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SMOOTHNESS IN n–FOLD HYPERSPACES

Sergio Maćıas and Sam B. Nadler, Jr.

Ciudad Universitaria, México and West Virginia University, USA

Abstract. We prove that C∗–smoothness of a homogeneous con-
tinuum implies its indecomposability. We define the analogue of C∗–
smoothness for n–fold hyperspaces and investigate its relation to C∗–
smoothness. We characterize the class of hereditarily indecomposable con-
tinua in terms of C∗

n–smoothness.

1. Introduction

The notion of C∗–smoothness was defined by Sam B. Nadler, Jr., in 1978
[6, (15.5)] and the notion of absolute C∗–smoothness was defined by Grispo-
lakis and Tymchatyn [3, p. 177]. We extend these concepts to n–fold hyper-
spaces.

In section 2, we study C∗n–smoothness and its relation with C∗–smoothness.
One of our main results characterize hereditarily indecomposable continua
(Theorem 2.6). In section 3, we present results about points at which a con-
tinuum X is C∗n–smooth and we show a connection between C∗n–smoothness
and indecomposability. In section 4, we give an affirmative answer to 15.21
of [6]; we also include a result characterizing when each subcontinuum of a
continuum X is absolutely C∗–smooth.

If (Y, d) is a metric space, then given A ⊂ Y and ε > 0, the open ball
about A of radius ε is denoted by Vε(A), the interior of A is denoted by int(A),
and the closure of A is denoted by A.

A continuum is a compact connected metric space.
Given a continuum X and a positive integer n, we define its n–fold hyper-

space as the set Cn(X) consisting of all nonempty closed subsets of X having
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at most n components. We consider the n–fold hyperspaces topologized with
the Hausdorff metric [6, (0, 1)]. The Hausdorff metric will be denoted by H.
For a given continuum X , F1(X) denotes the hyperspace of singletons of X .

For a continuum X and a positive integer n, an order arc is a one–to–one
continuous function α : [0, 1]→ Cn(X) such that α(s) ⊂ α(t) if s < t.

Throughout this paper, n denotes a positive integer. The new concepts
in this paper are defined at appropriate places. Definitions of known concepts
can be found in either [6] or [7].

2. C∗n–smoothness

Recall that a continuum X is said to be C∗–smooth at a subcontinuum A
of X, provided that for any sequence {Ak}∞k=1 of subcontinua of X converging
to A, the sequence of hyperspaces {C(Ak)}∞k=1 converges to C(A); i. e., the
map C∗ : C(X)→ C(C(X)) is continuous at A. A continuum X is C∗–smooth
if it is C∗–smooth at each element of C(X); i. e., C∗ is continuous.

We generalize C∗–smoothness to the n–fold hyperspaces as follows: X is
C∗n–smooth at A ∈ Cn(X), provided that for any sequence {Ak}∞k=1 of elements
of Cn(X) converging to A, the sequence {Cn(Ak)}∞k=1 of hyperspaces converges

to Cn(A); i. e., the map C∗n : Cn(X) → 22X

is continuous at A. A continuum
X is C∗n–smooth if it is C∗n–smooth at each element of Cn(X); i. e., C∗n is
continuous.

The following lemma is easy to prove.

Lemma 2.1. Let X be a continuum and let {Ak}∞k=1 be a sequence
in Cn(X) converging to A. If limk→∞ Cn(Ak) exists for a given n, then
limk→∞ Cn(Ak) ⊂ Cn(A).

Before we study the continuity of C∗n on all of Cn(X), we prove a theorem
about the continuity of C∗n restricted to C(X).

Theorem 2.2. Let X be a continuum. If A is a subcontinuum of X, then
the following statements are equivalent:

1) X is C∗–smooth at A;
2) C∗n|C(X) is continuous for all n;
3) C∗n|C(X) is continuous for some n.

