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Abstract. We define various classes of spaces in this paper. We
define a class of surfaces which are formed by the rotation of a particular
type of arc through the y-axis. We define a corresponding class of solids,
two cells, and related simple closed curves. We determine all the spans of
objects in these classes of spaces. We also determine bounds for spans of
objects related to spaces in these classes.

1. Introduction

The concept of the span, which can be thought of as a continuous type
analogue of the diameter, was introduced in [2]. Later variations of the span of
a space, were introduced (cf. [3] and [4]). Generally, it is difficult to calculate
the spans of even simple geometric objects. Nor is it easy to determine the
relationships of the various spans of a given space.

Our main interest is in continua, that is metric spaces which are compact
and connected. We define various classes of continua and we calculate all of
the spans of the continua in these classes. We also find bounds for spans of
continua which are related to continua in these classes. In particular, for the
class of simple closed curves, we show that if X is an element of this class and
Y is a plane separating continuum contained in the closure of the unbounded
component of R2−X, then σ (Y ) ≥ σ (X) . So the question in [1, problem 173,
p. 391] is answered in the affirmative for this class of simple closed curves.
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2. Preliminaries

If X is a non-empty metric space, we define the span of X , σ (X), to be
the least upper bound of the set of real numbers α which satisfy the following
condition: there exists a connected space C and continuous mappings g, f :
C → X such that

(σ) g(C) = f(C)

and α ≤ dist [g (c) , f (c)] for c ∈ C.
The definition does not require X to be connected, but to simplify our

discussion we will now consider X to be connected. The surjective span
σ∗ (X), the semispan σ0 (X), and the surjective semispan σ∗

0 (X) are defined
as above, except we change conditions (σ) to the following:

(σ∗) g(C) = f(C) = X,

(σ0) g(C) ⊆ f(C),

(σ∗
0) g(C) ⊆ f(C) = X,

Equivalently (see [2], p. 209), the span σ (X) is the least upper bound of
numbers α for which there exist connected subsets Cα of the product X ×X
such that

(σ)′ p1(Cα) = p2(Cα)

and α ≤ dist (x, y) for (x, y) ∈ Cα, where p1 and p2 denote the projections of
X×X onto X , i.e., p1 (x, y) = x and p2 (x, y) = y for x, y ∈ X . Again, we will
now consider X to be connected. The surjective span σ∗ (X), the semispan
σ0 (X), and the surjective semispan σ∗

0 (X) are defined as above, except we
change conditions (σ)

′
to the following (see [4]):

(σ∗)′ p1(Cα) = p2(Cα) = X,

(σ0)′ p1(Cα) ⊆ p2(Cα),

(σ∗
0)′ p1(Cα) ⊆ p2(Cα) = X.

We note that, for a compact space X , C in the first set of definitions and
Cα in the second set can be considered to be closed. The following inequalities
follow immediately from the definitions.

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diam X,
0 ≤ σ∗(X) ≤ σ∗

0(X) ≤ σ0(X) ≤ diam X.

It can easily be shown that, if J is an arc then σ (J) = σ0 (J) = σ∗ (J) =
σ∗

0 (J) = 0. A simple consequence of this is that when X is a simple closed
curve, σ (X) = σ∗ (X) and σ0 (X) = σ∗

0 (X).
We utilize the following theorem from [2, section 7].
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Theorem 2.1. If Y is a closed subset of the Hilbert cube Iω and
f : Y → S is an essential mapping of Y into the circumference S, then
inf
s∈S

ρ
(
f−1 (s) , f−1 (−s)

)
≤ σ (Y ).

