ON A CHERN-TYPE PROBLEM FOR SPACE-LIKE KAEHLER SUBMANIFOLDS

Young Jin Suh
Kyungpook National University, Korea

Abstract

The purpose of this paper is to investigate a Chern type problem for space-like Kaehler submanifolds M in indefinite complex hyperbolic space $C H_{p}^{n+p}(c), c<0$. Accordingly, we give better estimations of the squared norm of the second fundamental form of M in $C H_{p}^{n+p}(c)$, $c<0$.

1. Introduction

Let M be an n-dimensional complex submanifold of $(n+p)$-dimensional complex space form $M^{n+p}(c)$. Then in this family of submanifolds Chern [4], Chern, do Carmo and Kobayashi [5] pointed out that it is of interest to study the distribution of the value of squared norm $|\alpha|_{2}$ of the second fundamental form α of M as follows:

Problem. Let M be an n-dimensional complete Kaehler submanifold of an $(n+p)$-dimensional complex space form $M^{n+p}(c)$ of constant holomorphic curvature $c(<0)$. Then does there exist a constant h in such a way that if it satisfies $h_{2}>h$, then M is totally geodesic?
It is known that a complete space-like complex submanifold of an indefinite complex space form $M_{p}^{n+p}(c), c \geq 0, p \geq 1$, is totally geodesic in [1] and [2]. However, in the case $c<0$, it was known that there exist many complete Einstein Kaehler space-like submanifolds in the indefinite complex hyperbolic space $C H_{p}^{n+p}(c), c<0, p \geq 1$, which are not totally geodesic (See [1, 8, 11]).

[^0]From this point of view, for the case where $c<0$ we have studied in [1] the classification problem of space-like complex submanifolds of $C H_{p}^{n+p}(c)$ with bounded scalar curvature.

On the other hand, Goldberg and Kobayashi [6] and Houh [7] (resp. Barros and Romero [3], and Montiel and Romero [9]) introduced the notion of totally real bisectional curvature on Kaehler (resp. indefinite Kaehler) manifolds. Such a curvature is so much closely related to the scalar curvature given in section 3. Then naturally, motivated by the result in [1] concerned with the scalar curvature, we also have investigated the classification problem with bounded totally real bisectional curvature in [6]. That is, we proved the following

Theorem A. Let M be an $n(\geq 3)$-dimensional complete complex submanifold of $C H_{p}^{n+p}(c), p>0$, with totally real bisectional curvature $\geq b$. Then the following holds

1) b is smaller than or equal to $\frac{c}{4}$.
2) If $b=\frac{c}{4}$, then M is a complex space form $C H^{n}\left(\frac{c}{2}\right), p \geq \frac{n(n+1)}{2}$.
3) If $b=\frac{n(n+p+1) c}{2(n+2 p)(n+1)}$, then M is a complex space form $C H^{n}\left(\frac{c}{2}\right)$, $p=\frac{n(n+1)}{2}$.
On the other hand, it is seen in Aiyama, Nakagawa and the present author [1] and Ki and the present author [8] that the squared norm

$$
h_{2}=|\alpha|_{2}=-\sum_{i, j} h_{i j}^{x} \bar{h}_{i j}^{x}
$$

of the second fundamental form α of M in $C H_{p}^{n+p}(c)$ satisfies

$$
\begin{equation*}
0 \geq|\alpha|_{2} \geq n(n+1) \frac{c}{4} \tag{1.1}
\end{equation*}
$$

the latter equality arising only when M is a complex space form of constant holomorphic sectional curvature $\frac{c}{2}$. However, by estimating the Laplacian of h_{2}, that is, $\triangle h_{2}$, we have obtained the same result as in Theorem A with bounded scalar curvature or with bounded totally real bisectional curvature, respectively.

Now in this paper let us investigate the above estimations of $h_{2}=|\alpha|_{2}$, that is, a Chern type problem for space-like complex submanifolds M in $C H_{p}^{n+p}(c)$; more explicitly, for this we will estimate the Laplacian of the squared norm $h_{4}, h_{4}=\sum_{j} \mu_{j}^{2}$, where μ_{j} denotes an eigenvalue of the Hermitian matrix $H=\left(h_{i \bar{j}}^{2}\right)$, which is given by $h_{i \bar{j}}^{2}=-\sum_{x, k} h_{i k}^{x} \bar{h}_{k j}^{x}$. Here we are able to give better estimations than (1.1).

Now let us denote by $a(M)$ the infimum of totally real bisectional curvatures of M in $C H_{p}^{n+p}(c)$. Then we assert the following

Theorem 1.1. Let M be an $n=3$ or $n=4$-dimensional complete space-like complex submanifold of an $(n+p)$-dimensional indefinite complex hyperbolic space $C H_{p}^{n+p}(c)$ of constant holomorphic sectional curvature $c(>0)$ and of index $2 p(>0)$. Then there are constants $a=a(n, p, c)$ and $h=h(n, p, a(M), c), c<0$, so that if $a(M) \geq a$ and the squared norm $|\alpha|_{2}=-\sum_{x, i, j} h_{i j}^{x} h_{i j}^{x}$ of the second fundamental form α of M satisfies $|\alpha|_{2} \geq h$, then M is totally geodesic.

Theorem 1.2. Let M be an $n \geq 5$-dimensional complete space-like complex submanifold of an $(n+p)$-dimensional indefinite complex hyperbolic space $C H_{p}^{n+p}(c)$ of constant holomorphc sectional curvature $c(<0)$ and of index $2 p(>0)$ and $p \leq \frac{3\left(n^{2}-1\right)}{n^{2}-4 n-2}$. Then there exists a constant $a=a(n, p, c)$ and a negative constant $h=h(n, p, a(M), c)$ so that if $a(M) \geq a$ and $|\alpha|_{2} \geq h$, then M is totally geodesic.

2. LOCAL FORMULAS

This section is concerned with recalling basic formulas on semi-definite Kaehler manifolds. Let M be a complex $m(\geq 2)$-dimensional semi-definite Kaehler manifold equipped with semi-definite Kaehler metric tensor g and almost complex structure J. For the semi-definite Kaehler structure $\{g, J\}$, it follows that J is integrable and the index of g is even, say $2 t(0 \leq t \leq m)$. In the case where t is contained in the range $0<t<m, M$ is called an indefinite Kaehler manifold and the structure $\{g, J\}$ is called an indefinite Kaehler structure and in particular, in the case where $t=0$ or m, M is only called a Kaehler manifold, and then the structure $\{g, J\}$ is called a Kaehler structure.