Proof. Assume 1), and let n ≥ 2. We prove 2). Let {Ak}∞k=1 be a
sequence of subcontinua of X converging to A. Let B be any element of
Cn(A). Let B1, . . . , B` (` ≤ n) be the components of B. Hence each Bj is a
subcontinuum of A, j ∈ {1, . . . , `}. Since X is C∗–smooth at A, there exist

subcontinua B1
k, . . . , B

`
k of Ak for each k ∈ IN such that limk→∞ Bj

k = Bj for

each j ∈ {1, . . . , `}. Hence, Bk = ∪`
j=1B

j
k is an element of Cn(Ak) for each

k ∈ IN, and limk→∞ Bk = B [6, (1.48)]. Therefore, Cn(A) ⊂ limk→∞ Cn(Ak).
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By Lemma 2.1, we may conclude that limk→∞ Cn(Ak) = Cn(A). Therefore,
2) is satisfied.

Assume 3). We prove 1). Let {Ak}∞k=1 be a sequence of subcontinua of
X converging to A. Let B be a subcontinuum of A. Let x1, . . . , xn−1 be n−1
distinct points in A \B. Let D = B ∪{x1, . . . , xn−1}. Since 3) is assumed for
A, there exists Dk ∈ Cn(Ak) for each k ∈ IN such that the sequence {Dk}∞k=1

converges to D. Since D has n components, we may assume without loss
of generality that Dk also has n components for any k ∈ IN. Since n is the
maximum number of components we allow, there exists a component D1

k of
Dk such that {D1

k}∞k=1 converges to B. Therefore, C(A) ⊂ limk→∞ C(Ak). By
Lemma 2.1, we conclude that limk→∞ C(Ak) = C(A).

The fact that 2) implies 3) is obvious.

In connection with Theorem 2.2, we note that a continuum X may be
C∗–smooth at X but not C∗n–smooth at X for any n > 1. This follows from
Theorem 3.3 (using an arc).

Let X be a continuum. We say that X is absolutely C∗–smooth, provided
that for any continuum Z in which X can be embedded and for any sequence
{Ak}∞k=1 of elements of C(Z) converging to X , the sequence {C(Ak)}∞k=1 of
hyperspaces converges to C(X).

With a proof similar to the one given for Theorem 2.2, we have the fol-
lowing result:

Theorem 2.3. Let X be a continuum. Then the following statements are
equivalent:

1) X is absolutely C∗–smooth;
2) for any continuum Z in which X is embedded, C∗n|C(Z) is continuous

at X for all n;
3) for any continuum Z in which X is embedded, C∗n|C(Z) is continuous

at X for some n.

Our next main result is Theorem 2.6 which shows that C∗n–smoothness
characterizes hereditary indecomposability.

Lemma 2.4. Let X be a continuum, let A be an indecomposable subcon-
tinuum of X, and let {Bm}∞m=1 be a sequence of elements of Cn(X) converging
to A. Then, there exists a subsequence {Bmk

}∞k=1 of {Bm}∞m=1 such that for
each k, there exists a component Dk of Bmk

such that the sequence {Dk}∞k=1

of continua converges to A.

Proof. Since A is an indecomposable continuum, A has uncountably
many mutually disjoint composants [7, 11.15 and 11.17]. Let a1, . . . , an+1

be n + 1 points in n + 1 distinct composants of A. We may assume that
V 1

`
(ai) ∩ V 1

`
(aj) = ∅ if i 6= j for each positive integer `.

Since {Bm}∞m=1 converges to A for each `, there exists an integer m` such
thatH(A,Bm`

) < 1
` . Thus, Bm`

∩V 1

`
(aj) 6= ∅ for each j ∈ {1, . . . , n+1}. Since
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Bm`
has at most n components, we have that at least one of the components

of Bm`
intersects two of the balls V 1

`
(aj), j ∈ {1, . . . , n+ 1}.

