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ABSTRACT

In the Euclidean plane there are several well-known meth-
ods of constructing an osculating (Euclidean) circle to a
conic. We show that at least one of these methods can
be “translated” into a construction scheme of finding the
osculating non-Euclidean circle to a given conic in a hyper-
bolic or elliptic plane. As an example we will deal with the
Klein-model of these non-Euclidean planes, as the projec-
tive geometric point of view is common to the Euclidean
as well as to the non-Euclidean cases.
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Oskulacijske kružnice konika u Cayley-Klein-ovim

ravninama

SAŽETAK

U euklidskoj ravnini postoji nekoliko dobro poznatih
metoda konstrukcija oskulacijske kružnice konike. Cilj
je te konstrukcije “translatirati” u neke od neeuklid-
skih ravnina. U članku se daje opća konstrukcija osku-
lacijske kružnice konike zadane s pet elemenata u euklid-
skoj ravnini. Pokazuje se da je konstruktivna metoda pri-
mjenjiva u hiperboličkoj i eliptičkoj ravnini. Budući da je
projektivno geometrijsko gledǐste zajedničko euklidskom i
neeuklidskim slučajevima, analogne se konstrukcije koriste
na Klein-ovim modelima neeuklidskih ravnina.

Ključne riječi: Cayley-Klein-ova ravnina, elacija, pramen
konika, oskulacijska kružnica, sredǐste zakrivljenosti

1 Preliminary Remark

Although the problem of constructing an osculating circle
at a point of a conic seems to be anachronistic in times
of numerical approximation tools, knowledge about ex-
act constructive methods is not at all obsolete, particularly
since these methods are uniformly applicable. Beyond
that, with the following projective geometric constructions
of osculating circles, we place particular emphasis on syn-
thetic argumentation, which is typically for geometry. Un-
fortunately Projective Geometry and Non-Euclidean Ge-
ometry in the sense of F. Klein does not have much space
in nowadays Mathematics education such that valuable Ge-
ometry culture is in danger of vanishing. Our article might
perhaps help to counteract these facts. The paper is also
to be posed into the series of articles of classical Projec-
tive and Non-Euclidean Geometry initiated by the second
author, see [5] - [8].

It is hard to say, how “well-known” the presented consid-
erations are; they could be for example exercise material to
lectures on classical Projective Geometry and not consid-
ered to be valuable enough to be published. To our knowl-
edge lectures with related content still exist in Vienna (H.

Stachel, H. Havlicek) and Graz (J. Wallner, O. Röschel),
where they still belong to the syllabus in teachers educa-
tion in Descriptive Geometry.

2 Euclidean Osculating Circles of Conics

We start with “permissible standard givens” of a conic in
the Euclidean plane, i.e. from pair of conjugate diameters
AC , BD of an ellipse, from a pair of line elements(A,tA),
(B,tB) of a parabola and from a pair of asymptotes(r,s)
and a pointA of a hyperbola. The problem is to find the
osculating circle at the given pointA.

In geometry courses for engineers one usually presents the
construction recipe for the hyperosculating circles at the
vertex of the conic; in lectures on differential geometry
for Mathematicians this recipe is also presented and the
analytic equality of 4thorder is proved by calculation in
each of the three cases. But for all three cases there is a
uniform projective geometric idea for the solution of this
(more general) problem. This idea uses properties of oscu-
lating resp. hyperosculating pencils of conics. This unified
explanation of elementary construction of hyperosculating
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circles at vertices of a conic might be not new, but it is,
in our opinion, not at all so well-known as it is worthy to
note.

In addition, the construction principle deduced from it can
be used for all Cayley-Klein geometries, as it is shown in
the following chapter only for the hyperbolic and the quasi-
hyperbolic geometry (which is the dual geometry to the
pseudo-Euclidean geometry) as an example.

Specifically, the construction follows two steps:

Step 1: Transform the given conicc by the standard shear
transformationσ1 : c→ c′ into another conicc′, which os-
culatesc at the pointA, and hasA as a vertex. The axis of
the shear therefore is the tangenttA in A. As all elations
with the centerN on tA, this shearσ1 maps the given conic
c into c′ which osculates the conicc at A. The osculating
circle of one is also osculating circle for the other one.

