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In problems of decision making under uncertainty, we arerofaced with the problem of representing the
uncertainties in a form suitable for quantitative modelsugkl databases for the financial system now exist that
facilitate the analysis of uncertainties representatinqortfolio management, one has to decide how much wealth
to put in each asset. In this paper we present a decision mpkatess that incorporates particle filters and a genetic
algorithm into a state dependent dynamic portfolio optatian system. We propose particle filters and scenario
trees as a means of capturing uncertainty in future asseneet Genetic algorithm was used as an optimization
method in scenario generation, and for determining thet aliseation. The proposed method shows better results
in comparison with the standard mean variance strategyr@iogpto Sharpe ratio.
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Cestiéni filtri u problemima odlu &ivanja s prisutnom nesigurnogu. U problemima odlgivanja u kojima je
prisutna nesigurnogesto se suscemo s problemom predstavljanja nesigurnosti u oblikuladikom za réunalnu
obradu. Analizu reprezentacije nesigurnosti danas naksalaju velike baze podataka o financijskom sustavu.
Kod upravljanja portfeljem potrebno je oditi koliko novca uloziti u pojedine dionice. U ovom radu pgstavljen
je proces odl@ivanja temeljen naestnim filtrima i genetskom algoritmu. Poroo razvijenog procesa odlivanja
izgraden je sustav za dinagko optimiranje portfeljaéestf:ni filtri i stabla scenarija predloZeni su za predstavgan;
nesigurnosti u budtim prinosima dionica. Genetski algoritam se koristi katirojzacijska metoda u generiranju
scenarija i za odrdivanje optimalnog portfelja. PredloZzena metoda uspena je sa standardnom mean-variance
strategijom te prema Sharpeovom omjeru daje bolje rerultat

Klju €ne rijeci: predstavljanje nesigurnostiestini filtri, stabla scenarija

1 INTRODUCTION lem is how to estimate parameters of the distribution [5].
A naive method would consist of the estimation of parame-
ters directly from the historical data. However, such an ap-
Iproach fails to take into account the fact that newer data has
more influence on the parameters than older data. In line
with that, it is important to note that the problem does not
‘lie in modeling of historical data, but in predicting future

plex financial models [1]. The goal of portfolio optimiza- uncertainty from the above mentioned data. The most pop-

tion is to automatically determine the optimal percentag%lar approach to parameter estimation is that of Bayesian
of the total investment value allocated to each asset in thg

tfolio 121, Optimality i din t  ret stimators, developed in [6], [7], and described in [8]. The
portiofio [ .]' pumality 1S expressed in terms of return 0, of Bayesian inference is to combine prior information
maximization or risk minimization. The core of a portfolio

timizati bl . d i f with sample returns. Besides parameter estimation, there
optimization problem IS a good representation ot Uncerig ) 5 problem of selecting the right multivariate distri
tainty. Uncertainties should be represented in a form th

. . : . %ution, especially if statistical properties of uncertgiare
reflects the reality and complexity of the financial system,{im e vari aﬁt y prop b

but should also be simple enough for algorithmic imple-

The development and use of dynamic portfolio opti-
mization algorithms is extremely important in financial
markets. This is the result of a major growth of financial
engineering, including the technological advances, dloba
ization, increased competition, and ability to solve com

mentation [3]. A different method for representing uncertainty is sce-
Uncertainty can be represented in a number of waysario trees. The goal of scenario trees is to represent the
One approach is to represent uncertainty by multidimenunderlying uncertainty with a small set of discrete out-
sional continuous distributions or discrete distribuion comes [1]. A scenario is a deterministic realization of all
with large number of outcomes [4]. In both cases, the probuncertain parameters. There are two approaches in gen-
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erating scenario trees: simulation based and optimization Particle filters, introduced in [15], are a technique for
based approach [9]. Simulation based approach is used implementing a recursive Bayesian filter by Monte Carlo
[10], [11], and [12]. Optimization based approach is intro-simulations. The key idea is to represent the required den-
duced in [4] and used in [13]. The main idea is to generataity function by a set of random samples with associated
a set of scenarios that matches some specified statistioakights, and to compute estimates based on these samples
properties of the underlying uncertainty. Those propertieand weights. As the number of samples highly increases,
could be moments, co-moments, marginals, or any othehis approximation becomes an equivalent representation
relevant properties of the uncertainty. Scenario ger@rati to the usual functional description of the required PDF,
is done by solving an optimization problem where the goahnd the particle filter approaches the optimal Bayesian es-
is to minimize a measure of a distance between the statistiimate. For a more general description, see [16] and refer-
cal properties of constructed distribution and the siatist ences therein.

