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A two-level-model-predictive-control configuration is proposed that incorporates
the dynamics of a crystallizer unit in order to track the required temperature cooling tra-
jectory. Dynamic matrix control has been successfully used to control the crystallizer
temperature by manipulating both heater and cooler units. The performance of the model
predictive control has been evaluated by comparing its performance to a conventional
PI control configuration. The results demonstrated excellent and consistent cooling tem-
perature tracking performance by the dynamic matrix controller.
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Introduction

Crystallization is one of the separation pro-
cesses in the chemical industry.1 In a typical
crystallizer operation, temperature control is the
key to the product properties. Fig. 1 illustrates the
general thermodynamic phase behavior of a sol-
ute-solvent. Fig. 1 shows that any liquid from a sta-
ble zone with a temperature and a composition be-
low the solubility curve is unsaturated and stable.
Cooling a liquid from the stable zone to a tempera-
ture and composition on the solubility curve results
in a saturated solution in equilibrium with the solid
phase, if present. Further cooling results in a solu-
tion state that the composition of the liquid is
greater than the equilibrium composition at the
given temperature. Any liquid with a composition
and temperature above the solubility curve is not in
thermodynamic equilibrium and thus is supersatu-
rated. In this region, nucleation sites are necessary
to initiate the formation of a solid phase from a su-
persaturated liquid. Theoretically, if one could sup-
press all nucleation sites, the liquid could exist as a
stable supersaturated liquid even though it would
not be in thermodynamic equilibrium.2 The region
between the solubility curve and stability limit
curve is called the metastable zone. In the region
above the metastable zone, the presence of nucle-
ation sites is not a requirement for the formation of
a solid phase, as spontaneous nucleation and forma-
tion of solid phase takes place; therefore this region
is called an unstable zone. Basically, in order to
produce a solid phase a crystallizer must operate
above the solubility curve. However, since produc-
tion of a large number of small particles is not de-

sirable, the operating region is restricted to the
metastable zone. Note, one should avoid operating
the crystallizer in the unstable zone. Staying within
the metastable zone typically leads to crystalliza-
tions dominated by crystal growth and reduced sec-
ondary nucleation within the ongoing crystalliza-
tion.3,4 That is, crystallization within the metastable
zone results in a defined crystal growth rate, a de-
sired particle size, obtaining narrow particle size
distributions, and reducing the risk of producing a
non-useable polymorph.5�7

One approach to control a bath crystallizer is to
follow a temperature profile in the metastable
zone.8 An alternative approach is to follow a super-
saturation profile in the metastable zone.9,10

In order to utilize either of the above control
policies a DMC has been developed and imple-
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F i g . 1 – Phase behavior of a solute-solvent system
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mented. Dynamic matrix control (DMC) is a variant
of model predictive controller (MPC) which was
developed by Culter and Ramaker11 of Shell Oil Co.
and has been widely accepted industrially mainly in
the oil and petrochemical industry.12,13 The success
of DMC in industry is the result of DMC’s ability
to deal with multivariable processes.

MPC strategies have already been used for
controlling the temperature control of batch
crystallizers.14,15 The goal of this study is to investi-
gate the performance of a two-level-DMC control-
ler. In this study, in order to save more energy, the
jacket water is recycled which is different from the
previous setups in which the hot and cold streams
are mixed to regulate the temperature of the jacket
water of the crystallizer.14,15

The basic theory of DMC control is presented
in section two of this article. The crystallizer unit is
described in section three and then the experimental
results are presented in section four followed by the
discussions and conclusions in sections five and six.

DMC theory

The control calculations of a MPC strategy are
based on current and previous process responses
and previous values of the implemented inputs, cur-
rent measurements and future predictions of the
process variables. The future predictions are based
on empirical dynamic models. In the case of the
DMC strategy, those empirically obtained models
are typically multivariable step response models.
The objective of the DMC strategy is to determine
the future changes in manipulated variables in such
a way that the predicted process variables move to
the desired targets in an optimal manner; in other
words, at the current sampling time the DMC con-
troller uses an optimization algorithm to calculate
M future manipulated variable moves (control hori-
zon) in such a way that the predicted process vari-
able reaches the target after P sample times (predic-
tion horizon). However, only the first move is im-
plemented at each sample time so that the measure-
ments could be updated and the optimization algo-
rithm could be repeated at each sample time.