Step 2: Construct the hyperosculating circlekA of the conic
c′ at A = A′. For this one can use an additional elationσ2

which also hastA as its axis, but the centerA and it should
map c′ into a hyperosculating conicc′′. By demanding
c′ 7→ kA the transformationσ2 is uniquely defined;σ2

transforms the pointB′ of the osculating conicc′ (in the
case of an ellipse this is a “neighbouring” vertex, in case
of a hyperbola one of the asymptote’s ideal point “at infin-
ity”, in the case of a parabola it is the additionally given
point) into the pointB′′ of kA. The normal from the (fixed)
pointT = T ′ = T ′′ ∈ tA (T = tA∩ tB = tB′ ∩ tB) to the chord
AB′′ = AB′ of circlekA therewith passes through the center
MA of kA.

The following figures (Figures 1-3) show the construction
costs, which in each of the three cases needs only a few
lines.

Elliptic case (Figure 1)
The pointA is transformed into the vertex of an ellipse
c′ by the shearσ1 : c → c′ (tangenttA at A is the axis of
σ1). Furthermore,σ2 : c′ → kA with the same axis, but
with centerA, transforms a “neighbouring” vertexB′ of c′

into the pointB′′ of kA. The line through the fixed point
T = T ′ = T ′′ on tA perpendicular to the chordAB′′ = AB′

of the osculating circlekA intersects the normaln of the
conicc given at the pointA in the centerMA of kA.

Parabolic case (Figure 2)
The shearσ1 : c→ c′ (axis is the tangenttA atA) transforms
the pointA into the vertex of a parabolac′, which osculates
c. The midpointH of the chordAB, together with the point
T := tA∩ tB, defines the diameter direction of the conicc,
and therefore is mapped into the pointH ′ on the line nor-
mal to tA at T. For σ2 : c′ → kA (the center isA) the line
AH′ is a fixed line; it contains the pointB′′ = σ2(B′) of the
hyperosculating conickA. The line through the fixed point
T = T ′ = T ′′ perpendicular to the chordAB′′ = AH′ of kA

passes through the sought-after curvature centerMA.

Hyperbolic case (Figure 3)
At first we construct the tangenttA at the pointA, (A is the
midpoint of the tangent segment between the asymptotes).
By a suitable shearσ1 one can transform the pointA into
the vertex of the hyperbolac′ whose asymptotes arer ′ and
s′ and the center isM′. The elationσ2 : c′ → kA with center
A transforms the ideal pointR′ = B′ of the asymptoter ′ of
the conicc′ into the pointB′′ of the hyperosculating conic
kA. Therefore, the line through the fixed pointT on the
tangenttA perpendicular toAB′′ = AB′ passes through the
common curvature centerMA of the conicskA, c′ andc. As
AB′ is parallel tor ′, one only needs to draw the perpendic-
ular line to the asymptoter ′ = M′T at the pointT.
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Figure1: Construction of the center
MA of the osculating circlekA at the
endpointA of one of the given con-
jugate diameters of the ellipsec.

Figure 2: Construction of the center
MA of the osculating circlekA at the
point A of the parabolac given by
two line elements(A,tA), (B,tB).

Figure 3: Construction of the cur-
vature centerMA at the pointA of
the hyperbolacgiven by the pair of
asymptotes(r,s) and the pointA.
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Remark 1 Of course, there are other nice constructions
of the Euclidean curvature circle at the point of a conic,
too. We want to mention the one found in [1], which is
based on the differential geometric investigations and goes
as follows:

“Choose two points P,Q on tangent tA symmetric to A,
draw the tangents from P and Q to the given conic c, re-
ceive the contact points P′ and Q′. The normals p and q
to the cords AP′ and AQ′ intersect the normal n in A in the
points MP and MQ. Then MA is the midpoint of the segment
(MP,MQ). Also this construction could be transformed to
CK-planes.”

3 Curvature Centres of Conics which are
Given by General Data in CK-planes

In the preceding chapter we started with affine-special
given data of a conic. Now we choose a projective-
geometric system of data defining a conic:

Let a conic c be given by two line elements(A,a), (B,b)
and a point C in a (real) projective planeπ equipped with
an “absolute (regular or degenerated) polarity”π⊥. (The
planeπ together withπ⊥ is therewith a Cayley-Klein plane,
in short a CK-plane.)

These specifications of the conicc can easily be derived
from all other given data, which define conic uniquely, by
applying the theorems of Pappus-Pascal and Brianchon,
see [2]. These givens are also appropriate for the analytic
treatment of the conic, as they can be interpreted as a pro-
jective coordinate system.

