evalua-
in [16]. tion of the conditions (6) and (10) was setdp = 11.34
The pseudorandom number generator was also used ¥hich is the 99% value of the Chi-Square distribution with
generate a vectow = [ ¢” tT |7 representing the 3 degrees of freedom [20]. Since computation of the pose
pose of the second view camera reference frafael-  in the step 4 in the case of std. RANSAC is performed by
ative to the reference framy,. The discussed algorithm minimization of a criterion which does not consider direc-
assumes that the pose 6f relative to S, is a random tional uncertainty of 3D points obtained by stereo recon-
variable having Gaussian distribution with meap,; and  struction, the uncertainty of the obtained pose is expected
covariance’,, i,;. If this was the case, the probability that to be relatively high. A proper way of dealing with this un-
the condition certainty would be to use the condition (10) instead of (6),
whereC,, is computed from the uncertainties of the posi-
(W — Wini) " Cpylipi(w — wini) < x%9,  (15)  tions of the considered points. However, the computation
of ¥;; would increase the computational cost of the step 5
is satisfied would be 99%, whergy, = 16.81 is the  of Algorithm 1. Instead, we chose to relax the condition
value of the Chi-Square distribution with 6 degrees of free{6) by multiplying C;; by a factor of 4. This modification
dom [20]. In order to demonstrate that the performancéias shown to improve the performance of std. RANSAC
of the proposed approach does not depend significantly ogignificantly.
that assumption, in the experiments with synthetic data a | et pe the percentage of false correspondenc@sin
uniform distribution of the posev was used. Poses were GCRANSAC is expected to have better performance than
randomly selected from the set of vectasse R® which  gtq. RANSAC for higher values of. In order to estimate
satisfy (15) wherev;,; = 0 and for whichr is advantageous to use GCRANSAC, the com-
(49)2 . [3%3 0 parison of the two algorithms_was performed for the values
0 (0.2m)? - 1353 of r between20% and80% with step of10%. For each
' of these values, 1100 input data sets were generated using
random number generator as explained above. The first
1000 of these 1100 data sets were used for the evaluation
of the algorithm performance and the last 100 were used to
Betermine the execution time of the compared algorithms,
sgd explained in the following.
. i ) ) The hypothesis generation step of GCRANSAC is much
~ Notice that the first points from the total 08 points  gre computationally expensive then the hypothesis gen-
in Z were projected onto the stereo images of both viewsgration step of std. RANSAC. On the other hand, the prob-
fche secona points were projected on_ly onto the first stereoabi”ty of making a correct hypothesis by the proposed ge-
image and the last points were projected only onto the ometrically constrained procedure is much higher then by
second stereo image. This way, we wanted to simulate SIFurely random sampling. In order to make a ‘fair’ compar-
uations in which 50% of the features detected in the firsjgon of GCRANSAC and std. RANSAC, Algorithm 1 is
view are not detected in the second view and vice versa. Ip,qdified so that the main loop (steps 3 - 11) is exited af-
the experiments reported in this paper- 100. ter a limited timet;,,, has elapsed. That time is set to the
As explained in Section 3, feature-based image registrasame value for both algorithms. Determining the optimal
tion considered herein starts from preliminary informatio ¢;,., by a theoretical analysis would be a rather difficult
about the correspondence between the features detectedask. Hence, we performed an experimental estimation of
two views. The feature correspondence is in this articleéhis parameter. During the experiments with GCRANSAC
represented by a s@t,,; of pairs(i,j) wherep; andp; it has been noticed that in most cases it gives a good re-
are corresponding features. In order to compare the perfosult when 3 or more correct hypotheses, i.e. the hypothesis
mances of the considered algorithms in the case of highlpased on 5 correct matches, are posed. The time needed

C’w,ini =

By transforming the first and the last: points fromZ
to the reference framg/ , projecting them onto the second
stereo image and performing stereo reconstruction usin
the procedure described above, a second view feature
F’" was obtained.
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Table 1. Results of the experiments on synthetic data

€$,99.5%(9) || €t,99.5%(M) 199.5%
"(%) |~s¥DTecrstb [ e TSl ec] Mer®
20 || 0.8 | 0.6 || 0.05| 004 95 | 95 || 0.020
30 || 0.8 | 06 006|005| 95 | 95| 0.025
40 || 1.2 | 06| 0.08]004] 90 | 96| 0.032
50 || 7.2 | 0.6 || 0.44| 004 40 | 95| 0.043
60 || 2.9 | 0.6 || 0.22|0.04| 76 | 95 || 0.087
70 || 19.2| 0.6 || 1.35| 0.05|| 18 | 94 || 0.084
80 || 377 07| 259 ] 007|| 5 | 91| 0.160

to obtain a correct hypothesis increases with the percentutdoor environment. Two sample images, one from each
age of false matches Therefore, for each considered experiment, are shown in Fig. 2. A total of 395 samples
GCRANSAC was applied to the last 100 of the total ofwere acquired during the first experiment and 97 during
1100 generated data sets and the maximum time neededttee second experiment. Features were detected by the
obtain 3 correct hypotheses is considered to be a suitable
choice fort;gop.
The performances of the evaluated algorithms were ag
sessed by considering the orientation eerpand the posi-
tion errore; defined as follows. The orientation error rep-
resents the angle for which the reference fréfiewhose
pose relative taSy, is computed by the considered algo-
rithm, must be rotated around a particular axis in order tq
fit the true reference framS’L_ The position error rep- experiment 1: indoor scene experiment 2: outdoor scene
resents the Euclidean distance between the estimated and
the true reference frams), . Another performance index Fig. 2. Sample images from the indoor and outdoor exper-
used in this evaluation is the number of correct matchesment