Now we choose a local field

$$
\left\{E_{\alpha}\right\}=\left\{E_{A}, E_{A^{*}}\right\}=\left\{E_{1}, \ldots, E_{m}, E_{1^{*}}, \ldots, E_{m^{*}}\right\}
$$

of orthonormal frames on a neighborhood of M, where $E_{A^{*}}=J E_{A}$ and $A^{*}=m+A$. Here the indices A, B, \ldots run from 1 to m and the indices α, β, \ldots run from 1 to $2 m=m^{*}$. We set $U_{A}=\left(E_{A}-i E_{A^{*}}\right) / \sqrt{2}$ and $\bar{U}_{A}=\left(E_{A}+i E_{A^{*}}\right) / \sqrt{2}$, where i denotes the imaginary unit. Then $\left\{U_{A}\right\}$ constitutes a local field of unitary frames on the neighborhood of M. This is a complex linear frame which is orthonormal with respect to the semi-definite Kaehler metric, that is, $g\left(U_{A}, \bar{U}_{B}\right)=\varepsilon_{A} \delta_{A B}$, where

$$
\varepsilon_{A}=1 \text { or }-1, \text { according as } 1 \leq A \leq m-t \text { or } m-t+1 \leq A \leq m
$$

Let $\left\{\theta_{\alpha}\right\}=\left\{\theta_{A}, \theta_{A^{*}}\right\},\left\{\theta_{\alpha \beta}\right\}$ and $\left\{\Theta_{\alpha \beta}\right\}$ be the canonical form, the connection form and the curvature form on M respectively, with respect to the local field $\left\{E_{\alpha}\right\}=\left\{E_{A}, E_{A^{*}}\right\}$ of orthonormal frames. Then we have the
structure equations

$$
\begin{align*}
& d \theta_{\alpha}+\sum_{\beta} \varepsilon_{\beta} \theta_{\alpha \beta} \wedge \theta_{\beta}=0, \quad \theta_{\alpha \beta}-\theta_{\alpha^{*} \beta^{*}}=0 \\
& \theta_{\alpha^{*} \beta}+\theta_{\alpha \beta^{*}}=0, \quad \theta_{\alpha \beta}+\theta_{\beta \alpha}=0, \quad \theta_{\alpha \beta^{*}}-\theta_{\beta \alpha^{*}}=0 \tag{2.1}\\
& d \theta_{\alpha \beta}+\sum_{\gamma} \varepsilon_{\gamma} \theta_{\alpha \gamma} \wedge \theta_{\gamma \beta}=\Theta_{\alpha \beta}, \quad \Theta_{\alpha \beta}=-\frac{1}{2} \sum_{\gamma, \delta} \varepsilon_{\gamma} \varepsilon_{\delta} K_{\alpha \beta \gamma \delta} \theta_{\gamma} \wedge \theta_{\delta}
\end{align*}
$$

where $K_{\alpha \beta \gamma \delta}$ denotes the components the Riemannian curvature tensor R of M.

Now, let $\left\{\omega_{A}\right\}$ be the dual coframe field with respect to the local field $\left\{U_{A}\right\}$ of unitary frames on the neighborhood of M given by

$$
\omega_{A}=\left(\theta_{A}+i \theta_{A^{*}}\right) / \sqrt{2}
$$

Then $\left\{\omega_{A}\right\}=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ consists of complex-valued 1-forms of type (1,0) on M such that $\omega_{A}\left(U_{B}\right)=\varepsilon_{A} \delta_{A B}$ and $\left\{\omega_{A}, \bar{\omega}_{A}\right\}=\left\{\omega_{1}, \ldots, \omega_{m}, \bar{\omega}_{1}, \ldots, \bar{\omega}_{m}\right\}$ are linearly independent. The semi-definite Kaehler metric g of M can be expressed as $g=2 \sum_{A} \varepsilon_{A} \omega_{A} \otimes \bar{\omega}_{A}$. Associated with the frame field $\left\{U_{A}\right\}$, there exist complex-valued forms $\omega_{A B}$ given by

$$
\omega_{A B}=\theta_{A B}+i \theta_{A^{*} B},
$$

which are usually called connection forms on M such that they satisfy the structure equations of M;

$$
\begin{align*}
& d \omega_{A}+\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\bar{\omega}_{B A}=0, \\
& d \omega_{A B}+\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B}, \tag{2.2}\\
& \Omega_{A B}=\sum_{C, D} \varepsilon_{C} \varepsilon_{D} R_{\bar{A} B C \bar{D}} \omega_{C} \wedge \bar{\omega}_{D},
\end{align*}
$$

where $\Omega=\left(\Omega_{A B}\right), \Omega_{A B}=\Theta_{A B}+i \Theta_{A^{*} B}$ (resp. $R_{\bar{A} B C \bar{D}}$) denotes the curvature form (resp. the components of the semi-definite Riemannian curvature tensor R) of M. So, by (2.1) and (2.2) we obtain

$$
\begin{equation*}
R_{\bar{A} B C \bar{D}}=-\left\{\left(K_{A B C D}+K_{A^{*} B C^{*} D}\right)+i\left(K_{A^{*} B C D}-K_{A B C^{*} D}\right)\right\} \tag{2.3}
\end{equation*}
$$

Let M be an m-dimensional semi-definite Kaehler manifold of index $2 t$ $(0 \leq t \leq m)$. A plane section P of the tangent space $T_{x} M$ of M at any point x is said to be non-degenerate provided that $\left.g_{x}\right|_{P}$ is non-degenerate. It is easily seen that P is non-degenerate if and only if it has a basis $\{X, Y\}$ such that

$$
g(X, X) g(Y, Y)-g(X, Y)^{2} \neq 0
$$

If the non-degenerate plane P is invariant by the complex structure J, it is said to be holomorphic. It is also trivial that the plane P is holomorphic
if and only if it contains a vector X in P such that $g(X, X) \neq 0$. For the non-degenerate plane P spanned by X and Y in P, the sectional curvature $K(P)$ is usually defined by

$$
K(P)=K(X, Y)=\frac{g(R(X, Y) Y, X)}{g(X, X) g(Y, Y)-g(X, Y)^{2}}
$$

The holomorphic plane spanned by a space-like or time-like vector X and $J X$ is said to be space-like or time-like, respectively. The sectional curvature $K(P)$ of the holomorphic plane P is called the holomorphic sectional curvature, which is denoted by $H(P)$. The semi-definite Kaehler manifold M is said to be of constant holomorphic sectional curvature if its holomorphic sectional curvatures $H(P)$ are constant for all holomorphic planes at all points of M. Then M is called a semi-definite complex space form, which is denoted by $M_{t}^{m}(c)$ provided that it is of constant holomorphic sectional curvature c, of complex dimension m and of index $2 t(\geq 0)$. It is seen in Wolf [12] that the standard models of semi-definite complex space forms are the following three kinds : the semi-definite complex projective space $C P_{t}^{m}(c)$, the semi-definite complex Euclidean space C_{t}^{m} or the semi-definite complex hyperbolic space $C H_{t}^{m}(c)$, according as $c>0, c=0$ or $c<0$. For any integer $q(0 \leq t \leq m)$ it is also seen by [12] that they are complete simply connected semi-definite complex space forms of dimension m and of index $2 t$. The Riemannian curvature tensor $R_{\bar{A} B C \bar{D}}$ of $M_{t}^{m}(c)$ is given by

$$
\begin{equation*}
R_{\bar{A} B C \bar{D}}=\frac{c}{2} \varepsilon_{B} \varepsilon_{C}\left(\delta_{A B} \delta_{C D}+\delta_{A C} \delta_{B D}\right) \tag{2.4}
\end{equation*}
$$

Now, let M be an m-dimensional semi-definite Kaehler manifold of an index $2 t$ equipped with semi-definite Kaehler structure $\{g, J\}$. We can choose a local field of $\left\{E_{\alpha}\right\}=\left\{E_{A}, E_{A^{*}}\right\}$ of orthonormal frames on the neighborhood of M such that $g\left(E_{A}, E_{B}\right)=\varepsilon_{A} \delta_{A B}$. Let $\left\{U_{A}\right\}$ be a local field of unitary frames associated with the orthonormal frames $\left\{E_{A}, E_{A^{*}}\right\}$ on the neighborhood of M stated above in the first of this section. This is a complex linear frame, which is orthonormal with respect to the semi-definite Kaehler metric, that is, $g\left(U_{A}, \bar{U}_{B}\right)=\varepsilon_{A} \delta_{A B}$.