Since we only have n + 1 balls, there exist j0, j1 ∈ {1, . . . , n + 1} such
that for infinitely many indices k, Bmk

has a component Dk such that
Dk ∩ V 1

k
(aj0) 6= ∅ and Dk ∩ V 1

k
(aj1) 6= ∅ for each k. Since C(X) is com-

pact [6, (0.8)], we may assume without loss of generality that the sequence
{Dk}∞k=1 converges to a subcontinuum D of A. Since aj0 and aj1 belong to
D and they are in distinct composants of A, we conclude that D = A.

The converse of Lemma 2.4 is false (as can be seen from the argument in
Example 3.4).

Lemma 2.5. Let X be a decomposable continuum, and let A and B be
nondegenerate proper subcontinua of X such that X = A ∪ B. Assume that
there exist two order arcs α, β : [0, 1] → C(X) with the following properties:
α(0) ∈ F1(A), α(1) = A, β(0) ∈ F1(B), β(1) = B and (A∩B)∩(α(t)∪β(t)) =
∅ for each t ∈ [0, 1). Then X is not C∗n–smooth at X for any n > 1.

Proof. Suppose X is C∗n–smooth at X . Let {tm}∞m=1 be an increasing
sequence of numbers in [0, 1) converging to 1. For each positive integer m, let
Dm = α(tm) ∪ β(tm). For each m ≥ 1, (A ∩ B) ∩ (α(tm) ∪ β(tm)) = ∅, hence
Dm ∈ C2(X) \ C(X).

Let R be a component of A ∩ B. Let H and K be proper subcontinua
of A and B, respectively, such that they properly contain R [7, 5.5]. Let
x1, . . . , xn−1 be n−1 distinct points of X \(H∪K). Let L = {x1, . . . , xn−1}∪
(H ∪K). Let ε > 0 be such that the following hold:

V2ε(xi) ∩ V2ε(xj) = ∅ if and only if i 6= j,

{x1, . . . , xn−1} ∩ V2ε(H ∪K) = ∅,
∪n−1

j=1 V2ε(xj) ∩ (H ∪K) = ∅,

H \ V2ε(K) 6= ∅, and K \ V2ε(H) 6= ∅.
Since X is C∗n–smooth at X , there exists a positive integer m0 such that

if m ≥ m0, then there exists Em ∈ Cn(Dm) such that H(Em, L) < ε. Let
m′ ≥ m0. Then, Em′ ⊂ Vε(L) =

(
∪n−1

j=1 Vε(xj)
)
∪Vε(H∪K), Em′ ∩Vε(xj) 6= ∅

for each j ∈ {1, . . . , n − 1}, and Em′ ∩ Vε(H ∪ K) 6= ∅. Hence, Em′ has
exactly n components. Let G1, . . . , Gn be the components of Em′ . Since the
ε–balls about each x1, . . . , xn−1 and H ∪ K are pairwise disjoint, we may
assume without loss of generality that Gj ⊂ Vε(xj) for each j ∈ {1, . . . , n−1}
and Gn ⊂ Vε(H ∪K). Since Gn is a subcontinuum of Dm′ , Gn is contained
either in α(tm′) or in β(tm′ ). Suppose that Gn is contained in α(tm′). Let
x ∈ K \ V2ε(H). Then for each point z of Em′ , d(y, z) ≥ ε. This is a
contradiction; therefore, X is not C∗n–smooth at X .
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The following result characterizes the class of continua for which the map
C∗n is continuous for n > 1.

Theorem 2.6. A continuum X is C∗n–smooth for some n > 1 if and only
if X is hereditarily indecomposable.

Proof. If X is hereditarily indecomposable then, X is C∗n–smooth by
Lemma 2.4 and [6, (1.207.8)].

Suppose that X is C∗n–smooth for some integer n > 1. Then condition (3)
of Theorem 2.3 is satisfied. Hence X is C∗–smooth by Theorem 2.3. Since X
is C∗–smooth, X is hereditarily unicoherent [2, (3.4)].

Suppose X is decomposable. Then there exist two proper subcontinua A
and B of X such that X = A ∪B.