To simplify our exposition, we define and use the following notation. Let
W be a subset of either R2 or R3. Let

RW = {w ∈W | p1 (w) ≥ 0} and

LW = {w ∈W | p1 (w) ≤ 0} .
Let W be a subset of R2 and let w ∈ W . We use Cw to denote the circle in
R3 generated by w when W is rotated about the y-axis. We let Dw represent
the disc corresponding to Cw. Let J be an arc in the plane such that J and
the x-axis intersect in a single point, w. By J−s we denote the arc generated
by rotating J about the y-axis, which is the copy of J that goes through
the point −s where s ∈ Cw and −s is the point on Cw antipodal to s. By
cl (W ) we mean the closure of W in the space under consideration. We let θ
represent the origin either in R2 or R3. Let W be a subset of R2 (or R3) such
that R2−W (R3−W ) consists of two components. Let H (W ) represent the
closure of the bounded component in R2 (or R3), if there is one. For points

a, b in R2 (or R3) we let ab represent the line connecting these two points.

3. Main Results

Let f be a concave upward function where f : [0, p]→ [0, q] and f (0) = q
and f (p) = 0. Let G denote the graph of f in R2. Let Gy denote the surface
generated by rotating G about the y-axis. Let P = (p, 0) and Q = (0, q). Let
Gs denote the copy of G in Gy through the point s, where s ∈ CP .

Theorem 3.1. Let Gy be as defined above. Then σ (Gy) = σ0 (Gy) = 2p.

Proof. Let C = {(s,−s) | s ∈ CP }. The set C is connected, p1 (C) =
p2 (C), and d (s,−s) = 2p for each s ∈ CP . So, σ (Gy) ≥ 2p. Suppose D ⊂
Gy ×Gy is a closed connected set such that p1(D) ⊆ p2(D). Let p : R3 → R3

be defined by p(x, y, z) = (0, y, 0). So, p ◦ p1(D) ⊆ {0} × [0, q]× {0}.
Since D is closed and connected, p◦p1 and p◦p2 are continuous functions,

{0}× [0, q]×{0} is an arc, and the semi span of an arc is zero, there is a d′ ∈ D
such that p◦p1(d′) = p◦p2(d′). So, p1(d

′

) and p2(d′) are both elements of Cp′

for some p′ ∈ G, where p′ = (x′, y
′

, z′). Hence d(p1(d′), p2(d
′

)) ≤ 2x′ ≤ 2p.
So, 2p ≤ σ (Gy) ≤ σ0 (Gy) ≤ 2p, and hence σ (Gy) = σ0 (Gy) = 2p.

Let C(r, h) denote the right circular cone, where r is the radius of the
base and h is the height.

Corollary 3.2. For the right circular cone C(r, h), σ(C(r, h)) =
σ0(C(r, h)) = 2r.
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Theorem 3.3. Let Gy be as given above, then

σ∗(Gy) = σ∗
0(Gy) = d(−P,G).

Proof. Let

D = ∪
s∈CP

({−s} ×Gs) ∪ (Gs × {−s}) .

Clearly, D is connected, p1(D) = p2(D) = Gy and for all (x, y) ∈ D d(x, y) ≥
d(−P, S) = d(−P,G), where S ∈ G such that d(−P, S) = d(−P,G). Hence,
σ∗(Gy) ≥ d(−P,G).

Suppose f, g : C → Gy are continuous functions from a connected set C
into Gy such that f(C) ⊆ g(C) = Gy and for each c ∈ C d(f (c) , g (c)) ≥
σ∗

0(G). Let p : R3 → R3 be given by p(x, y, z) = (0, y, 0). Let

r : {0} × [0, q]× {0} → GP

l : {0} × [0, q]× {0} → G−P

be defined by r(0, y, 0) = (x, y, z) where (x, y, z) is the corresponding point
on GP and l (0, y, 0) = (x, y, z) where (x, y, z) is the corresponding point on
G−P .

Let m : C → R be defined by m(c) = m(r ◦ p ◦ g(c), l ◦ p ◦ f(c)) where
m(q1, q2) is the slope of the line segment between q1 and q2 in R2. Clearly,
the line segment between r ◦p◦g(c) and l◦p◦f(c) is never vertical. This line
segment is never degenerate since the only way this could be the case is if r◦p◦
g(c) = l◦p◦f(c) =Q for some c ∈ C. But, then g(c) = f(c) and d(f(c), g(c)) =
0 < σ∗