Tab. 1 contains the error limits and the minimum num- . .
ber of correct matches for the bext5% results of each ' 1-algorithm [17]and a Small Vision System (SVS) [21]

algorithm. For example, the values in the row denotedVas used to compute the disparity map of the first and the
by r = 60% and the columns denoted by go 5o, in- second stereo image. The disparities assigned to the an-
dicate that forr = 60% the position error dbtéir:ed by chor points of the features detected by SIFT were used

GCRANSAC was below 0.04m and the position error op-to determine their 3D coordinates. This way, the feature
tained by std. RANSAC was below 0.22m 99.5% of sets F end F’ were obtain.eq.for each two consecutive
trials. Analogously, the values in the same row and thetereo image pairs. The |n|t|_al feature corresp_ondences
columns denoted byog 5o, indicate that for the same per- Tml were obtained by comparing the local descr_lptors as-
centage of false correspondences, GCRANSAC provideﬁ'g”ed to the detected featuree by the SIFT—aIgont_hm. This
at least 95 and std. RANSAC at least 76 out of 100 posmethod showed to be very reliable and resulted in a rela-
sible correct matches 99.5% of trials. From the experi- tlvelyllow percentege of false correspondences. Neverthe-
mental results presented in Tab. 1 it can be concluded thdESS: its computational cost was rather high.

under the conditions considered in the conducted experi- In orderto obtain reference data to be used as the ground
ments, GCRANSAC performs noticeably better than stdtruth, std. RANSAC withi;.,, set to 5 seconds was ap-

RANSAC whenr > 50%. plied to the setd”, F’ andT;,;. Such a long execution
time was expected to provide highly reliable stereo image
4.2 Experiments with a Stereo Vision System registration. The feature correspondences obtained by thi

Two experiments with images taken by a camera systerfarocedure were considered to be correct, since they were
Videre design STH-MDCS2-VAR were performed. In the confirmed by both SIFT matching and mutual geometri-
first experiment, the aforementioned stereo camera syste@@l consistency. This way a reference set of feature corre-
was mounted on a mobile robot P3DX navigating in in-spondences,..; is created for each two consecutive stereo
door environment and in the second experiment, the imimages.
ages were taken by the hand-held camera system in an The evaluation of GCRANSAC algorithm as well as
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std. RANSAC was performed by applying these algo-

rithms to the setd”, I/ andT;,,; obtained from all con- 100T— 100
sidered stereo images and comparing the obtained featu |/ e
correspondences to the ground truth. A correspondenc g | & gl I.’
obtained by one of these two algorithms was considere 8 so; 8 sofl!
correct if it was contained in the reference $gty. § 751 § 75*;’
. . 70 ———— std. RANSAC| 7071 ———— std. RANSAC
The performance index used to compare the considere ] GCRANSAC 651 GCRANSAC
algorithms is the percentage of missed correspondenct s b————————————— e
d b 0 25 50 75 100 0 25 50 75 100
computed by P u
experiment 1: indoor scene experiment 2: outdoor scene

|Tref| = | Trin N Treyl

o= 100 )
| Trer

Fig. 3. Normalized cumulative histograms of the percent-

where| - | denotes the number of elements in a setEpg age of missed correspondences for the indoor and outdoor

is the set of correspondences obtained by the evaluated &XPeriment
gorithm. Lower valueu indicates better matching result.
If 42 = 0, then all correct feature pairs are successfully de¢q |4 not be clearly demonstrated. Nevertheless, although
tected_. The number of false matches was insignificantly, most cases the performance of the proposed method was
low. Timet,,, Was set to 20 ms. similar to the performance of the standard RANSAC, for
The experimental results are presented by the normaparticular samples, where the input data contained a rela-
ized cumulative histograms shown in Fig. 3, where eachively high percentage of false feature correspondenkes, t
value iy on the x-asix is assigned the percentage of samproposed approach showed to be more reliable. The signif-
ples for whichy < . In the first experiment, both algo- icant advantage of the proposed geometrically constrained
rithms had similar performance. In this case, GCRANSAChypothesis generation over purely random sampling in the
showed no improvement over std. RANSAC. This can becase of multiple possible correspondences and very high
explained by a very low percentage of false corresponpercentage of false feature correspondences was clearly
dences inT;,;. On the other hand, GCRANSAC gave demonstrated by the experiments on synthetic data. This
slightly better results in the second experiment. It can béndicates the possibility of using the proposed geometri-
seen that in the case of GCRANSAC for more than 97%ally constrained RANSAC approach for tracking of fea-
of samples: was at most 10%, while in the case of std.tures which are less distinctive in comparison to those ob-
RANSAC, the same upper bound pfwas achieved for tained by SIFT, but which can be extracted from the image
approximately 91% of samples. much faster.

It should be mentioned, that the false feature pairs were

not always the result of the limitations of the applied SIFT-ACKNOWLEDGMENT
based m_atchmg. It can also happen tha_t one of two fea- This work was supported by the Ministry of Science,
tures which are correctly matched according to their SIFT- : . :

X . . i ) ._Education and Sports of the Republic of Croatia under
descriptors is assigned a false disparity by the appheg

. . . rant No. 036-0363078-3018
stereo reconstruction method and therefore this feattire pag
does not satisfy the geometric constraint.
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