Let a ∈ A \ B and b ∈ B \A. Let α, β : [0, 1]→ C(X) be order arcs such
that α(0) = {a}, α(1) = A, β(0) = {b} and β(1) = B. Let t0 and s0 be
points of [0, 1] such that α(t0) ∩ β(s0) 6= ∅ and such that for each t < t0 and
each s < s0, α(t) ∩ β(s) = ∅. Note that t0 > 0 and s0 > 0. Let {tk}∞k=1 and
{sk}∞k=1 be increasing sequences in [0, 1) converging to t0 and s0, respectively.

Let Y = α(t0) ∪ β(s0). Then Y is a subcontinuum of X . Then, by
Lemma 2.5, X is not C∗n–smooth at Y , a contradiction. Therefore, X is
indecomposable.

A similar argument shows that each subcontinuum of X is indecompos-
able.

3. Points of C∗n–smoothness

We now present some results about the points at which a continuum X
is C∗n–smooth.

Theorem 3.1. Let X be a continuum and let A be an element of Cn(X)
for some n > 1. If X is C∗n–smooth at A, then X is C∗–smooth at each
component of A.

Proof. Let A be an element of Cn(X) and suppose X is C∗n–smooth at
A. Observe that if A is connected, then X is C∗–smooth at A by Theorem 2.2.

Suppose A has at least two components. Let A1, . . . , Ak be the compo-
nents of A. We show that X is C∗–smooth at A1. Let {Km}∞m=1 be a sequence
of subcontinua of X converging to A1. Without loss of generality, we may
assume that Km ∩

(
∪k

j=3Aj

)
= ∅. Let L be a subcontinuum of A1.

Let α : [0, 1]→ C(X) be an order arc such that α(0) ∈ F1(A2) and α(1) =
A2. Let {tm}∞m=1 be an increasing sequence of numbers in [0, 1) converging

to 1. For each m, let p
(1)
m , . . . , p

(n−k)
m be n− k distinct points in A2 \ α(tm).

For each positive integer m, let

Fm = Km ∪ α(tm) ∪
(
∪k

j=3Aj

)
∪ {p(1)

m , . . . , p(n−k)
m }.
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Then limm→∞ Fm = A. Since X is C∗n–smooth at A, there exists an element
Dm of Cn(Fm) such that

lim
m→∞

Dm = L ∪ α(t1) ∪
(
∪k

j=3Aj

)
∪ {p(1)

1 , . . . , p
(n−k)
1 }.

For each positive integer m, let Lm = Dm ∩ Km. Then, Lm is a sub-
continuum of Km and limm→∞ Lm = L. Therefore, X is C∗–smooth at A1.
Similarly, X is C∗–smooth at the other components of A.

We note that the converse of the Theorem 3.1 is false as can be seen from
Theorem 3.3 (since if X = [0, 1] thenX is not C∗n–smooth at any subcontinuum
for each n > 1, by Theorem 3.3).

The following Lemma is easy to establish, but we include a proof for
completeness.

Lemma 3.2. Let C be a closed subset of a space Z. Let A = Z \ C and

B = Z \A. Then A = Z \B.

Proof. Since A is closed in Z, int(A) ⊂ A; thus, since

A = Z \ C = int(Z \ C) ⊂ int(Z \ C) = int(A),

we have that A = int(A). Therefore, since int(A) = Z \ (Z \A) = Z \ B,

A = Z \B.

Theorem 3.3. If X is an irreducible continuum such that X is C∗n–smooth
at X for some n > 1, then X is indecomposable.

Proof. Assume that a and b are points about which X is irreducible.
Suppose X is decomposable. Let C be a nondegenerate proper subcontinuum
of X , with nonempty interior, containing b. Let A = X \ C and B = X \A.

Then A and B are subcontinua of X [7, 11.6] containing a and b, respec-

tively. Note that A = X \B, by Lemma 3.2. Since A ∩ B = Bd(A) = Bd(B)

and since B = X \A (and A = X \B), A (and B, respectively) is irreducible
between a (and b, respectively) and any point of A ∩ B [7, 11.42].