0(Gy) which is contrary to our assumption that d(f(c), g(c)) ≥ σ∗
0(Gy)

since σ∗
0(Gy) ≥ σ∗(Gy) ≥ d(−P,G) > 0. Consequently, m is a well defined

function. There is a c′ ∈ C such that g(c′) = Q = p ◦ g(c′) = r ◦ p ◦ g(c′). So,
m(r ◦ p ◦ g(c′), l ◦ p ◦ f(c′)) > m(−P, S), since G−P lies “below” the line in
R2 through Q of slope m(−P, S). Also, there is a c′′ ∈ C such that g(c′′) = P,
p ◦ g(c′′) = 0, r ◦ p ◦ g(c′′) = P. In this case m(r ◦ p ◦ g(c′′), l ◦ p ◦ f(c′′)) ≤ 0.
Since C is connected, [m(c′′),m(c′)] ⊆ m(C). Hence, there is a c∗ ∈ C such
that m(c∗) = m(r ◦ p ◦ g(c∗), l ◦ p ◦ f(c∗)) = m(−P, S). Let r ◦ p ◦ g(c∗) = q1
and l ◦ p ◦ f(c∗) = q2. Since m(q1, q2) = m(−P, S), d(q1, q2) ≤ d(−P, S),
because of the construction of G. Hence, g(c∗) ∈ Cq1

, and f(c∗) ∈ Cq2
, and

d(g(c∗), f(c∗)) ≤ d(−P, S). Since d(−P, S) ≤ σ∗(Gy) ≤ σ∗
0(Gy) ≤ d(−P, S),

we see that σ∗(Gy) = σ∗
0(Gy) = d(−P, S).

Corollary 3.4. For the right circular cone C(r, h), when h ≤ r,

σ∗(C(r, h)) = σ∗
0(C(r, h)) =

√
r2 + h2

and when h > r,

σ∗(C(r, h)) = σ∗
0(C(r, h)) =

2rh√
r2 + h2

.
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Theorem 3.5. For the space Gy ∪DP defined above,

σ(Gy ∪DP ) = σ0(Gy ∪DP ) = 2p.

Proof. Same as proof of Theorem 3.1.

Theorem 3.6. For the space Gy ∪DP defined above,

σ∗(Gy ∪DP ) = σ∗
0(Gy ∪DP ) = max{min{q, d(−p,G)}, p}.

Proof. We consider two cases.

Case 1: q ≤ p
Let

C = ({−P} ×RH) ∪ (LH × {P}) ∪ {(−s, s)|s ∈ CP }
∪ (RH × {−P}) ∪ ({P} × LH) ,

where H = Gy∪DP . The set C is connected, p1 (C) = p2 (C) = Gy∪DP , and
for all (x, y) ∈ C, d (x, y) ≥ p. So, σ∗ (Gy ∪DP ) ≥ p. Also, for all x ∈ Gy,
d (x, θ) ≤ p. So, σ∗

0 (Gy ∪DP ) ≤ p. Note that in this case q ≤ p ≤ d(−P,G).
So, p = max {min {q, d(−P,G)} , p}.

Case 2: q > p

Let

C = ∪
s∈CP

(({s} ×G−s) ∪ (G−s × {s})) ∪ ({Q} ×DP ) ∪ (DP × {Q}) .

The set C is connected, p1 (C) = p2 (C) = Gy ∪ DP , and for all (x, y) ∈ C,
d (x, y) ≥ min{q, d(−p,G)}. Hence, σ∗ (Gy ∪DP ) ≥ min{q, d(−P,G)}.

It can be shown that σ∗
0 (Gy ∪DP ) ≤ d(−P,G) by a proof almost identical

to the proof in Theorem 3.3 showing that σ∗
0 (Gy) ≤ d(−P,G). Also, for

all x ∈ Gy ∪ DP , d (x, θ) ≤ q. So, σ∗
0 (Gy ∪DP ) ≤ min{q, d(−P,G)} =

max{min{q, d(−P,G)}, p}, and

σ∗(Gy ∪DP ) = σ∗
0(Gy ∪DP ) = max{min{q, d(−P,G)}, p}.