Given two holomorphic planes P and Q in $T_{x} M$ at any point x in M, the holomorphic bisectional curvature $H(P, Q)$ determined by the two planes P and Q of M is defined by

$$
\begin{equation*}
H(P, Q)=\frac{g(R(X, J X) J Y, Y)}{g(X, X) g(Y, Y)-g(X, Y)^{2}} \tag{2.5}
\end{equation*}
$$

where X (resp. Y) is a non-zero vector in P (resp. Q). In particular, the holomorphic bisectional curvature $H(P, Q)$ is said to be space-like or time-like if P and Q are both space-like or either P or Q is time-like. It is a simple matter to verify that the right hand side in (2.5) depends only on P and Q and so it is well defined. It may be denoted by $H(P, Q)=H(X, Y)$. It is
easily seen that $H(P, P)=H(P)=H(X, X)=: H(X)$ is the holomorphic sectional curvature determined by the holomorphic plane P, where X is a non-zero vector in P.

We denote by P_{A} the holomorphic plane $\left[E_{A}, J E_{A}\right]$ spanned by E_{A} and $J E_{A}=E_{A^{*}}$. We set

$$
H\left(P_{A}, P_{B}\right)=H_{A B}(A \neq B), \quad H\left(P_{A}, P_{A}\right)=H\left(P_{A}\right)=H_{A A}=H_{A}
$$

When two holomorphic planes P_{A} and P_{B} are orthogonal to each other, naturally we are able to define the totally real bisectional curvature $B_{A B}=$ $H\left(P_{A}, P_{B}\right)(A \neq B)$ in such a way that (See also $\left.[3,6,7,11]\right)$

$$
B_{A B}=\frac{g\left(R\left(E_{A}, J E_{A}\right) J E_{B}, E_{B}\right)}{g\left(E_{A}, E_{A}\right) g\left(E_{B}, E_{B}\right)}=-\varepsilon_{A} \varepsilon_{B} K_{A A^{*} B B^{*}}(A \neq B)
$$

Moreover, when two holomorphic planes P_{A} and P_{B} coincide with each other, the holomorphic sectional curvature is defined by

$$
H_{A}=\frac{g\left(R\left(E_{A}, J E_{A}\right) J E_{A}, E_{A}\right)}{g\left(E_{A}, E_{A}\right) g\left(E_{A}, E_{A}\right)}=-K_{A A^{*} A A^{*}}
$$

Then by (2.3) it can be respectively given by

$$
\begin{equation*}
B_{A B}=\varepsilon_{A} \varepsilon_{B} R_{\bar{A} A B \bar{B}}(A \neq B), \text { and } H_{A}=R_{\bar{A} A A \bar{A}} \tag{2.6}
\end{equation*}
$$

3. Space-Like Kaehler submanifolds

This section is concerned with space-like complex submanifolds of an indefinite Kaehler manifold. First of all, the basic formulas for the theory of space-like complex submanifolds are prepared.

Let M^{\prime} be an $(n+p)$-dimensional connected indefinite Kaehler manifold of index $2 p$ with indefinite Kaehler structure $\left(g^{\prime}, J^{\prime}\right)$. Let M be an n-dimensional connected space-like complex submanifold of M^{\prime} and let g be the induced Kaehler metric tensor of index $2 p$ on M from g^{\prime}. We can choose a local field $\left\{U_{A}\right\}=\left\{U_{j}, U_{x}\right\}=\left\{U_{1}, \ldots, U_{n+p}\right\}$ of unitary frames on a neighborhood of M^{\prime} in such a way that, restricted to M, U_{1}, \ldots, U_{n} are tangent to M and the others are normal to M. Here and in the sequel, the following convention on the range of indices is used throughout this paper, unless otherwise stated :

$$
\begin{gathered}
A, B, C, \ldots=1, \ldots, n, n+1, \ldots, n+p \\
i, j, k, \ldots=1, \ldots, n ; \quad x, y, z, \ldots=n+1, \ldots, n+p
\end{gathered}
$$

With respect to the frame field, let $\left\{\omega_{A}\right\}=\left\{\omega_{j}, \omega_{y}\right\}$ be its dual frame fields. Then the indefinite Kaehler metric tensor g^{\prime} of M^{\prime} is given by $g^{\prime}=2 \sum_{A} \varepsilon_{A} \omega_{A} \otimes \bar{\omega}_{A}$, where $\left\{\varepsilon_{A}\right\}=\left\{\varepsilon_{j}, \varepsilon_{y}\right\}$. The connection forms on M^{\prime} are denoted by $\left\{\omega_{A B}\right\}$. Then by virtue of (2.2) the canonical forms ω_{A}
and the connection forms $\omega_{A B}$ of the ambient space M^{\prime} satisfy the structure equations

$$
\begin{align*}
& d \omega_{A}+\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\bar{\omega}_{B A}=0, \\
& d \omega_{A B}+\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B}^{\prime}, \tag{3.1}\\
& \Omega_{A B}^{\prime}=\sum_{C, D} \varepsilon_{C} \varepsilon_{D} R_{\bar{A} B C \bar{D}}^{\prime} \omega_{C} \wedge \bar{\omega}_{D},
\end{align*}
$$

where $\Omega_{A B}^{\prime}$ (resp. $R_{\bar{A} B C \bar{D}}^{\prime}$) denotes the curvature form (resp. the components of the indefinite Riemannian curvature tensor R^{\prime}) of M^{\prime}.