Via π⊥ the place of action is a projective plane with an or-
thogonality structure “⊥” and a concept of circles in the
sense of Cayley-Klein; it is therefore a “projectively ex-
tended non-Euclidean plane”, a CK-plane, see e.g. [3].
Among these CK-planes we want to exclude the so-called
isotropic planes (see e.g. [4]) from further considerations,
because their orthogonality structure⊥ is too degenerated.
These CK-planes are treated separately in [7]. It turns out
that for degenerated absolute polarityπ⊥ one could “swap”
the two steps described in chapter 2: At first one constructs
the hyperosculating parabolac′ at the pointA of the given
conicc in the isotropic planeπ with absolute pointI at the
ideal lineu. This can be done with an elation with center
A and axisa. Next, the parabolac′ is transformed into the
isotropic circlek with ideal pointI using the shear with
axisa.

In the last chapter, it will be shown that in some cases of
CK-planes with degenerate absolute polarity one can easily
find simplier constructions using one single elation alone.

The problem is to construct the curvature centerMA at the
pointA of the given conicc. (For the sake of simplicity we

visualise again the Euclidean case in Figure 4, i.e. “⊥ ” and
“circles” allow an elementary geometric interpretation.)

Step 1:determine the normaln of the conicc at the pointA
with respect to⊥; i.e. one needs to construct the “absolute
conjugate line”n to the given tangenta of the conicc at A
with respect toπ⊥. The absolute poleN of the normaln is
a point ofa and it has to be used as the center of an elation
σ1 : c → c′ with axis a. One still needs a related pair of
points to define elationσ1 uniquely.

Step 2: the construction of a conic pointD on the (fixed)
collineation ray onBN using the theorem of Pappus-
Pascal. (Naturally, it would be the same, if we constructed
the pointE ∈ c on the collineation ray CN.) In Figure 4 the
necessary lines are shown:

D := BN∩AP, whereby, P := BC∩
(

(a∩b)∨(BN∩AC)
)

.

Step 3: determination of the 4th harmonic pointH to N
with respect to the pair(B,D) on line BN. This pointH
shall be related toH ′ := n∩BN in σ1 and nowσ1 : c→ c′

is uniquely determined.

Step 4:corresponds to step 2 in chapter 2 to getσ2 : c′ →
kA. Explicitly, one only needs the centerA of elationσ2

and the fact that the pointB′′ := σ2(B′) on kA belongs to
the chordAB′′ = AB′ of kA, which is fixed underσ2 where
B′ := σ1(B). Therewith the wanted curvature centerMA is
the intersection point of the normaln with the lines, which
is the absolute-conjugate line toAB′ througha∩b.
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Figure 4: Construction of the curvature centerMA in a
point A of a conicc, which is given by two line elements
(A,a), (B,b) and an additional pointC in the (projective
extended) elementary geometric plane. (Explanation of the
construction see above.)
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4 h-Curvature Circles of a Conic in the Pro-
jective Model of a Hyperbolic Plane

As an example for the construction of the osculating circle
in a non-Euclidean plane with regular absolute polarityπ⊥

the complete solution will be given in a hyperbolic plane,
see Figure 5.

According to the projective geometric background of the
idea of the construction, it is somehow natural to use the
classical projective model of such a h-plane, (c.f. also [2]).
This means that the place of action is essentially the inner
domain of a (real) “absolute conic”u, which can be taken
as an ordinary circle in elementary geometric sense. Given
a conicc, the problem is to construct the h-curvature center
MA to the arbitrarily given pointA (with tangenta).

It is expedient and practical to use a perspective
collineation κ1 : u → c to construct the conicc as
collinearly related image to the absolute conicu. (In Fig-
ure 5 collineationκ1 is defined with the centerS and the
axiss, and the related pair of points(A1,A).) Note, that if
s is absolute polar ofS, the obtained conicc would be a
circle.

Step 1: The osculatingh-circle k of c at A has its center
M on theh-normaln to a throughA. So as a first step one
needs to construct thisn.

Step 2: MakeA to a vertex of the conicc′, which osculates
c at A. For this we use a “projective shear”, i.e. an elation
σ1 with axisa and centreN ∈ a, which is the absolute pole
of n.

Step 3: Construct the hyperosculating circle ofc′ accord-
ing to the description to Figure 4. In Figure 5 we used the
pointsQ andQ′ =: σ1(Q) to getc′ from c and the special
point B′ and its tangentb. Finally we connectA with B′

and erect theh-normal line toAB′ throughT := a∩b, it
intersectsn in theh-curvature centerM.