In a process with two manipulated variables
and one process variable the step response model
for the DMC is defined by eq. (1):11,16�18
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Where, y( )� �1 is the process variable at ( )� �1
sample time. y 0 is the initial value of the process

variable and �u j1 1( )� � � and �u j2 1( )� � �
represent the changes in manipulated variables from
one sample time to the next. S j1, and S j2, are the
coefficients of the step response model. The choice
of the number of the coefficients and the sample
time depend on the process dynamics.

A quadratic objective function J can be defined
by eq. (2)
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Where, �E is a P �1 vector which represents the er-
ror between the predicted values and the reference
trajectory P sample time into the future �U a
2 1M � vector representing the M movements of
manipulated variables. Q and R are the weighting
matrices used to weight the most important ele-
ments of E or �U .

The Model Predictive Control law that mini-
mizes the objective function in eq. (2) can be calcu-
lated analytically using eq. (3).

�U k K E( ) �� C (3)

In which KC is a 2M P� matrix given by eq.
(4)
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And the dynamic matrix S is defined by eq. (5)

S � �

�

� � �

S

S S

S S S

S S S

S S S

1

2 1

1 1

1 2

1

0 0

0

0

�

� � �

�

�

� � � �

�

M M

M M

P P P M 1

�

	


















�

�










(5)

Where Si is a 1 2� vector of step-response co-
efficients for the i-th time step as shown in eq. (6).

S i � [ ], ,S Si i1 2 (6)

Description of the crystallizer

Fig. 2 is a schematic of the batch crystalliza-
tion mini pilot built for this study. The pre-mixer
tank is used to prepare the solution by dissolving
solute in the water and heating the solution to the
desired temperature. The solution is then trans-
ferred to the jacketed crystallizer. The crystallizer
temperature trajectory is controlled by circulating
water through the crystallizer jacket. The tempera-
ture of the jacket water is regulated in the water
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bath using both an electrical heater and a water
cooler that are immersed in the water bath. All three
vessels are equipped with stirrers to provide a uni-
form temperature and higher heat transfer rates and
to keep the crystals in the solution. The speed of the
stirrers can be manually adjusted using the stirrer
drive motors mounted on each vessel and these mo-
tors can be turned off and on via the DCS. Both the
pre-mix tank and the water bath are equipped with
digitally controlled water immersion heaters, and
the temperatures of the vessel contents are mea-
sured using thermocouples. The flow rate of the cir-
culating water inside the crystallizer jacket and the
flow rate of the cooling water are both controlled
using electrically operated valves. The flow rates of
the cooling water and the circulating water are mea-
sured using rotary flow meters. In order to maintain
the vessel’s liquid level, indicators are provided.

The unit is equipped with DeltaV DCS 7.2
which has one active controller with five cards each
having 8 channels.

For the purposes of this study, the DMC con-
trol software for the crystallization unit has been
developed using Visual Basic 6.0. This software
was directly linked to the Delta V and the devel-
oped software package considers the process vari-
ables as inputs and manipulated variable values as
outputs.

For this study the crystallization of potassium
chloride was performed. The solubility data for po-
tassium chloride in water as the function of the tem-
perature was available.19 The literature did provide
the width of metastable zone of the solutes in aque-
ous solutions.1,19

Results

Fig. 3 is a schematic of a two-level-DMC. The
inside DMC is a slave single-input-multiple-output,
SIMO, DMC that was implemented to control the
water bath temperature. Here, the terms input and
output are considered with respect to the controller
not to the process. The SIMO DMC uses the bath
temperature as the process variable and manipulates
both the cooling water flow rate setpoint and the
water bath electrical heater input. Note, there is a
slave PI controller for the cooling water flow rate
whose setpoint comes from the DMC. The dynamic
behaviour of the bath can be represented by
twostep-response models for the bath temperature
response to step changes in heater duty and to the
cooling water flow rate setpoint. The time constant
and process delay of the water bath temperature re-
sponse to the step changes in the cooling water flow
rate setpoint and heater duty are shown in Table 1.

S. MORTAZAVI-MANESH and W. Y. SVRCEK, A Control Configuration for …, Chem. Biochem. Eng. Q. 24 (1) 35–41 (2010) 37

F i g . 2 – Crystallizer unit



The following constraints are included in the
SIMO DMC. The values greater than the maximum
levels or less than the minimum levels of the con-
straints are considered equal to the maximum or the
minimum levels of the constraints, respectively.