Theorem 3.7. For the space H(Gy ∪DP ),

σ(H(Gy ∪DP )) = σ0(H(Gy ∪DP )) = 2p.

Proof. Same as proof of Theorem 3.1.

Theorem 3.8. For the space H(Gy ∪DP ),

σ∗(H(Gy ∪DP )) = σ∗
0(H(Gy ∪DP )) = p

when q ≤ p, and

σ∗(H(Gy ∪DP )) = σ∗
0(H(Gy ∪DP )) = min{p

2 + q2

2q
, d(−P,G)}
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when q > p.

Proof. We consider two cases. Let H = H(Gy ∪DP ).

Case 1: q ≤ p

Let

C = ({−P} ×RH) ∪ (LH × {P}) ∪ {(−s, s)|s ∈ CP }
∪ (RH × {−P}) ∪ ({P} × LH) .

The set C is connected, p1 (C) = p2 (C) = H(Gy∪DP ), and for all (x, y) ∈ C,
d (x, y) ≥ p. Hence σ∗(H(Gy ∪ DP )) ≥ p. Clearly, σ∗

0 (H(Gy ∪DP )) ≤ p.
Since for all x ∈ H(Gy ∪ DP ), d (x, θ) ≤ p. Hence σ∗(H(Gy ∪ DP )) =
σ∗

0(H(Gy ∪DP )) = p.

Case 2: q > p

Let

C = ({−P} × {(x, y, z) ∈ RH | y ≥ q2−p2

2q })
∪ ({−P} ×GP )
∪ (G−P × {P})
∪({(x, y, z) ∈ LH | y ≥ q2−p2

2q } × {P})
∪{(s,−s) | s ∈ Cp}
∪ (GP × {−P})
∪({P} ×G−P )

∪({P} × {(x, y, z) ∈ LH | y ≥ q2−p2

2q })
∪({(x, y, z) ∈ RH | y ≥ q2−p2

2q } × {−P})
∪({Q} × {(x, y, z) ∈ H | y ≤ q2−p2

2q })
∪({(x, y, z) ∈ H | y ≤ q2−p2

2q } × {Q}).
The set C is closed, p1 (C) = p2 (C) = H(Gy ∪ DP ), and for all

(x, y) ∈ C, d (x, y) ≥ min{ p2+q2

2q , d(−P,G)}. So, σ∗ (H(Gy ∪DP )) ≥
min{p2+q2

2q , d(−P,G)}. For all x ∈ H(Gy ∪ DP ), d(x, (0, q2−p2

2q , 0)) ≤ q2+p2

2q .

Hence, σ∗
0 (H (Gy ∪DP )) ≤ q2+p2

2q . By a proof similar to the one in Theo-

rem 3.3 showing that σ∗
0 (Gy) ≤ d(−P,G), we can see that σ∗

0 (H(Gy ∪DP )) ≤
d(−P,G). Hence, σ∗(H(Gy ∪ DP )) = σ∗

0(H(Gy ∪ DP )) ≤ min{ p2+q2

2q ,

d(−P,G)}. In this case, σ∗(H(Gy ∪DP )) = σ∗
0(H(Gy ∪DP )) = min{ p2+q2

2q ,

d(−P,G)}.

Theorem 3.9. Let X = GP ∪G−P ∪ P (−P ), then

σ(X) = σ0(X) = σ∗(X) = σ∗
0(X) = min{q, d(−P,G)}.
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Proof. Let

C = {−P} ×GP ∪ (P (−P )×Q) ∪ (P ×G−P ) ∪ (GP × {−P})
∪ (Q× P (−P )) ∪ (G−P × {P}).

The set C is closed, connected, p1 (C) = p2 (C) = X , and for all (x, y) ∈ C,
d (x, y) ≥ min{q, d(−P,G)}. Hence, σ∗ (X) ≥ min {q, d (−P,G)}.

Let D ⊆ X×X be connected and closed, such that P1(D) ⊆ P2(D) = X.
Let p : R2 → [−P, P ] be given by p(x, y) = x. So there is a d′ ∈ D
such that p ◦ p1(d′) = p ◦ p2(d′) = x′, p1(d′) = (x′, y1), p2(d′) = (x′, y2),
d(p1(d′), p2(d′)) = |y1 − y2| ≤ q.