properties of the underlying uncertainty. The method can 14 gescribe the algorithm, we introduce the following

capture various kinds of uncertainties, but a realistie est ,otation. The state vectar, is assumed to evolve accord-
mation of the statistical properties of the underlying unce ing to the following system model:

tainty remains the biggest challenge in a good uncertainty
representation. Thpr = fr(@r, wy) 1)

Here we propose a method for uncertainty representa-
tion based on particle filters and scenario trees. Particleheref;, is the system transition function ang, is a zero
filter is used for estimation of the statistical propertiés o mean, white noise sequence independent of past and cur-
the underlying uncertainty in future asset returns. We haveent states. At discrete time steps, measuremgntse-
created a nonlinear model which exploits the known propcome available. These measurements are related to the
erties of asset returns. The parameters of the model ag$ate vector via the observation equation:
mean and volatility of returns, whereas with particle filter
we maintain a sampled distribution of asset returns through Y = hip(@k, vi) (2)
the steps of prediction and correction. Higher moments, . . .
skewness and kurtosis, are estimated from the above mef1€ré/u is the measurement function angl is another
tioned distribution. Together with correlations betweenZ€"® Méan, white noise sequence with known PDF, inde-
different assets, those properties form a set of statistic?€"dent of past and present states and the system noise.
properties used for scenario generation. In scenario gen- One of the particle filter algorithms proposed in the liter-
eration, a genetic algorithm was used as an optimizatioature is sampling importance resampling (SIR) filter [15].
method. Based on the proposed uncertainty representatidiie assumptions required to use the SIR filter are very
method, we have created a system for portfolio manageveak. We need to known state dynamics and measure-
ment. Generated portfolios frequently demonstrate highenent functions (1) and (2), and have to be able to sam-
returns than the ones based on a standard mean-variarfgle realizations from the process noise distributiprand

strategy while maintaining the same amount of risk. from the prior density(zy|zx—1). Finally, the likelihood
functionp(yx |z ) is necessary for pointwise evaluation (at

2 MODELLING APPROACH least up to proportionality). A set of particles and weights

21 Particle filters {xi, wi}, is used to represent the sampled distribution

Numerous problems in science require an estimation o?(kal’k)' The SIR filter uses resampling (elimination of

. . articles that have small weights and concentrating on par-
the state of a certain system that changes over time by u3s- . . . :
. ; icles with large weights) at each discrete time step. An
ing a sequence of noisy measurements on the system.

[ : SR .
example, in the financial system, it is a common task to esl?eratlon ofthe SIR algorithm is given in Algorithm 1.

timate the expected value of an asset return, or the veyatili 5 Scenario trees

of asset returns. The standard Bayesian approach to staté

estimation is to construct the probability density funatio  The issue of modeling stochastic elements is critical to
(PDF) of the state based on all possible information, in-any stochastic optimization. A method to obtain the dis-
cluding the set of received measurements [14]. When cecrete outcomes for the random variables is referred to as
tain constraints hold, the optimal solution is tractablee T scenario tree generation. We define a scenario as a deter-
Kalman filter and Hidden Markov model are two such so-ministic realization of all uncertain parameters. Some sce
lutions. When the optimal solution is intractable, there ar narios may have identical history to some point. Because
various strategies that may help approximate the optimalf that, scenarios are organized in a scenario tree (see Fig.
solution. These approaches include extended Kalman filt). The scenario generation process should build scenarios
ter, approximate grid-based filters, and particle filters.  that represent the universe of all possible outcomes — we
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Algorithm 1 SIR Particle Filter: {x;@’w}c}ﬁl = scenario. f;(z, p) is a mathematical expression for calcu-
SIR({z}_,,wi_ ¥V k) lating sta_d_istical propertyi_n t_he scenario tree, qrﬁM— _is
; . AN the specified value of statistical propertyVeighting with
Nput: {zi_y, Wiy Fisa, v ; enables the emphasis of certain properties
Output: {zi,wi}N Wi P prop '
1 fori=1to N do Since the described optimization problem is generally
not convex, the solution is probably a local one. However,