0� heater duty � 100 % (7)

0� cooling water flow rate setpoint �

� 5.00 · 10�5 m3 s�1
(8)

|�(setpoint of the cooling water flow

at each sample time)|� 0.67 · 10�5 m3 s�1
(9)

The jacketed crystallizer vessel temperature is
controlled by the water that flows through the
jacket of the crystallizer. The jacket water tempera-
ture is regulated in the water bath vessel to a maxi-
mum allowable operating temperature of 60 °C. A
two-level controller is implemented in which a
master controller manipulates the water bath tem-
perature setpoint in order to control the crystallizer
vessel temperature. DMC and PI controllers are im-
plemented to control the crystallizer vessel temper-
ature and their performance is compared. A Master
single-input-single-output, SISO, DMC has been

implemented in which the crystallizer temperature
is the process variable and manipulated variable is
the setpoint of the slave DMC which is temperature
setpoint of the water bath vessel. The dynamic be-
haviour of the crystallizer can be represented by a
step response model which relates the crystallizer
temperature response to step changes in the setpoint
of the water bath temperature. Since the heater
power can be changed easily and fast over the
whole range of 0 to 100 %, a small penalty on the
changes of the heater power is chosen for the slave
DMC. However, the objective is to limit the
changes of the setpoint of the cooling water flow
rate in order to limit the load on the control valve
therefore a larger penalty for the changes of the
setpoint of the cooling water flow is considered for
the slave DMC. In addition to obtain a fast response
from the slave controller, the penalty of the error
can be increased. In the case of the master DMC,
the unit value is considered for both Q and R. The
time constant and process delay (dead time) of crys-
tallizer temperature response to the step changes in
the bath temperature setpoint are shown in Table 2.
The parameters for the DMC used to control the
bath content temperature are provided in Table 3.

The constraint that is included in the master
DMC is that the water bath temperature

setpoint � 55 °C (10)
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F i g . 3 – Two-level DMC configuration for crystallizer tem-
perature control

T a b l e 1 – Process delay, time constant and gain of bath
temperature response to the step changes in the
cooling water flow rate and heater duty

Step change
Delay,

td/s
Time constant, tc/s Gain

heater duty 8 536 0.73

cooling water
flow rate setpoint

8 508 �1.98

T a b l e 2 – Time constant and process delay of crystallizer
temperature response to the step changes in the
water bath temperature setpoint from 30 °C to
40 °C

Step change
Delay,

td/s
Time constant,

tc/s
Gain

water bath
temperature setpoint

91 1120 0.95

T a b l e 3 – DMC parameters

DMC for the bath
temperature control

loop

DMC for the
crystallizer tempe-
rature control loop

sample time, �/s 4 7

number of
coefficients, N

150 170

control horizon, M 4 3

prediction horizon,
P

9 25

Q 4 1

R

for heater � 0.01
for cooling
water � 25

1



The performance of the two-level DMC has
been tested via a series of step changes and ramps
in the setpoint of the crystallizer temperature. The
results of these setpoint tracking tests of the
two-level DMC are shown in Fig. 4. The integral
square error, ISE, of MPC used for controlling the
crystallizer temperature is provided in Table 4. The
control actions for the MPC for the crystallizer tem-
perature loop are shown in Figs. 5, 6 and 7. The results of the DMC have been compared

with those of a cascade PI configuration; Fig. 8.
Two PI controllers regulate the water bath tempera-
ture by manipulating water bath electrical heater
duty and the setpoint of the PI flow controller. A
master PI controller manipulates the setpoint of the
water bath control loop to control the crystallizer
vessel temperature trajectory. The PI parameters
have been tuned using the auto tune variation tech-
nique,20 with additional fine tuning to optimize the
performance of the PI control loop. Table 5 presents
the parameters of the PI controllers.

The performance of the PI control configuration
has been tested by a series of step changes and ramps
in the setpoint of the crystallizer temperature. The re-
sults of the setpoint tracking test of the PI configura-
tion is shown in Fig. 9. The control actions of the PI
control configuration for the crystallizer temperature
control loop are shown in Figs. 10, 11 and 12.
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F i g . 4 – Setpoint tracking test of DMC used in crystallizer
temperature control loop

F i g . 5 – Water bath temperature in setpoint tracking test of
DMC used in crystallizer temperature control loop

F i g . 6 – Heater duty in setpoint tracking test of DMC used
in crystallizer temperature control loop

F i g . 7 – Cooling water flow rate in setpoint tracking test of
DMC used in crystallizer temperature control