Since we assume M is a space-like complex submanifold in an indefinite Kaehler manifold M^{\prime}, hereafter it will be denoted by $\epsilon_{j}=1$ and $\epsilon_{y}=-1$. Restricting the above forms to the submanifold M, we have

$$
\omega_{x}=0
$$

and the induced Kaehler metric g of M is given by $g=2 \Sigma \omega_{j} \otimes \bar{\omega}_{j}$. Then $\left\{E_{j}\right\}$ is a local unitary frame field with respect to this metric and $\left\{\omega_{j}\right\}$ is a local dual field of $\left\{E_{j}\right\}$, which consists of complex-valued 1-forms of type $(1,0)$ on M. Moreover $\omega_{1}, \ldots, \omega_{n}, \bar{\omega}_{1}, \ldots, \bar{\omega}_{n}$ are lineary independent, and they are said to be cannonical 1-forms on M. It follows from the above formula and the Cartan lemma that the exterior derivatives of $\omega_{x}=0$ give rise to

$$
\omega_{x i}=\sum h_{i j}^{x} \omega_{j}, h_{i j}^{x}=h_{j i}^{x} .
$$

The quadratic form $\sum h_{i j}^{x} \omega_{i} \otimes \omega_{j} \otimes E_{x}$ with values in the normal bundle is called the second fundamental form of the submanifold M. Similarly, from the structure equation of M^{\prime} it follows that the structure equations for M are given by

$$
\begin{gather*}
d \omega_{i}+\sum \omega_{i j} \wedge \omega_{j}=0, \quad \omega_{i j}+\bar{\omega}_{j i}=0 \tag{3.2}\\
d \omega_{i j}+\sum \omega_{i k} \wedge \omega_{j k}=\Omega_{i j} \tag{3.3}\\
\Omega_{i j}=\sum R_{\bar{i} j k \bar{l}} \omega_{k} \wedge \bar{\omega}_{l}
\end{gather*}
$$

where we have put $\epsilon_{j}=\epsilon_{k}=\epsilon_{l}=1$ and $\Omega_{i j}\left(\right.$ resp. $\left.R_{\bar{i} j k \bar{l}}\right)$ denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor R) on M. Moreover, the following relationships are defined:

$$
d \omega_{x y}-\sum \omega_{x z} \wedge \omega_{z y}=\Omega_{x y}, \quad \Omega_{x y}=\sum R_{\bar{x} y k \bar{l}} \omega_{k} \wedge \bar{\omega}_{l}
$$

where we also have put $\epsilon_{x}=-1$ and $\epsilon_{k}=\epsilon_{l}=1$.
For the Riemannian curvature tensors R and R^{\prime} of M and M^{\prime} in (3.3) and (2.2) respectively, the equation of Gauss gives rise to

$$
\begin{equation*}
R_{\bar{i} j k \bar{l}}=R_{\bar{i} j k \bar{l}}^{\prime}+\sum h_{j k}^{x} \bar{h}_{i l}^{x} \tag{3.4}
\end{equation*}
$$

where we have put $\epsilon_{x}=-1$. The components of the Ricci tensor S and the scalar curvature r of M are given by

$$
\begin{gather*}
S_{i \bar{j}}=\sum R_{\bar{j} i k \bar{k}}^{\prime}+\sum h_{i r}^{x} \bar{h}_{r j}^{x} \tag{3.5}\\
r=2 \sum S_{j \bar{j}}=2 \sum R_{\bar{j} j k \bar{k}}^{\prime}-2 h_{2} \tag{3.6}
\end{gather*}
$$

where $h_{i \bar{j}}^{2}=-\sum h_{i k}^{x} \bar{h}_{k j}^{x}$ and $h_{2}=\sum h_{k \bar{k}}^{2}=-\sum h_{i k}^{x} \bar{h}_{i k}^{x}$.
Now the components $h_{i j k}^{x}$ and $h_{i j \bar{k}}^{x}$ of the covariant derivative of the second fundamental form of M are given by

$$
\sum\left(h_{i j k}^{x} \omega_{k}+h_{i j \bar{k}} \bar{\omega}_{k}\right)=d h_{i j}^{x}-\sum\left(h_{k j}^{x} \omega_{k i}+h_{i k}^{x} \omega_{k j}\right)+\sum h_{i j}^{y} \omega_{x y}
$$

Then substituting $d h_{i j}^{x}$ into the exterior derivative of $\omega_{x i}$ and using (3.2) and (3.3), we have

$$
\begin{equation*}
h_{i j k}^{x}=h_{j i k}^{x}=h_{i k j}^{x}, \quad h_{i j \bar{k}}^{x}=-R_{\bar{x} i j \bar{k}}^{\prime} . \tag{3.7}
\end{equation*}
$$

Similarly the components $h_{i j k l}^{x}$ and $h_{i j k \bar{l}}^{x}$ of the covariant derivative of $h_{i j k}$ can be defined by

$$
\begin{aligned}
\sum\left(h_{i j k l}^{x} \omega_{l}+h_{i j k l}^{x} \bar{\omega}_{l}\right)= & d h_{i j k}^{x}-\sum\left(h_{i j k}^{x} \omega_{l i}+h_{i j k}^{x} \omega_{l j}+h_{i j k}^{x} \omega_{l k}\right) \\
& -\sum h_{i j k}^{y} \omega_{x y},
\end{aligned}
$$

and the simple calculation gives rise to

$$
\begin{align*}
& h_{i j k l}^{x}=h_{i j l k}^{x}, \\
& h_{i j k \bar{l}}^{x}-h_{i j \bar{l} k}^{x}=\sum\left(R_{\bar{l} k i \bar{r}} h_{r j}^{x}+R_{\bar{i} k j \bar{r}} h_{i r}^{x}\right)+\sum R_{\bar{x} y k \bar{l}} h_{i j}^{y}, \tag{3.8}
\end{align*}
$$

where we have put $\epsilon_{r}=1$ and $\epsilon_{y}=-1$.
Now we consider a space-like complex submanifold M in an indefinite complex space form $M_{p}^{n+p}(c)$ of constant holomorphic sectional curvature c. Then from (2.4),(3.4),(3.5),(3.6), (3.7) and (3.8) it follows that

$$
\begin{gather*}
R_{\bar{i} j k \bar{l}}=\frac{c}{2}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}\right)+\sum h_{j k}^{x} \bar{h}_{i l}^{x} \tag{3.9}\\
S_{i \bar{j}}=(n+1) \frac{c}{2} \delta_{i j}-h_{i \bar{j}}^{2} \tag{3.10}\\
r=n(n+1) c-2 h_{2} \tag{3.11}\\
h_{i j k \bar{l}}^{x}=\frac{c}{2}\left(h_{i j}^{x} \delta_{k l}+h_{j k}^{x} \delta_{i l}+h_{k i}^{x} \delta_{j l}\right) \tag{3.12}\\
+\sum\left(h_{r i}^{x} h_{j k}^{y}+h_{r j}^{x} h_{k i}^{y}+h_{r k}^{x} h_{i j}^{y}\right) \bar{h}_{r l}^{y}
\end{gather*}
$$

where we have put $\epsilon_{i}=1$ and $\epsilon_{x}=-1$, because its tangent (resp. normal) space of M in $M_{p}^{n+p}(c)$ is space-like (resp. time-like).

In order to prove our theorems, we introduce a generalized maximum principal due to Omori [10] and Yau [13], which has been widely used in the proof of geometric problems in complete Riemannian manifolds.

Theorem 3.1. Let M be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below on M. Let F be a C^{2}-function bounded from below on M, then for any $\epsilon>0$, there exists a point p such that

$$
|\nabla F(p)|<\epsilon, \quad \triangle F(p)>-\epsilon \quad \text { and } \quad \inf F+\epsilon>F(p)
$$

4. Proofs of Theorems 1.1 and 1.2

Let M be an $n(\geq 3)$-dimensional space-like complex submanifold of an indefinite complex hyperbolic space $M^{\prime}=C H_{p}^{n+p}(c), c<0, p \geq 1$.