2. Drawz} ~ p(zg|zl ;) e o ) .
3. Calculatew! = p(yg|z._,) for mo_st appllca'glons, it is satisfactory to have a scenario
4. end for tree with properties equal to or close to the specifications.
5. Calculate total weight = SUM({w? }¥ ) Solving of the optlr_nlzatlon_problem can be done inanum-
6. for i = 1to N do ) ber of ways, by using traditional non-convex optimization
7. Normalize:wi = ¢t~ lwi methods, or metaheuristics, like simulated annealingor ge
8. end for netic algorithm.
9. {x}ﬁ,wz}f\il) = RESAMPLE({%a'wli}f\Ll)

10. return {z%, wi}l¥, 3 MODEL DESCRIPTION

The focus of this paper is the applying of a stochastic
optimization method in portfolio management. Therefore,
we present a model for obtaining an optimal asset alloca
tion. To find an optimal set of weights of each asset in a
portfolio, we need to represent the uncertainties from fi-
nancial factors in a form suitable for algorithmic computa-
tion. We choose scenario trees as a means of capturing

Fig. 1. An example of the scenario tree those uncertainties. In order to generate scenario trees,
estimation of statistical properties of underlying random
variables is needed. We propose particle filters for the esti

want a representative set of scenarios. There exist differe mation of relevant statistical properties. With this in ahin

methods of scenario generation. The two most widely usegyr portfolio management model consists of three indepen-
ones are scenario reduction and moment matching [17]. dent parts:

The scenario reduction method is introduced and dis- o o )

cussed in [18] and [19]. The goal is to eliminate sce- 1. Estimation of statistical properties of asset returns,

narios that are §|m|lar or have a small prqbab|l|t¥. The 2. Generation of scenario trees,

method starts with a large number of scenarios, which usu-

ally result from a simulation. With the scenario reduction 3. Portfolio optimization.

method, the goal is to represent the underlying distriloutio

in an acceptable way with a reduced number of scenariosStatistical properties of asset returns which we use are
The second method of scenario tree generation is bast?&eanf stgnd_ard deviation, skewness and ku_rt05|s of the re-

urn distributions of each asset in our portfolio. The cerre

on moment matching and is described in [4]. The startinq : : .
. . . . o ations between returns of different assets are also reduir
point for generating the scenario tree is a descriptionef thln order to make an estimation, the model of the financial

istical properti f the underlying random variabl . .
statistical properties of the underlying random variables tem is developed, based on the known properties of as-

The procedure generates a scenario tree that matches thé%? returns. The estimation of the parameters of the model
statistical properties as closely as possible. Generafion ' P

scenarios is an optimization problem where the objectivéesa?i? n(e;f\l\t/;:: ﬁzf,tgl,e féléer;zlgglrlthm because of the nonlin-
function is the distance between statistical propertiés ca y _ P o ' ) )
culated from scenarios and specified statistical propertie  The estimated statistical properties form the basis of the

If the distance is measured with a square norm, the followscenario generation method. We use the moment matching
ing optimization problem needs to be solved: method described in [4]. In order to generate the scenario

tree, we solve the optimization problem where the objec-

minzwi(fi(l’,p) — SVh), Zpi =1, p:>0. (3 tive function is the distqnce between_statistic_:al_ properti
7 7 calculated from scenarios and specified statistical proper

ties. The solution of the resulting non-convex optimizatio

Minimization is done over vectar, which is a vector Problem is obtained from a genetic algorithm.
of outcomes of all underlying random variables in all sce- After generating the scenario tree, we can solve the
narios, andp, which is a vector of probabilities of each deterministic equivalent of the stochastic asset allooati
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problem. The solution of the problem is a set of asset 1. The system model is non-linear and we deal with a
weights that maximize some utility function of wealth. non-linear state estimation

Solving of the given optimization problem is done with the
genetic algorithm.

The following subsections describe the parts of the
model. Simultaneously, we demonstrate our approach on
the example of the equity indexes of France, Germany, 3. The particle filter forms the distributiofi(#sy1|r%)
Japan, UK and USA in January 1975. With particle filters with importance sampling so that the estimates of its
we estimate the distribution of returns of index values for moments can be calculated efficiently by using a com-
February 1975, and then we generate scenarios that match puter.
the parameters of that distribution. It is important to note
that we deal with logarithmic index returns, defined as:

2. The patrticle filter can represent the proposed distribu-
tion f(7x+1|7x) in case when the shape of the distri-
bution is unimodal and when the shape is bimodal