F i g . 8 – PI configuration for crystallizer temperature control

T a b l e 4 – Integral square error, ISE, of DMC and PI control
strategy for crystallizer temperature control loop

ISE

DMC 325.19

PI 788.5

T a b l e 5 – Parameters of the PI controllers

K tI/s

PI1 4 5

PI2 79.58 40

master PI 5 230



Discussion

Although the crystallizer temperature has a
large process delay (dead time) and a large process
time constant, the DMC tracks the setpoint very
well. The DMC predicts the future step changes and

ramp changes and tries to eliminate the future errors
as can be seen in Figs. 4 and 5. The effect of DMC
prediction can be seen at times 10, 50, 100, 150 and
200 min. On the other hand, the PI controller re-
sponds to the changes after they have happened and
does provide lower quality control of process with
large dead time and time constant as seen in Figs. 9
and 10 at process times of 10, 50, 100, 150 and 200
min.

In addition to the setpoint tracking perfor-
mance of the controllers, the controller manipulated
changes can also be used to evaluate the controllers’
performance. Figs. 6 and 11 show the heater
changes of the DMC and PI configurations, respec-
tively while Figs. 7 and 12 show the cooling water
flow rate changes for DMC and PI controllers, re-
spectively. It can be seen that the PI controller re-
quires more aggressive changes in manipulated
variables than that of the DMC. The DMC’s
optimizer provides optimum changes in the manip-
ulated variables and the predictive nature of the
DMC allows it to predict the future changes in the
setpoint, thus mitigating sudden changes in the ma-
nipulated variables.

Conclusion

In this study, both DMC and PI controller con-
figurations have been implemented on a mini pilot
plant crystallizer unit. The dynamic behaviour of
the water bath required two-step change models to
represent the response of the water bath tempera-
ture to a step change in the water bath electrical
heater duty and to the cooling water flow rate. In
addition, one-step response model represents the
temperature response of the crystallizer to a step
change in the water bath temperature setpoint.

One slave SIMO DMC has been configured to
control the water bath temperature. It captures the
dynamics of the water bath using the step change
models and manipulates the water bath electrical
heater duty and the cooling water flow rate. In addi-
tion, one master SISO DMC controls the crystal-
lizer vessel temperature by manipulating the
setpoint of the water bath temperature control loop.

The performance of the DMC configuration
has been compared to that of a PI controller config-
uration. The DMC performance resulted in a lower
ISE and smaller overshoots than the PI controller
which of course is due to the predictive nature of
the DMC, in which the DMC by its very nature an-
ticipates the future errors and reacts in such a way
as to eliminate the future errors before they happen
which is very effective for processes with relatively
large time delays.
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F i g . 9 – Setpoint tracking test of the PI control configura-
tion used in crystallizer temperature control loop

F i g . 1 0 – Water bath temperature in setpoint tracking
test of the PI control configuration used in
crystallizer temperature control loop

F i g . 1 1 – Heater duty in setpoint tracking test of the PI
control configuration used in crystallizer tem-
perature control loop

F i g . 1 2 – Cooling water flow rate in setpoint tracking
test of the PI control configuration used in
crystallizer temperature control



By comparing the control action of the DMC
and PI controllers it can be seen that the PI control-
lers do result in a more aggressive control action
than the DMC. The smoother control action of the
DMC is due to the optimization procedure in the al-
gorithm which prevents aggressive movements of
the manipulated variables.

N o m e n c l a t u r e

DMC� dynamic matrix control
�E � a P �1 vector which represents the error be-

tween the predicted values and the reference tra-
jectory P sample time into the future

ISE � integral of square error

J � objective function

K � proportional gain of a PI controller

K C � a 2M P� matrix

M � control horizon

MPC� model predictive control

N � agitator speed, rev s�1

Ni � number of coefficients of the step change model
representing the effect manipulated variable i on
the process variable

P � prediction horizon

PI � proportional-integral controller

Q � weighting matrix

R � weighting matrix

SIMO � single-input-multi-output

SISO � single-input-single-output

tc � time constant, s

td � delay, s

tI � integral time constant of a PI controller, s

�U � a 2 1M � vector representing the M movements
of manipulated variables

y � process variable

y0 � initial value of the process variable

G r e e k l e t t e r s

�ui ( )� � movement of the i-th manipulated variable at
sample time �

� � sample time, s

� � temperature, °C
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