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Most of the Chemical Engineering processes are nonlinear and complex in nature.
They often require conventional modeling and simulation techniques based on certain
simplified transport, kinetic and thermodynamic assumptions. These assumptions may,
however, alter the exact nature of the system and would provide misleading information
about the complex behavior of the system. An artificial neural network has the ability to
overcome these limitations of the conventional approach by extracting the desired infor-
mation directly from the data. In this paper radial basis network, a new generation of ar-
tificial neural network, has been successfully incorporated for the prediction of vapor
liquid equilibrium data for binary systems including two azeotropes and a ternary sys-
tem. Radial basis networks require lesser neurons than standard feed forward back-
propagation and they can be trained in a fraction of time. From this work it is been
proved that radial basis neural network has been successfully used for the prediction of
vapor liquid equilibrium (VLE) data.
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Introduction

Artificial neural network is an established tool
for effortless computation and its application in
Chemical Engineering field is very promising. It
has gained extensive interest. Artificial neural net-
work has been successfully employed in solving
problems in areas such as fault diagnosis,1 process
identification, property estimation, data smoothing
and error filtering, product design and develop-
ment, optimization, dynamic modeling and control
of chemical processes,2 design of mixing rule for
the prediction of vapor-liquid equilibrium (VLE)
data,3 estimation of activity coefficients and predic-
tion of VLE conditions.4 The purpose of using arti-
ficial neural network in VLE data prediction is to
reduce the number of experiments that are being
carried out to characterize the system.

The well-known multi-layer feed forward
backpropagation technique had been proposed ear-
lier for the prediction of VLE data. The method of
employing backpropagation technique requires an
even spread of data for better VLE prediction and
more training epochs. Radial basis networks require
lesser neurons than the standard feed forward
backpropagation networks and they can be trained
in a fraction of time.5 In this paper, radial basis net-
work function has been successfully incorporated

for the prediction of VLE data for binary and ter-
nary systems. The proposed technique of using ra-
dial basis function requires only limited experimen-
tal data to predict the behavior of the system.

Artificial neural network in VLE data predictions

Vapor liquid equilibrium data are generally es-
timated using thermodynamic models based on the
fundamental phase equilibrium criterion of equality
of chemical potentials in both the phases. Most of
these thermodynamic models are sets of equations,
empirical and semi-empirical, with each having
several constants determined using mixing rules for
the mixtures.

The conventional methods used for the predic-
tion of vapor liquid equilibrium (VLE) data are te-
dious and involve rigorous calculations in evaluat-
ing the mixture constants. The existing equations of
state (EOS) approach apply well to hydrocarbon
systems and are handicapped for systems contain-
ing polar compounds. The EOS are neither able to
describe the critical region satisfactorily for mix-
tures nor estimate the liquid properties accurately.
Activity coefficients are generally used for deter-
mining the liquid properties by several standard
techniques. Each has its limitations in application to
different kinds of systems. In brief, thermodynam-
ics of mixtures are more complicated than for pure
compounds and the difficulty in mixture analysis
increases with the extent of non-ideality.
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VLE predictions are much more complicated
for ternary systems and for the systems exhibiting
azeotropic behavior. Artificial neural network, on
the other hand, facilitate such predictions and elimi-
nate the need for determining these constants by at-
tempting to map the functional relationship all at
once. Artificial neural networks overcome the limi-
tations of the EOS approach in determining the data
for highly polar systems including those of
azeotropic systems. Also a limited database can be
used to train a net to properly make it to learn the
possible pattern of the pressure (p), temperature (T),
liquid mole fraction (x), and vapor mole fraction (y)
for a system.

Artificial neural network

Neural network, inspired by the information
processing strategies of the human brain, are prov-
ing to be useful in a variety of engineering applica-
tions. Artificial Neural Networks (ANN) may be
viewed as paralleled computing tools comprising of
highly organized processing elements called neu-
rons, which control the entire processing systems
by developing association between objects in re-
sponse to their environment.

ANN has been developed as generalizations of
mathematical models of human cognition or neural
biology. ANN is generally based on information
processing that occurs at many simple elements
called neurons and signals that are passed between
neurons over connection links. Each connection
link has its associated mass that gets multiplied
with the signal transmitted and each neuron applies
an activation function to determine its output sig-
nal.6

A neural network is characterized by its pattern
of connections between the neurons – called its ar-
chitecture, the method of determining the mass on
the connections known as training or learning algo-
rithm, and its activation function. The researches
have proposed many architectures of the network.
Two widely used network for non-linear problems
are the backpropagation and radial basis function
network.