Since M is space-like, the normal space at any point of M can be regarded as a time-like space. So hereafter unless otherwise stated, let us put the sign of the codimension index by $\epsilon_{x}=-1$.

Now let us denote by

$$
h_{4}=\sum h_{i \bar{j}}^{2} h_{j \bar{i}}^{2} \text { and } A_{2}=\sum A_{y}^{x} A_{x}^{y}
$$

where $A_{y}^{x}=\sum h_{i j}^{x} \bar{h}_{i j}^{y}$. Then the matrix $\left(h_{j \bar{k}}^{2}\right)$ given above is a negative semidefinite Hermitian one, whose eigenvalues μ_{j} are non-positive real valued functions on M. The matrix $A=\left(A_{y}^{x}\right)$ is also by definition positive semi-definite Hermitian one and its eigenvalues μ_{x} are non-negative real valued functions. Then it can be easily seen that

$$
-\sum_{x} \mu_{x}=-\operatorname{Tr} A=h_{2}, \quad h_{2}=\sum_{j} \mu_{j}=\sum_{j} h_{j \bar{j}}^{2}, \quad \text { and } h_{6}=\sum_{j} \mu_{j}^{3}
$$

Then it follows that

$$
\begin{align*}
h_{2}^{2} \geq h_{4} & =\sum_{j} \mu_{j}^{2} \geq \frac{h_{2}^{2}}{n} \\
h_{2}^{2} \geq A_{2} & =\sum_{x} \mu_{x}^{2} \geq \frac{h_{2}^{2}}{p} \tag{4.1}
\end{align*}
$$

where the first equality in the first inequalities above holds if and only if the rank of the matrices H and A is at most one, respectively and the second equality in the second inequalities above, which are derived from the CauchySchwarz inequality, holds if and only if $\mu_{i}=\mu_{j}$ for any indices i and j and $\mu_{x}=\mu_{y}$ for any indices x and y. Moreover, we have

$$
\begin{equation*}
h_{2} h_{4} / n \geq h_{6} \geq h_{2} h_{4} \tag{4.2}
\end{equation*}
$$

where the first equality holds if and only if $\mu_{i}=\mu_{j}$ for any indices i and j.
In fact, it is easily seen that in the second inequality, equality holds if and only if the rank of the matrix is at most one. Concerning the first equality,
we have

$$
\begin{aligned}
0=n h_{6}-h_{2} h_{4} & =n \sum_{j} \mu_{j}^{3}-\sum_{j} \mu_{j} \sum_{k} \mu_{k}^{2} \\
& =\sum_{j<k}\left(\mu_{j}-\mu_{k}\right)^{2}\left(\mu_{j}+\mu_{k}\right) \leq 0
\end{aligned}
$$

because eigenvalues μ_{j} are non-positive for any j. From this we have our assertion.

Firstly, let us take a differentiation to $h_{2}=-\sum h_{i j}^{x} \bar{h}_{i j}^{x}$ and use the fact $h_{i j \bar{k}}^{x}=0$. Then it follows

$$
\begin{align*}
\left(h_{2}\right)_{k \bar{l}}= & -\sum_{x, i, j} h_{i j k}^{x} \bar{h}_{i j l}^{x} \\
& -\sum_{x, i, j}\left\{c\left(h_{i j}^{x} \delta_{k l}+h_{j k}^{x} \delta_{i l}+h_{k i}^{x} \delta_{j l}\right) / 2\right. \tag{4.3}\\
& \left.+\sum_{y, m}\left(h_{m i}^{x} h_{j k}^{y}+h_{m j}^{x} h_{k i}^{y}+h_{k m}^{x} h_{i j}^{y}\right) \bar{h}_{m l}^{y}\right\} \bar{h}_{i j}^{x}
\end{align*}
$$

where we have put $\epsilon_{x}=\epsilon_{y}=-1$, because the normal space is time-like.
Next the Laplacian of the squared norm h_{4} of the Hermitian matrix $H=\left(h_{i \bar{j}}^{2}\right)$, which is given by $h_{4}=\sum h_{i \bar{j}}^{2} h_{j \bar{i}}^{2}$, is estimated. By using (3.12) and also the fact $h_{i j \bar{k}}^{x}=0$, we have

$$
\begin{align*}
\triangle h_{4}= & -2 \sum_{x, i, j}\left[\left\{(n+2) c h_{i j}^{x} / 2\right.\right. \\
& \left.-\sum_{k, l, m}\left(h_{m i}^{x} h_{j \bar{m}}^{2}+h_{j m}^{x} h_{i \bar{m}}^{2}-\sum_{y} A_{y}^{x} h_{i j}^{y}\right)\right\} \bar{h}_{k j}^{x} h_{k \bar{i}}^{2} \tag{4.4}\\
& \left.+\sum_{k, m} h_{i j m}^{x} \bar{h}_{j k m}^{x} h_{k \bar{i}}^{2}-\sum_{y, k, l, m} h_{i j m}^{x} \bar{h}_{j k}^{x} h_{k l}^{y} \bar{h}_{i m l}^{y}\right]
\end{align*}
$$

where we also have put $\epsilon_{x}=\epsilon_{y}=-1$.
Since the matrix $H=\left(h_{i \bar{j}}^{2}\right)$ and the matrix $A=\left(A_{y}^{x}\right)$ are negative semidefinite Hermitian ones with eigenvalues μ_{j} and μ_{x} respectively, we choose a local field $\left\{e_{A}\right\}=\left\{e_{j}, e_{x}\right\}$ of unitary frames such that $h_{i \bar{j}}^{2}=\mu_{i} \delta_{i j}$ and $A_{y}^{x}=\mu_{x} \delta_{x y}$. The third term of the right side of (4.4) is given by

$$
\begin{aligned}
& -\sum_{x, i, j, k, m} h_{i j m}^{x} \bar{h}_{j k m}^{x} h_{k \bar{i}}^{2} \\
& \quad=-\sum_{x, i, j, k, m} \mu_{k} h_{i j m}^{x} \bar{h}_{j k m}^{x} \delta_{k i} \\
& = \\
& =-\sum_{x, i, j, k} \mu_{k} h_{i j k}^{x} \bar{h}_{i j k}^{x} \geq 0
\end{aligned}
$$

because of $\epsilon_{x}=-1$, since the normal space is time-like and $\mu_{k} \leq 0$, where the equality holds if and only if the second fundamental form is parallel. That is, $h_{i j k}^{x}=0$ for any indices i, j, k and x.