Let L be the line through the origin O which is perpendicular to the line
segment joining −P and S. Note that L is not the y-axis, since P 6= S. Let p :
X → L be the continuous function that projects points of X perpendicularly
onto L. Now , consider p◦p1, p◦p2 : D → L. Consider the ordering on L given
by (x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2, for any (x1, y1), (x2, y2) ∈ L. Let
A = {t ∈ D | p ◦ p1(t) ≤ p ◦ p2(t)} and B = {t ∈ D|p ◦ p1(t) ≥ p ◦ p2(t)}.
Since, D = A ∪ B, D is connected, A and B are both closed, it must be that
A ∩ B 6= ∅. So, there is a t′ ∈ D such that p ◦ p1(t′) = p ◦ p2(t′) and p1(t′)
and p2(t′) must both be on a line segment S∗ which is perpendicular to L and

parallel to (−P )S. Hence, the length of S∗ ≤ d(−P, S). So, σ (X) = σ∗(X) =
σ0 (X) = σ∗

0(X) = min{q, d(−P, S)}.
Theorem 3.10. Let Y be a continuum such that Y ⊆ H (X) and X =

GP ∪G−P ∪ P (−P ). Then, τ(Y ) ≤ τ(X), where τ = σ, σ0, σ
∗, σ∗

0 .

Proof. Similar to the second part of the proof of Theorem 3.9.

Theorem 3.11. Let X be as defined above. Then

σ(H(X)) = σ0(H(X)) = min{q, d(−P, S)}.
Proof. Similar to the proof of Theorem 3.9.

Theorem 3.12. Let X be as defined above. When p ≥ q,
σ∗(H(X)) = σ∗

0(H(X)) = q.

When p < q,

σ∗(H(X)) = σ∗
0(H(X)) = min{q

2 + p2

2q
, d(−P,G)}.

Proof. We consider two cases. Let H = H(X).

Case 1: p ≥ q
Let

D = ({−P} ×RH) ∪ (LH × {P}) ∪ {Q} × (−P )P

∪ ({P} × LH) ∪ (RH × {−P}) .
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The set D is closed, connected, p1 (D) = p2 (D) = H(X), and for all
(x, y) ∈ D, d (x, y) ≥ q. Hence, σ∗ (H(X)) ≥ q. Suppose D ⊆ H(X)×H(X)
is a closed, connected set, such that p1(D) ⊆ p2(D) = H(X). Consider the
sets p◦p1(D) and p◦p2(D) where p(x, y) = x. They are closed, connected sub-
sets such that p ◦ p1(D) ⊆ p ◦ p2(D) = J ⊂ [−P, P ]. So, there exists a d′ ∈ D
such that p◦p1(d′) = p◦p2(d′). So, p1(d′) = (x′, y1) and p2(d

′

) = (x′, y2) and

d(p1(d′), p2(d
′

)) = d((x′, y1), (x′, y2)) ≤ d(y1, y2) ≤ q.
Case 2: p < q

Let
C = ({−P} × {(x, y, z) ∈ RH | y ≥ q2−p2

2q })
∪({−P} ×GP ) ∪ (G−P × {P})
∪({(x, y, z) ∈ LH | y ≥ q2−p2

2q } × {P})
∪({Q} × {(x, y, z) ∈ H(X) | y ≤ q2−p2

2q })
∪({(x, y, z) ∈ H(X) | y ≤ q2−p2

2q } × {Q})
∪({(x, y, z) ∈ RH | y ≥ q2−p2

2q } × {−P})
∪({P} × {(x, y, z) ∈ LH | y ≥ q2−p2

2q })
The set C is closed, connected, p1 (C) = p2 (C) = H(X), and for all (x, y) ∈
C, d (x, y) ≥ min{d(−P,G), q2+p2

2q }. So, σ∗H (X) ≥ min
{
d (−P,G) , q2+p2

2q

}
.