Let α, β : [0, 1] → C(X) be order arcs such that α(0) = {a}, α(1) = A,
β(0) = {b} and β(1) = B.

Notice that for any t ∈ [0, 1), (A ∩B) ∩ α(t) = ∅ and (A ∩B) ∩ β(t) = ∅.
By Lemma 2.5, X is not C∗n–smooth at X , a contradiction. Therefore, X is
indecomposable.

Example 3.4. We give a nonirreducible continuum which is C∗2–smooth
at X . Let X be the cone over the Cantor middle–thirds set. Let v be the
vertex of X . By [2, (4.9)], it is easy to see that X is C∗–smooth.

To see X is C∗2–smooth at X , let {Am}∞m=1 be a sequence of elements of
C2(X) converging to X , and let B be an element of C2(X).
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Since {Am}∞m=1 converges to X , it is easy to see that there are compo-
nents A1

m of Am such that {A1
m}∞m=1 converges to X . Therefore, since X

is C∗–smooth for each m, there exists Bm ∈ C2(A1
m) ⊂ C2(Am) such that

limm→∞ Bm = B.

For n = 1, the following definition agrees with the notion of absolutely
C∗–smoothness.

Let X be a continuum. We say that X is absolutely C∗n–smooth, provided
that for any continuum Z in which X can be embedded and for any sequence
{Ak}∞k=1 of elements of Cn(Z) converging to X , the sequence {Cn(Ak)}∞k=1 of
hyperspaces converges to Cn(X).

Corollary 3.5. If X is an irreducible continuum which is absolutely
C∗n–smooth, for some n > 1, then X is indecomposable.

Note that the converse of Corollary 3.5 is not true. A modification of
the Knaster buckethandle continuum, obtained by replacing a point with a
(nowhere dense) simple triod, results in an indecomposable continuum which
is not C∗–smooth.

Theorem 3.6. Let X be a continuum and let A be an element of Cn(X)
with exactly n components, n > 1. Then X is C∗n–smooth at A if and only if
X is C∗–smooth at each component of A.

Proof. The only if part is true by Theorem 3.1.
Let A be an element of Cn(X) with n components A1, . . . , An. Suppose

X is C∗–smooth at each Aj for each j ∈ {1, . . . , n}.
Let {Bk}∞k=1 be a sequence of elements of Cn(X) converging to A. Since

A has n components, without loss of generality, we may assume that Bk has n
components, B1

k , . . . , B
n
k , for each positive integer k. In fact, we may suppose

that limk→∞ Bj
k = Aj for each j ∈ {1, . . . , n}.

Let C be an element of Cn(A). Let Aj1 , . . . , Aj`
be the components of

A intersecting C, i. e., C = ∪`
i=1(Aji

∩ C). Let Cji
= Aji

∩ C for each
i ∈ {1, . . . , `}. Since X is C∗–smooth at Aji

, there exists a subcontinuum

Dji

k of Bji

k for each i ∈ {1, . . . , `} such that limk→∞Dji

k = Cji
. For k, let

Dk = ∪`
i=1D

ji

k . Hence, Dk ∈ Cn(Bk) and limk→∞Dk = C. Therefore, X is
C∗n–smooth at A by Lemma 2.1.

Theorem 3.7. Let X be a continuum. If A is an element of Cn(X) for
some n > 1 such that all the components of A are indecomposable and X is
C∗–smooth at each component of A, then X is C∗n–smooth at A.

Proof. Let A be an element of Cn(X). Let A1, . . . , A` (` ≤ n) be the
components of A. Suppose Aj is an indecomposable continuum and X is
C∗–smooth at Aj for each j ∈ {1, . . . , `}.