In fact, in this case the equality holds of the above formula if and only if

$$
\mu_{k} h_{i j k}^{x} \bar{h}_{i j k}^{x}=0
$$

for any indices i, j, k and x. Suppose that there is a point p at which $\mu_{1}(p)=0$. We denote by M_{0} the non-empty subset of points p on M at which $\mu_{1}(p)=0$. Then on M_{0} we have $\mu_{1}=\sum_{x, j} \epsilon_{j} h_{i j}^{x} \bar{h}_{i j}^{x}=0$ which means that $h_{i j}^{x}=0$, because of $\epsilon_{j}=1$. On the subset $M-M_{0}$ it is trivial that $h_{i j k}^{x}$ vanishes identically for any indices j, k and x. Suppose that the interior $\operatorname{Int} M_{0}$ of the set M_{0} is not empty. Then $h_{i j}^{x}$ vanishes identically on $\operatorname{Int} M_{0}$. So this implies $h_{i j k}^{x}$ vanishes identically for any indices j, k and x on $\operatorname{Int} M_{0}$. Then $\operatorname{Int} M_{0} \cup\left(M-M_{0}\right)$ is a dense subset of M. So by the continuity it vanishes identically on the whole M.

On the other hand, in the case where the interior of the set M_{0} is empty, again by the continuity it vanishes identically on the whole M. Thus the second fundamental form α of M is parallel.

Next the last term means that the squared norm of the tensor $-\sum_{x, l} h_{i l}^{x} \bar{h}_{l j k}^{x}$ is non-negative. Then by using this frame to (4.4) we have

$$
\begin{aligned}
\triangle h_{4} \geq & (n+2) c h_{4}-2 h_{6}+2 \sum_{x, i, j} \mu_{i} \mu_{j} h_{i j}^{x} \bar{h}_{i j}^{x} \\
& -2 \sum_{x, y, i, j} \mu_{x} \mu_{y} \delta_{x y} h_{i j}^{x} \bar{h}_{i j}^{y}
\end{aligned}
$$

where we have put $\epsilon_{x}=\epsilon_{y}=-1$. Because of $\epsilon_{x}=-1$, it turns out to be

$$
\begin{align*}
\triangle h_{4} \geq & (n+2) c h_{4}-2 h_{6}+2 \sum_{x, i, j} \mu_{i} \mu_{j} h_{i j}^{x} \bar{h}_{i j}^{x} \tag{4.5}\\
& -2 \sum_{x, y, i, j} \mu_{x} \mu_{j} \delta_{x y} h_{i j}^{x} \bar{h}_{i j}^{y} .
\end{align*}
$$

From the equation of Gauss (3.4) we have

$$
\begin{equation*}
R_{\bar{j} j k \bar{k}}=\frac{c}{2}+\sum_{x} h_{j k}^{x} \bar{h}_{j k}^{x} \geq \frac{c}{2}, j \neq k \tag{4.6}
\end{equation*}
$$

where we have used the fact that $\epsilon_{x}=-1$, because the normal space of M is time-like. Thus from (4.6) we see that for any totally real bisectional plane section $[u, v]$ satisfies $B(u, v) \geq \frac{c}{2}$.

Let $a(M)$ be the infimum of the set B of totally real bisectional curvatures of M. As in Theorem A 1) we have proved that $a(M) \leq \frac{c}{4}$ and the equality holds if and only if M is a complex hyperbolic space $C H^{n}\left(\frac{c}{2}\right), p \geq n(n+1) / 2$.

Lemma 4.1. Let M be an $n(\geq 3)$-dimensional complete space-like complex submanifold of an $(n+p)$-dimensional indefinite complex hyperbolic space $C H_{p}^{n+p}(c)$ of constant holomorphic sectional curvature c and of index $2 p(>0)$. If M is not totally geodesic, then the squared norm $|\alpha|_{2}=h_{2}$ of the second fundamental form α of M satisfies

$$
\begin{align*}
\inf h_{2}< & \frac{\sqrt{n}}{2\left(n^{2}+2\right)}\left[\left\{3 n p+2\left(n^{2}-1\right)\right\} c\right. \tag{4.7}\\
& \left.\left.-2\left\{\left(n^{2}+2 n-2\right) p+n^{2}-1\right)\right\} a(M)\right]
\end{align*}
$$

REmARK 4.2. We denote by $h(n, p, a(M), c)$ the right side of the inequality (4.7). In [1], Aiyama, Nakagawa and the present author proved that under the same situation as in Lemma 4.1 we have

$$
\begin{equation*}
0 \geq h_{2} \geq n(n+1) c / 4, \quad c<0 \tag{4.8}
\end{equation*}
$$

where the second equality holds if and only if M is a complex space form $M^{n}\left(\frac{c}{2}\right)$ and $p=n(n+1) / 2$ (See [1], Theorem $\left.3.2(2)\right)$. It can be easily seen by the simple calculation that

$$
\begin{equation*}
h(n, p, a(M), c)>n(n+1) \frac{c}{4} \tag{4.9}
\end{equation*}
$$

Proof of Lemma 4.1. First of all, the third term of the right side of (4.5) will be estimated. It is seen that

$$
\begin{aligned}
\text { the third term } & =2 \sum_{x, i, j} \mu_{i} \mu_{j} h_{i j}^{x} \bar{h}_{i j}^{x} \\
& =2\left(\sum_{x, i} \mu_{i}^{2} h_{i j}^{x} \bar{h}_{i j}^{x}+\sum_{x, i \neq j} \mu_{i} \mu_{j} h_{i j}^{x} \bar{h}_{i j}^{x}\right)
\end{aligned}
$$

Since $a(M)$ is the infimum of the set B of totally real bisectional curvatures, we have $R_{\bar{i} i j \bar{j}} \geq a(M)$ for any distinct indices i and j, from which together with (4.1) it follows that

$$
\begin{equation*}
-\sum_{x} h_{i j}^{x} \bar{h}_{i j}^{x} \leq \frac{c}{2}-a(M) \text { for any } i, j(i \neq j) \tag{4.10}
\end{equation*}
$$

where we have put $\epsilon_{x}=-1$.
On the other hand, the scalar curvature r on M satisfies

$$
\begin{aligned}
r=2 \sum_{j} S_{j \bar{j}} & =2 \sum_{i, j} R_{\bar{i} i j \bar{j}}=2\left(\sum_{i} R_{\bar{i} i \bar{i} \bar{i}}+\sum_{i \neq j} R_{\bar{i} i j \bar{j}}\right) \\
& \geq 2 \sum_{i} R_{i}+2 n(n-1) a(M)
\end{aligned}
$$

where $R_{i}=R_{\bar{i} i i \bar{i}}$. Since we have $R_{i}+R_{j} \geq 4 a(M)$ for any $i, j(i \neq j)$ from [6], we have

$$
\begin{aligned}
& (n-2) R_{i}+\sum_{i} R_{i} \geq 4(n-1) a(M) \\
& 2 n a(M) \leq \sum_{j} R_{j} \leq \frac{r}{2}-n(n-1) a(M)
\end{aligned}
$$

from which it follows that

$$
(n-2) R_{j} \geq 4(n-1) a(M)-\sum_{j} R_{j} \geq(n-1)(n+4) a(M)-\frac{r}{2}
$$

and hence we have
(4.11) $-\sum_{x} h_{j j}^{x} \bar{h}_{j j}^{x}=c-R_{j} \leq\left\{(n-1)(n+4)(c-2 a(M))-2 h_{2}\right\} / 2(n-2)$.