For the sake of the simplicity of the model, particle fil-
ters are used only in estimation of parameters of univari-
Sk ate distribution. Still, correlation coefficients are neddh
Sk_1 4) the process of portfolio optimization. We find correlation
coefficients by using statistical estimators from histalic
"values on a time window of 60 months. The estimation
problem is solved using an SIR particle filter described in
Section 2. This filter uses the prior density as the impor-
, i L tance density function. We use multinomial resampling for
In order to use particle filters for state estimation of ay,, resampling procedure. The quality of state estimation

dynamic system, one has to build a model of the system, ;4 pe improved with other, more advanced methods,
We use a different particle filter for different assets. Eachand it is a topic of an ongoing research.

particle filter uses mean and variance of returns of the asset 1,4 example of the distributiorf (7,11|ry) for the

as state variables. So, the state of the system at timekste%apan equity index on February 1975 is shown in Figure
Is a vector ] 2. The comparison is made in Table 1. We notice that

TkZIIl

whereS;. andSj_; are current and previous index values

3.1 Estimation of statistical properties of asset re-
turns

(5)  the statistical properties of this distribution differ finche

_ properties obtained with estimation from historical data.
wherep, represents the mean of the asset returns-drisl

the variance of asset returns. The input to the system is thg5

1t 4

last known asset return,. The state vectary, is assumed 2, J
to evolve according to the following system model, §
23+ i
Ui = Oplg—1 + (1 — Oé)?“k + €k (6) é
of = Poiy+ (1= Bri+m 227 ]
o

where variables; andny represent the additive Gaussian
white noise. For technical reasons, samples frgrwhich ‘ s s s ‘
would result with negative? are ignored. Those equations 4 3 02 01 0 0 eun 22 %% o4
follow the exponentially weighted moving average model.

The output of the system is the estimated retun il rjg 2 probability density function of estimated Japan eg-
in the nexttime step. We propose the following dlStI’IbutIOﬂuity index return for February 1975

of fk-i—ly

C
f(Pregalre) = -~ 3 . 3 >3 Table 1. Comparison of statistical properties estimated
(Prot1—pr) (Pr1—pw)® = (re—pi)?) U
B a— with different methods
(1) Mean | Std. dev| Skewness Kurtosis
whereC is the normalization constant. Historical | 0.009| 0.063 -0.437 3.196

As a result of the estimation procedure, we need estit Particle F.| 0.005| 0.082 -0.084 1.576
mates of the mean, standard deviation, skewness and kur-
tosis of the distributionf (7x11|rx). Since particle filter
maintains the distribution in a sampled form from one time3.2  Scenario tree generation
step to another, estimates can be computed efficiently by We use scenario trees for representing uncertainty in fu-
using statistical estimators. There are humerous reasohsre asset returns. For the generation of the tree we use op-
for using particle filters in this particular task: timization method based on moment matching described
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in [4]. Parameters of the uncertainty distribution serve a8.3 Portfolio optimization

an input to the scenario generation process. Optimization . : .
: . ; We implement the method for representing uncertaint

problem (3) is solved by the genetic algorithm. The outpuE P b g y

AN ; : ._In the example of portfolio management. In this applica-
of the optimization process is the optimal set of SCenanog ., the goal is to maximize the sum of the expected utility

organized in a tree, where the optimality is expressed N wealth subject to budget constraints
terms of the distance to the specified statistical propertie '

Naturally, the fitness function of the genetic algorithm is ~ The optimization problem can be formulated in a fol-
the distance between the properties. The genetic algorithtWing manner:

that solves the problem (3) uses: a rank fithess scaling, s .

stochastic uniform selection, a modified Gaussian muta- max EU = gﬂt (wp)

tion and scattered crossover. The size of the population RN .

depends on the extent of the problem. In our example, we Wy = 121 77410711 8)
use 5 assets and 30 statistical properties. The usual choice s.t. 383, -1

for the number of scenarios, based on the discussion in [9], i

is 6 scenarios, which leads to 36 unknown parameters of 2y =1

scenarios (each scenario has a prqbe_lb_lllty value :_;md Valusv%erewf is the probability that scenar®occurs at time
for returns for each asset). For optimizing a function of 36 IR : .
. . . stept; w; is the wealth at time step under scenaria;
variables, we use a population of 250 candidates. To en-, . . o
. g . r?, is return of asset at time steg under scenarie; 67,

sure that the solution found is indeed a global solution, we " '

rerun the algorithm from different starting points 'S the weight for asset at time stept under scenaria.
9 gp : The optimization problem (8) is a deterministic equivalent