Backpropagation network

In backpropagation, input vectors and the cor-
responding output vectors are used to train the net-
work until it can approximate a function, associate
input vectors with specific output vectors, or clas-
sify input vectors in an appropriate way as defined.
Networks with biases, a sigmoid layer, and a linear
output layer are capable of approximating any func-
tion with a finite number of discontinuities.

Limitations of backpropagation

A simple backpropagation is very slow because
it requires small learning rates for stable learning.
There are many techniques to improve the speed
and general performance of backpropagation such
as momentum and adaptive learning rates. Multi
layered networks are capable of performing just
about any linear or non-linear computation, and can
approximate any reasonable function arbitrarily
well. The error surface of a nonlinear network is
more complex than the error surface of a linear net-
work. Unlike linear networks, there is no easy way
of picking a good learning rate for non-linear
multi-layered networks.

The problem is that non-linear transfer function
in multi-layered networks introduces many local
minima in the error surface. As gradient descent is
performed on the error surface, it is possible for the
network solution to become trapped in one of these
local minima. Settling in local minima may be good
or bad depending on how close local minimum is to
the global minimum and how low an error is re-
quired. Networks are also sensitive to the number
of neurons in their hidden layers. Too few neurons
can lead to underfitting. Too many neurons can
contribute to overfitting, in which all training points
are well fit, but the fitting curve takes wild oscilla-
tions between these points.

Radial basis function network

Radial basis function network form one of the es-
sential categories of neural networks. A radial basis
function (RBF) network is a two-layer network whose
output units form a linear combination of the basis
functions computed by the hidden units. A function is
radially symmetric (or is an RBF) if its output de-
pends on the distance of the input sample (vector)
from another stored vector. Neural networks whose
node functions are radially symmetric functions are
referred to as radial basis function networks.8

RBF neuron model

The transfer function for a radial basis neuron is
radbas. The radial basis neuron receives as net input,
the vector distance between its weight vector w and
the input vector p, multiplied by the bias b. The basis
functions in the hidden layer produce a localized re-
sponse to the inputs so that each hidden unit has a
localized receptive field. The basis function can be
viewed as the activation function in the hidden layer.
The outputs of the hidden unit lie between 0 and 1.
The closer the input to center of the Gaussian, the
larger the response of the node. The node produces
an identical output for inputs with equal distance
from the center of the Gaussian; it is called a radial
basis. The output unit finds a linear combination of

320 L. GOVINDARAJAN and PL. SABARATHINAM, Prediction of Vapor-liquid …, Chem. Biochem. Eng. Q. 20 (3) 319–323 (2006)



the nonlinear basis functions and thus the network
performs a nonlinear transformation of the input.
The general model of RBF is as shown in Fig. 1.

RBF network is capable of approximating any
arbitrary mapping. The main difference between the
RBF network and the backpropagation network is
in their basis functions. The radial basis function
covers only small regions, whereas the sigmoid
function assumes nonzero values over an infinitely
large region of the input space. Classification tasks
are more amenable to the RBF network than the
backpropagation network in the case when the
problem is extended to higher dimensions.

RBF training procedure

The radial basis neural networks have been de-
signed by using the function newrb available in the
neural network toolbox supported by MATLAB.9 The
function newrb iteratively creates a radial basis net-
work by including one neuron at a time. Neurons are
added to the network until the sum of squared error
is found to be very small or the maximum numbers
of neurons are reached. At each iteration, the input
vector, which will result in lowering the network er-
ror most, is used to create a radial basis neuron.

During the training, each of the connecting
weights of the individual neuron is compared with
input signals. The distance between the connecting
weights determines the output of hidden neurons
and input vector, which is further, multiplied by
bias, an additional scalar quantity being added be-
tween neuron and fictitious neuron.

The output is propagated in a feed forward di-
rection to output layer neuron, which will give out-
put if the connection weights are close to input sig-
nal. This output is compared with target vector. If
the error reaches the error goal, then training is ter-
minated, otherwise the next neuron will be added.
The connecting weights are modified each time by
changing maximum neurons and the spread con-
stant. The value of maximum neuron and spread
constant keeps on changing till the network is

trained properly. Radial basis networks can be used
to approximate functions. newrb adds neurons to
the hidden layer of a radial basis network until it
meets the specified mean squared error goal.

Advantages of radial basis network

The time taken in designing a radial basis net-
work is often less when compared to the training a
sigmoid/linear networks.

The number of neurons required for designing
the network is considerably less when compared to
standard backpropagation network.