Let {Bk}∞k=1 be a sequence of elements of Cn(X) converging to A. Let C
be an element of Cn(A). Let Aj1 , . . . , Ajs

be the components of A intersecting
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C, i. e., C = ∪s
i=1(Aji

∩ C). Let C1
ji
, . . . , C

`ji

ji
be the components of Aji

∩ C
for each i ∈ {1, . . . , s}.

In what follows, k is any positive integer and i ∈ {1, . . . , s}. By Exam-

ple 3.4, there are components Bji

k of Bk such that limk→∞ Bji

k = Aji
. Since X

is C∗–smooth at each Aji
, there are subcontinua Dji

k,1, . . . , D
ji

k,`ji
of Bji

k such

that limk→∞Dji

k,m = Cm
ji

for each m ∈ {1, . . . , `ji
}. Let Dji

k = ∪`ji

m=1D
ji

k,m

and let Dk = ∪s
i=1D

ji

k . Then, Dk ∈ Cn(Bk) and limk→∞Dk = C. Therefore,
X is C∗n–smooth at A by Lemma 2.1.

Corollary 3.8. Let X be a continuum and let n > 1. If A is an element
of Cn(X) such that all the components of A are hereditarily indecomposable,
then X is C∗n–smooth at A.

Proof. This result follows from Theorem 3.7 and the fact that hereditar-
ily indecomposable continua are absolutely C∗–smooth continua ([6, (14.14.1)]
and [3, 3.2]).

4. C∗–smoothness

We answer in the affirmative question 15.21 of [6].

Theorem 4.1. If X is a C∗–smooth homogeneous continuum, then X is
indecomposable. Moreover, if X is a C∗–smooth homogeneous plane contin-
uum, then X is hereditarily indecomposable.

Proof. Let X be a C∗–smooth homogeneous continuum. Then X is
hereditarily unicoherent [2, (3.4)]. By [5, Theorem 1], X is indecomposable.

If X is a C∗–smooth homogeneous plane continuum, we have that X is
indecomposable. Since any indecomposable homogeneous plane continuum is
hereditarily indecomposable [4, Theorem 1], X is hereditarily indecomposable.

Let us recall that a continuum X is said to be absolutely C∗–smooth pro-
vided that whenever X is embedded in a continuum Z, X is a point of C∗–
smoothness of Z.

Note that absolute C∗–smoothness of a continuum X does not say any-
thing about the C∗–smoothness of Z at proper subcontinua of X . For this
reason, we consider the following notion: a continuum X is strongly absolutely
C∗–smooth provided that whenever X is embedded in a continuum Z, each
subcontinuum of X is a point of C∗–smoothness of Z. We show the following
result:

Theorem 4.2. A continuum X is strongly absolutely C∗–smooth if and
only if each subcontinuum of X is absolutely C∗–smooth.
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Proof. If each subcontinuum of X is absolutely C∗–smooth, then X is
clearly strongly absolutely C∗–smooth.

Next, suppose there exists a subcontinuum A of X such that it is not
absolutely C∗–smooth. Then there exist a continuum Y and an embedding
h : A→ Y such that A′ = h(A) is not a point of C∗–smoothness of Y . Hence,
there exists a sequence of {Ym}∞m=1 of subcontinua of Y converging to A such
that the sequence {C(Ym)}∞m=1 of hyperspaces does not converge to C(A′).

Let Z = X ∪h Y be the adjunction space of X and Y under h [1, p. 127].
Let q : X ∪ Y → Z be the quotient map. Since h is an embedding, it is easy
to see that q|X : X → Z is an embedding of X into Z; also, q|Y : Y → Z
is an embedding of Y into Z [1, p. 128]. Therefore, {q(Ym)}∞m=1 is a se-
quence of subcontinua of Z converging to q(A′) = q(A) such that the sequence
{C(q(Ym))}∞m=1 of hyperspaces does not converge to C(q(A)). Thus, X is not
absolutely C∗–smooth.

As a consequence of the previous theorem and [3, 3.2], we note that a
continuum X is strongly C∗–smooth if and only if X has the covering property
hereditarily.
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D.F., C. P. 04510, México
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