For example, given the statistical properties in Table f the underlying stochastic problem which we solve with

ii’xv;(cee?wlglr?oz s{/l\r;i?rl]e gﬁzgg ;’IC%?;;'% t:;: ég?éiﬁogsgfeggenetic algorithm. The output of the optimization process
' 9 9 ' P Is the set of weights of assets in the optimal portfolio for

maich. A set of six generated scenarios 1S given in FlgWhiCh the maximum of expected utility is obtained. As a
ure 3 where the return of each asset in every scenario

ftness function we use negative utility, since the goal of
presented. genetic algorithm is function minimization. Compared to
the size of the optimization problem (3), the problem (8) is
simpler and easier to solve. For example, when there are
5 assets in a portfolio and 6 scenarios in a tree, problem
(3) finds 36 variables, while problem (8) finds only 5 of

Table 2. Statistical properties of index returns for Febmpa
1975. All properties but correlations are estimated with
particle filters

Mean  Std. dev Skewness Kurtosis

USA 0022 0035 0.153 3207 them_. For that reason, we use a population size of only 60
UK  -0.048  0.104 0.064 1355  candidates.
Japan ~ 0.005  0.082 -0.084 1.576 Given the scenarios in Figure 3, we find the optimal
Germany  0.007  0.074 -0.112 1.633  \weights using the logarithmic utility function. The result
France -0.017 0.047 -0.086 2.844

are reported in Table 3 and compared to the classical mean
variance analysis. The difference due to different estima-
tion methods used clearly exists.

Correlations of returns
USA UK Japan Germany France

USA 1 0.508 0.320 0.337 0.398
UK 1 0.372 0.313 0.588 . ) . .
Japan 1 0.471 0.319 Table 3. Welghts of the optimal portfol_lo calculated wlth
Germany 1 0.608 our model using compared to the classical mean variance
France 1 portfolio
USA UK Japan Germany France
Scenario trees  0.325 0 0.080 0.517 0.078
02 Classic mean- 0.320 0 0.462 0.218 0
ot Busa variance
° i
4 RESULTS

The experiments are based on the data set from MSCI

Fig. 3. Generated scenarios (with probabilities) for which (Morgan Stanley Capital International). We use the to-
the distribution properties match the properties in Table 2 tal return equity indices of France, Germany, Japan, UK
and the USA. Equity returns are based on the month-end
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US-dollar value of the equity index for the period betweendeveloped. Particle filters were used for estimation of sta-
January 1970 and December 2000. To verify the perfortistical properties of uncertainty from historical datada
mance of the different portfolio models, the weights fromscenario trees were used as a model for uncertainty rep-
each model are determined, and the return from holdingesentation. The described method was included into the
this portfolio in the next month is calculated. In case ofdecision making process for dynamic portfolio optimiza-
models that create historical estimates of parametersethotion. Uncertainty in future asset returns, being the main
estimates are based on a window of 60 months. In eagbroblem in portfolio optimization, was captured by the pro-
case, the out-of-sample period is from January 1975 to Dgposed method. By using obtained uncertainty representa-
cember 2000. Table 4 shows summary statistics for théon, portfolio optimization was performed by maximiza-
monthly returns on the five indices and the correlations ofion of logarithmic utility function of the wealth. For the
the returns. purpose of the above mentioned maximization, and for the

o estimation of the parameters of the scenario trees, a geneti
Table 4. Summary statistics of the data from January 197%Igorithm was used.

to January 2000

Mean Std. dev. The described method was validated by the use of the
USA 0.0049 0.0446 MSCI data sets. The method showed better results in com-
UK 0.0060 0.0717 parison to the standard mean variance strategy according to
Japan 0.0117 0.0658 Sharpe ratio. Generated portfolios frequently demorestrat
Germany 0.0065 0.0603 higher returns than Markowitz optimal portfolios while
France 0.0060 0.0694 maintaining the same amount of risk.

Correlation coefficients
USA UK Japan  Germany France

Future research in this area should continue along sev-

USA 1 05171 0.2699 03598 0.405 €raldimensions. Firstly, in this research, a single sdenar
UK 1 0.3708 0.4393 05440 trees was used. A combination of multiple scenario trees
Japan 1 03889 0.3922 and particle filters could result in some new enhancements.
Germany 1 0.6136 Secondly, different utility functions in portfolio optimé-
France 1 tions could create valuable progress. Thirdly, there is no

fundamental reason why 1,000 or 10,000 scenarios cannot

To assess the performance of the different portfolid®e created by parallel and distributed computers.
models, we calculate the average out of sample means,
volatilities and Sharpe ratios of each strategy — the mearREFERENCES
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