Step 4: If we do not use a graphics software like “Cin-
derella”, where we can directly drawh-circles in a h-
plane, we still have to construct theh-osculating circlek.
This again can be done using a perspective collineation
κ2 : u → k; it has the centerM and the axism := π⊥(M)

and the related pair of points(A∈ c,A2 ∈ u). Because of
κ1 σ1 σ2 κ−1

2
u −→ c −→ c′ −→ k −→ u

The product of these perspective collineations must act as
a projectivityβ onu. So the mappingβ : c→ u→ k is de-
termined by three pairs of points onu, among themA1,A2

andQ1,Q2.
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Figure 5: Osculatingh-circle at the pointA of the conicc. (Construction in the classical projective model of ah-plane.)
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5 Curvature Circles of a Conic in the CK-Planes with Singular Absolute Polarity

To start with, we give an overview over those CK-planes, c.f.[3]:

π⊥ acting in “Absolute figure” Name

elliptic involutoric (ideal) lineu pair of imaginary Euclidean plane,
projectivity pointsI ,J ∈ u e− plane
hyperb. involutoric (ideal) lineu pair of real pseudo-Euclid. plane,
projectivity pointsI ,J ∈ u pe− plane
elliptic involutoric a pencil of linesu pair of imaginary dual Euclid. plane,
projectivity through (ideal) lines i, j throughU quasi-elliptic plane

pointU qe− plane
hyperb. involutoric a pencil of linesu pair of real dual pseudo-Euclid. plane,
projectivity through (ideal) lines i, j throughU quasi-hyperbolic plane,

pointU qh− plane
degenerate inv. (ideal) lineu pointU and lineu isotropic plane,
projectivity (self-dual figure) Galilean plane,

i − plane

We treated the Euclidean case in Chapter 2 aiming at a
unifying interpretation of the classical and well-known el-
ementary constructions. We will now present constructions
of osculating circles by using one single elation alone. Let
us begin with

1) Pseudo-Euclidean case

Figure 6 shows the projective model of a pe-plane and the
construction of a pe-circle osculating a conicc at the point
A.
Explanation to Figure 6:
The conicc and its line element(A,a) in the pe-plane with
absolute pointsI ,J ∈ u are given. Now we chooseA as the
center of an elationκ and construct its axisz: (Also this
type of elations is osculation preserving!) With centerA
project I ,J onto c getting I ′, J′. Intersectu with the line
u′ = I ′J′, get a fixed pointF andAF =: z. Now κ is well-
defined andκ(c) =: k is the desired osculating pe-circle.

I u J F

I’

J’

c

u’

z

a

A

Figure 6: Osculating pe-circle at the pointA of the conicc.
(Construction in a projective model of a pe-plane.)

Remark 2 The same construction principle can be per-
formed also in the Euclidean case. The imaginary rays AI
and AJ are defined by the orthogonal-involution in the pen-
cil with vertex A and this orthogonal involution induces in
c an elliptic involutoric projectivityρ with involution cen-
ter R. Now we had to construct the polar line r to R with
respect to c; r connects the imaginary points I′ and J′ and
therefore is parallel to the elation axis z.

2) Quasi-hyperbolic case

Without loss of generality, let the absolute figure of the
quasi-hyperbolic plane be a pair of parallel linesi, j. The
conic c and its line element(A,a) are given. Aqh-circle
k is a conick touching both absolute linesi and j. The
construction is now dual to the one of Figure 6, see Figure
7.
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Figure 7: Osculatingqh-circle at the pointA of the conic
c. (Construction in aqh - plane with an absolute figure
{U ; i, j}.)
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Explanation to Figure 7:
Intersect the absolute linesi and j with the tangenta of
the conicc at A. The tangentsi′, j ′ from these intersec-
tion points toc intersect at the pointU ′ which corresponds
to the absolute pointU in the desired elationκ with axis
a. Line UU ′ intersectsa at the centerZ of κ such that
κ is well-defined by{Z,a,(U,U ′)} and k := κ(c) is the
desired osculatingqh-circle. Note thatUA represents the
qh-normaln of thec at A.

Remark 3 The same construction principle can be per-
formed also in the quasi-elliptic case. The construction
“dualises” that of the Euclidean case. In the isotropic
case, because of self-duality, one can use both, the prin-
ciple of the “qh-construction” as well as that of the “pe-
construction” to find the needed elation. As the construc-
tion is obvious, it can be left to the reader to practice.
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[5] A. SLIEPČEVIĆ, Iz prizemlja više geometrije.KoG5
(2001), 73.
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