By using (4.10) and (4.11), the estimation of the third term is given by
the third term $\geq-\sum_{j} \mu_{j}^{2}\left\{(n-1)(n+4)(c-2 a(M))-2 h_{2}\right\} / 2(n-2)$

$$
-\sum_{i \neq j} \mu_{i} \mu_{j}\left(\frac{c}{2}-a(M)\right)
$$

From this together with the property $\sum_{i \neq j} \mu_{i} \mu_{j}=\sum_{i} \mu_{i}\left(h_{2}-\mu_{i}\right)=h_{2}^{2}-h_{4}$ it follows

$$
\begin{align*}
\text { the third term } \geq & {\left[\left\{\left(n^{2}+2 n-2\right) h_{4}+(n-2) h_{2}^{2}\right\}(2 a(M)-c)\right.} \\
& \left.+2 h_{2} h_{4}\right] / 2(n-2) . \tag{4.12}
\end{align*}
$$

Next, we will estimate the last term of (4.5) from below. First the eigenvalue μ_{j} of the matrix H is estimated. We have

$$
\mu_{j}=-\sum_{k, x} h_{j k}^{x} \bar{h}_{j k}^{x}=-h_{j j}^{x} \bar{h}_{j j}^{x}-\sum_{k \neq j} h_{j k}^{x} \bar{h}_{j k}^{x}
$$

from which together with (4.10) and (4.11) it follows that

$$
\begin{aligned}
\mu_{j} & \leq\left\{(n-1)(n+4)(c-2 a(M))-2 h_{2}\right\} / 2(n-2)+\sum_{k \neq j}(c-2 a(M)) / 2 \\
& =\left\{(n-1)(n+1)(c-2 a(M))-h_{2}\right\} /(n-2)
\end{aligned}
$$

On the other hand, since the eigenvalue μ_{x} of the matrix A is nonnegative, we see $\sum_{x} \mu_{x} h_{i j}^{x} \bar{h}_{i j}^{x} \geq 0$, and hence we have
the fourth term $\geq-2\left\{(n-1)(n+1)(c-2 a(M))-h_{2}\right\} \sum_{x} \mu_{x} h_{i j}^{x} \bar{h}_{i j}^{x} /(n-2)$

$$
=2\left\{(n-1)(n+1)(2 a(M)-c)+h_{2}\right\} \sum_{x} \mu_{x}^{2} / p(n-2),
$$

where we have used (4.1) and the property $a(M) \geq \frac{c}{2}$. Therefore we have
(4.13) the fourth term $\geq 2\left\{(n-1)(n+1)(2 a(M)-c)+h_{2}\right\} h_{2}^{2} / p(n-2)$.

By (4.5), (4.12) and (4.13) we obtain

$$
\begin{aligned}
(n-2) \triangle h_{4} \geq & \left\{\left(n^{2}-4\right) c+\left(n^{2}+2 n-2\right)(2 a(M)-c)\right\} h_{4}-2(n-2) h_{6} \\
& +2 h_{2} h_{4}+\left\{(n-2)+2\left(n^{2}-1\right) / p\right\}(2 a(M)-c) h_{2}^{2}+2 h_{2}^{3} / p
\end{aligned}
$$

From this it follows

$$
\begin{align*}
(n-2) \triangle h_{4} \geq & 2\left\{\left(n^{2}+2 n-2\right) a(M)-(n+1) c\right\} h_{4} \\
& -2(n-2) h_{6}+2 h_{2} h_{4} \tag{4.14}\\
& +\left\{(n-2)+2\left(n^{2}-1\right) / p\right\}(2 a(M)-c) h_{2}^{2}+2 h_{2}^{3} / p
\end{align*}
$$

Since it is seen that $h_{6} \leq h_{2} h_{4} / n$ and $h_{2}^{2} \geq h_{4} \geq h_{2}^{2} / n$ by (4.1) and (4.2), the inequality (4.14) is reestimated as

$$
\begin{align*}
(n-2) \triangle h_{4} \geq & h_{4}\left[2\left\{\left(n^{2}+2 n-2\right)+2\left(n^{2}-1\right) / p\right\} a(M)\right. \\
& \left.-\left\{3 n+2\left(n^{2}-1\right) / p\right\} c-2\left(n^{2}+2 p\right) \frac{\sqrt{h_{4}}}{p \sqrt{n}}\right] . \tag{4.15}
\end{align*}
$$

We denote by f the function h_{4}. Then the right side of the above inequality can be regarded as the function of f, say F. So we have the following Liouvilletype inequality

$$
\begin{equation*}
\triangle f \geq F(f) /(n-2) \tag{4.16}
\end{equation*}
$$

Now, let $b(M)$ be the supremum of the set B of totally real bisectional curvatures on M. Since M is a complete space-like complex submanifold of $C H_{p}^{n+p}(c), c<0$, by (4.1) and (4.8) it follows that

$$
h_{2} \geq n(n+1) \frac{c}{4}
$$

which implies that the function h_{2} is bounded. It shows that the function f is also bounded, because it satisfies $0 \leq f \leq h_{2}^{2}$.

On the other hand, the Ricci tensor S is given by

$$
S_{i \bar{j}}=\left\{(n+1) \frac{c}{2}-\mu_{i}\right\} \delta_{i j}
$$

from (3.10). Since the eigenvalue μ_{i} is non-positive, the Ricci curvature is bounded from below by a constant $(n+1) \frac{c}{2}$. Accordingly, we can apply Theorem 3.1 to the function f, so for any sequence $\left\{\epsilon_{m}\right\}$ which converges to zero as m tends to infinity, there exists a point sequence $\left\{p_{m}\right\}$ on M such that

$$
\begin{equation*}
\left|\nabla f\left(p_{m}\right)\right|<\epsilon_{m}, \triangle f\left(p_{m}\right)<\epsilon_{m}, \sup f-\epsilon_{m}<f\left(p_{m}\right) \tag{4.17}
\end{equation*}
$$

From (4.16) and (4.17) we have

$$
\epsilon_{m}>\triangle f\left(p_{m}\right) \geq F\left(f\left(p_{m}\right)\right) /(n-2)
$$

which implies, taking into account (4.17), that we have $\lim _{m \rightarrow \infty} f\left(p_{m}\right)=$ $\sup f$, and hence we get

$$
0 \geq F(\sup f)
$$

That is, we have

$$
\begin{equation*}
\sup f=0 \tag{4.18}
\end{equation*}
$$

or

$$
\begin{align*}
\sqrt{\sup f} \geq & \frac{-\sqrt{n}}{2\left(n^{2}+2 p\right)}\left[\left\{3 n p+2\left(n^{2}-1\right)\right\} c\right. \tag{4.19}\\
& \left.-2\left\{\left(n^{2}+2 n-2\right) p+n^{2}-1\right\} a(M)\right]
\end{align*}
$$

Let us denote by $-h=-h(n, p, c, a(M))$ the right side of the above inequality.
Suppose that (4.18) holds. Then $f \equiv 0$, because f is non-negative, and therefore M is totally geodesic.