Radial basis neural network
in VLE data predictions

Cyclohexane – trimethylpentane system

The RBF network was trained for the cyclo-
hexane-trimethylpentane system10 having 26 VLE
data points at different isothermal conditions such
as 308.15, 318.15, 338.15 and 348.15 K. The
trained network was used to predict the VLE data at
328.15 K and the results are compared with the ex-
perimental values as shown in Fig. 2.

Diethylamine – triethylamine system

The RBF network was trained for the diethyl-
amine – triethylamine system10 having 85 VLE data
points at different isobaric conditions such as 46662.84,
53328.96, 59995.08, 66661.2, 79993.44, 86659.56,
93325.68, 106657.92 and 113 324.04 N m–2. The
trained network was used to predict the VLE data at
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F i g . 1 – Radial basis neuron model

F i g . 2 – Experimental and neural network VLE data for
cyclohexane – trimethylpentane at 328.15 K



101 325 N m–2 and the results were compared with
the experimental values and as shown in Fig. 3.

Ethanol – toluene

The RBF network was trained for the ethanol –
toluene (minimum boiling azeotropic) system10

having 100 VLE data points at various isothermal
conditions such as 308.15, 318.15, 323.15, 328.15,
338.15, 343.15, 348.15, 353.15 and 358.15 K. The
trained network was used to predict the VLE data at
333.15 K and the results are compared with the ex-
perimental values and are shown in Fig. 4.

Acetone – chloroform

The RBF network was trained for the acetone –
chloroform (maximum boiling azeotropic) system10

having 38 VLE data points at various isobaric condi-
tions such as 97 592, 99 992 and 101 325 N m–2. The
trained network was used to predict the VLE data at
98 392 N m–2 and the results are compared with the
experimental values and are shown in Fig. 5.

Hexane – benzene – butanol system

The RBF network was trained for the hex-
ane-benzene-butanol ternary system11 having 72
VLE data points at a pressure of 101 325 N m–2.
The trained network was used to predict those VLE
data points that were excluded in the training set
and the results have been compared with experi-
mental values and are as shown in Fig. 6.

Results and discussion

The neural network based equation of state used
in this paper to predict liquid phase composition (x)

and vapor phase composition (y) at given conditions
of temperature and pressure has been found to be
satisfactory. In this paper, two binary systems, two
azeotropic systems, and a ternary system were stud-
ied to predict the VLE data using Radial Basis Net-
work. The data used in the study consisted of pres-
sure and temperature as inputs to the network. The
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F i g . 3 – Experimental and neural network VLE data for
diethylamine – triethylamine at 101 325 N m–2

F i g . 4 – Experimental and neural network values for etha-
nol – toluene at 313.15 K

F i g . 5 – Experimental and neural network values for ace-
tone – chloroform at 98 392 N m–2



designed network is used to predict the liquid and
vapor phase mole fraction. For the ternary system,
the network was designed with pressure, tempera-
ture, and the liquid phase mole fraction as inputs and
the vapor phase mole fraction as the output of the
network. The performance of the network has been
evaluated on the basis of an overall absolute error
and root mean square error specified by the differ-
ence in the desired and actual outputs.

Mehmet Bilgin et al had employed the neural
network to predict the vapor-liquid equilibrium
(VLE) data for six different binary systems having
different chemical structures and solution types
(azeotrope-nonazeotrope) in various conditions
(isothermal or isobaric). A feed-forward back-pro-
pagation neural network was employed in the
study.12 The present study overcomes the limita-
tions back-propagation technique. The computa-
tional time required by radial basis function net-
work is 0.2 s in a Pentium III processor based per-
sonal computer system, whereas the time required
by back propagation network is about 3 s.
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Conclusion

The radial basis network approach used in this
work for vapor liquid equilibrium data prediction
gives favorable results for the isothermal system of
cyclohexane – trimethyl pentane and isobaric system
of diethylamine – triethylamine. In this paper, the
RBF network was successfully implemented for the
VLE data prediction of minimum boiling azeotropic
system of ethanol – toluene and for the maximum
boiling azeotropic system of acetone – chloroform. A
successful attempt has also been made to predict the
VLE data for the n-hexane – benzene – sec-butanol
ternary system. In this method fewer number of ex-
perimental data point were used to predict the VLE
data for the systems exhibiting complex behavior. In
this approach it was found that the network gives
better results with an uneven spread of data point
which is not the case with the backpropagation net-
work which requires an even spread of data for faster
convergence and less error. The RBF network can be
used for better VLE predictions of isothermal, iso-
baric, azeotropic, and non-azeotropic binary systems,
and also for ternary systems. Hence radial basis
function network used to predict vapor liquid equi-
librium data for thermodynamic systems is proved to
be an efficient, reliable, and robust technique.
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