For all (x, y) ∈ H(X), d((x, y), (0, q2−p2

2q )) ≤ q2+p2

2q . So, σ∗
0 (H(X)) ≤

q2+p2

2q . By a proof similar to the one given in Theorem 3.9, we can show

that σ∗
0 (H(X)) ≤ d(−P,G). Consequently, σ∗(H(X)) = σ∗

0(H(X)) =

min{ q2+p2

2q , d(−P,G)}.

Theorem 3.13. Let X = GP ∪G−P ∪P (−P ). Let Y be a plane separating
continuum such that X ⊆ clB where B is a bounded component of R2 − Y,
then σ(Y ) ≥σ(X).

Proof. To simplify the proof, consider that X and Y have been trans-
lated into the plane by the translation t where t : R2 → R2 is given by
t(x, y) = (x, y − q

2 ). Clearly, the spans of X and Y are not affected by t. Let

θ′ be the acute angle formed by the positive x-axis and the ray
−−−→
θt(P ). Let

0 < ε < min{diamG
4 , p

4}. Let θ ∈ (0,min{π
8 ,

θ′

2 }) such that the portion of X

contained in the wedge of angle 2θ formed by these pairs of rays,
−−−−−→
θei( π

2
−θ)

and
−−−−−→
θei( π

2
+θ),
−−−−−−−→
θei(π+θ′−θ) and

−−−−−−−→
θei(π+θ′+θ),

−−−−−−−−→
θei(2π−θ′−θ) and

−−−−−−−−→
θei(2π−θ′+θ) is less

than ε
2 .

Let q : Y → S1 be given by q
(
reiγ

)
= eiγ . Since Y is a plane separating

continuum and θ is in a bounded component of R2 − Y (this is true since we
are considering Y in its new position under the translation t), q is an essential
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map. Let U be the unbounded component of R2 − X (where X in its new
position under the translation t). We partition cl (U) into six sets as follows:

A = {reiα ∈ cl (U) | π/2− θ ≤ α ≤ π/2 + θ},
B′ =

{
reiα ∈ cl (U) | π/2 + θ ≤ α ≤ π + θ′ − θ

}
,

C =
{
reiα ∈ cl (U) | π + θ

′ − θ ≤ α ≤ π + θ′ + θ
}
,

A′ =
{
reiα ∈ cl (U) | π + θ′ + θ ≤ α ≤ 2π − θ′ − θ

}
,

B =
{
reiα ∈ cl (U) | 2π − θ′ − θ ≤ α ≤ 2π − θ′ + θ

}
, and

C ′ =
{
reiα ∈ cl (U) | 2π − θ′ + θ ≤ α ≤ 2π or 0 ≤ α ≤ π

2
− θ
}
.

If x ∈ A and y ∈ A′ then d (x, y) ≥ d
(
Q,P (−P )

)
− ε = q − ε. If x ∈ B

and y ∈ B′ then d (x, y) ≥ d (P,G−P ) − ε = d (−P,GP ) − ε. If x ∈ C and
y ∈ C ′ then d (x, y) ≥ d (−P,G) − ε. In each of the three cases d (x, y) ≥
min{q, d(−P,G)} − ε.

Let r : S1 → S1 be a one-to-one continuous function on S1 such that:

r
(
ei(2π−θ′+θ)

)
= ei0,

r
(
ei(π/2−θ)

)
= eiπ/3,

r
(
ei(π/2+θ)

)
= ei2π/3,

r
(
ei(π+θ′−θ)

)
= eiπ ,

r
(
ei(π+θ′+θ)

)
= ei4π/3,

r
(
ei(2π−θ′−θ)

)
= ei5π/3,

Consider the function r ◦ q : Y → S1. It is an essential map from Y onto

S1 such that inf
s∈S1

{
d
(

(r ◦ q)−1
(s) ,

(
r ◦ q−1

)
(−s)

)}
≥ min{q, d(−P,G)}−ε.

Consequently, by Theorem 2.1, σ (Y ) ≥ min{q, d(−P,G)} − ε. Since ε was
arbitrary, we see that σ (Y ) ≥ min{q, d(−P,G)} = σ (X).
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