Suppose that M is not totally geodesic. Then the inequality (4.19) holds. Since $\sup h_{4} \leq \sup \left(-h_{2}\right)^{2}=\left(-\inf h_{2}\right)^{2}$, we have

$$
\begin{equation*}
\inf h_{2} \leq h=h(n, p, c, a(M)) \tag{4.20}
\end{equation*}
$$

Now suppose that the equality of (4.20) holds. Then from the proof of (4.15) and (4.20) we have $n h_{6}=h_{2} h_{4}$ and $h_{4}=h_{2}^{2}$. The first equation holds if and only if the eigenvalues μ_{j} of the matrix $H=\left(h_{i \bar{j}}^{2}\right)$ are all equal and the second one holds if and only if the rank of H is at most one. Then both of these implies that H is the zero matrix. Namely, M must be totally geodesic,
a contradiction. Then finally we have the inequality (4.7). It completes the proof of Lemma 4.1.

From the above definition (4.7) of the constant h and a simple calculation we assert the following

Lemma 4.3. Under the same situation as in Lemma 4.1 we have

$$
\begin{equation*}
h(n, p, a(M), c)>\frac{n(n+1)}{4} c \tag{4.21}
\end{equation*}
$$

We define a constant $a=a(n, p, c)$ depending on n, p and c by

$$
\begin{equation*}
a=a(n, p, c)=\frac{\left\{3 n p+2\left(n^{2}-1\right)\right\} c}{2\left\{\left(n^{2}+2 n-2\right) p+n^{2}-1\right\}} . \tag{4.22}
\end{equation*}
$$

By (4.19) and (4.22) the following property is trivial.
LEmma 4.4. Under the same situation as in Lemma 4.1, if $a(M) \geq a$ (resp. $>a)$, then we have $h=h(n, p, a(M), c) \leq 0($ resp.$<0)$.

Remark 4.5. Let M be fully immersed in $C H_{p}^{n+p}(c)$, i.e. there is no integer $q(0<q<p)$ such that M is immersed in $C H_{q}^{n+q}(c)$. If M is totally geodesic, then $p=1$. In this case we see $a(n, 1, c)=\frac{2 n^{2}+3 n-2}{2\left(2 n^{2}+2 n-3\right)} c<\frac{c}{2}$ for any n.

On the other hand, we have already remarked that Ki and the present author [8] have proved that the infimum $a(M)$ of the set of totally real bisectional curvature of space-like submanifolds M in $C H_{p}^{n+p}(c)$ is not greater than $\frac{c}{4}$, that is $a(M) \leq \frac{c}{4}$. So under our assumptions we shoud have $a \leq \frac{c}{4}$. Moreover

Lemma 4.6. Under the same situation as in Lemma 4.1 we have

1) If $p=1$, then $a<\frac{c}{2}$,
2) If $p \geq 2$ and $n=3$ or 4 , then $\frac{c}{2} \leq a \leq \frac{c}{4}$,
3) If $n \geq 5$ and $p \leq \frac{3\left(n^{2}-1\right)}{n^{2}-4 n-2}$, then $a \leq \frac{c}{4}$.

Proof. From Remark 4.5 we know 1). By putting $n=3$ or $n=4$ in (4.22) it can be easily seen that 2) holds for any $p \geq 2$. Now let us prove the assertion 3). As we have explained above, the constant $a=a(n, p, c)$ in (4.22) can not be greater than $\frac{c}{4}$. From this we should have

$$
\frac{3 n p+2\left(n^{2}-1\right)}{\left(n^{2}+2 n-2\right) p+n^{2}-1} \geq \frac{1}{2}
$$

So, we conclude 3), which ends the proof of Lemma 4.6.
Now we are in a position to prove our main theorems in the introduction. Suppose that M is not totally geodesic. By the assumption of dimension and the assertions 1) and 2) in Lemma 4.6 there is a constant $a=a(n, p, c)$ depending on n, p and c such that $a=a(n, p, c) \leq \frac{c}{4}$. By (4.21) there exists a constant
$h=h(n, p, a(M), c)$ depending on $n, p, a(M)$ and c such that $h>n(n+1) \frac{c}{4}$. By Lemma 4.4, we know that if $a(M) \geq a$, then $h=h(n, p, a(M), c) \leq 0$.

On the other hand, by (4.20) and Lemma 4.1 we have inf $h_{2}<h \leq 0$ since we have supposed that M is not totally geodesic. But from the assumption of Theorem 1.1 we know $h_{2}=|\alpha|_{2} \geq h$, which makes a contradiction. It completes the proof of Theorem 1.1.

In the case where $n \geq 5$, the condition of the codimension implies $p \leq \frac{3(n-1)}{n^{2}-4 n-2}$. Accordingly, by Lemma 4.1 and Lemma 4.6 we also complete the proof of Theorem 1.2.

Acknowledgements.

The present author would like to express his sincere gratitude to the referee for his valuable comments and suggestions to develop the first version of the manuscript.

References

[1] R. Aiyama, H. Nakagawa and Y.J. Suh, Semi-Kaehlerian submanifolds of an indefinite complex space form, Kodai. Math. J. 11 (1998), 325-343.
[2] R. Aiyama, J-H. Kwon and H. Nakagawa, Complex submanifolds of an indefinite complex space form, J. Ramanujan Math. Soc. 2 (1987), 43-67.
[3] M. Barros and A. Romero, Indefinite Kaehler manifolds, Math. Ann. 281 (1982), 55-62.
[4] S.S. Chern, Selected papers, Springer Verlag, New York, Heidelberg, Berlin, 1978.
[5] S.S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related fields, Proc. Conf. in Honour of Marshall Stone, (1970), 59-71.
[6] S.I. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Diff. Geometry 1 (1967), 225-234.
[7] C.S. Houh, On totally real bisectional curvature, Proc. Amer. Math. Soc. 56 (1976), 261-263.
[8] U-H. Ki and Y.J. Suh, On semi-Kaehler manifolds whose totally real bisectional curvature is bounded from below, J. Korean Math. 33 (1996), 1009-1038.
[9] S. Montiel and A. Romero, Holomorphic sectional curvatures of indefinite complex Grassmann manifolds, Math. Proc. Camb. Phil. Soc. 93 (1983), 121-126.
[10] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-211.
[11] A. Romero and Y.J. Suh, Differential geometry of indefinite complex submanifolds in indefinite complex space form, to appear in Extracta Math.
[12] J.A. Wolf, Spaces of constant curvatures, McGraw-Hill, New-York, 1967.
[13] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-228.

Department of Mathematics
Kyungpook National University
Taegu, 702-701, Korea
E-mail address: yjsuh@bh.knu.ac.kr
Received: 05.02.1999.
Revised: 05.11.2001.

[^0]: 2000 Mathematics Subject Classification. 53C50.
 Key words and phrases. Semi-Kaehler manifold, Totally real bisectional curvature, the squared norm, the second fundamental form, space-like submanifolds, totally geodesic.

 This research was supported by grant Proj. No R14-2002-003-01001-0 from Korea Science and Engineering Foundation.

