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INTEGRAL INEQUALITIES FOR POLYNOMIALS HAVING
A ZERO OF ORDER m AT THE ORIGIN

V. K. JAIN
Kharagpur, India

ABSTRACT. For a polynomial p(z) of degree n, it is known that
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We have obtained inequalities in the reverse direction for the polynomials
having a zero of order m at the origin.

1. INTRODUCTION AND STATEMENT OF RESULTS
Let p(z) be a polynomial of degree n. Zygmund [3] has shown that for
s>1
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In this paper, we have obtained similar type of integral inequalities, but in

the reverse direction, for polynomials having a zero of order m at the origin.
More precisely, we prove

THEOREM 1.1. Let p(z) be a polynomial of degree n, having a zero of
order m at z=0. Then for s > 1
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By letting s — oo in (1.2), we obtain

COROLLARY 1.2. Let p(z) be a polynomial of degree n, having a zero of
order m at z =0. Then

max [/ ()] 2 mma p(2)].
|z|=1 |z|=1

THEOREM 1.3. Let p(2) be a polynomial of degree n, having all its zeros in
|z| <k, k <1, with a zero of order m at z = 0. Then for § with |G| < k™™™
and s > 1
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where

(1.4) m' = min p(2)],
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By taking £k =1 and 8 = 0 in Theorem 1.3, we obtain
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COROLLARY 1.4. If p(z) is a polynomial of degree n, having all its zeros

in|z| <1, with a zero of order m at z =0, then for s > 1
1/s 1/s
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where

2m
1 il
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0

Inequality (1.6), with m = 0, is also true for self-inversive polynomials.
In other words we have
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THEOREM 1.5. If p(z) is a polynomial of degree n such that

(1.8) p(z) = 2"p(1/2),
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then for s > 1,
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where Dy is as in Corollary 1.4.
By letting s — oo in Theorem 1.3, we obtain

COROLLARY 1.6. Let p(z) be a polynomial of degree n, having all its zeros
in|z| <k, k <1, with a zero of order m at z = 0. Then for § with |G| < k™™™

n+mk
> max
14+k ) |z=1

I
mm — m—1
n Pz
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(1.10) max p'(z) +

m—
p(2) + B ‘
where m' is, as in Theorem 1.3.

By choosing argument of 3 suitably and letting |8 — k™™ in Corollary
1.6, we obtain

COROLLARY 1.7. If p(z) is a polynomial of degree n, having all its zeros
in|z| <k, k<1, with a zero of order m at z =0, then

+ mk n—m\ m
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where m’ is as in Theorem 1.3.

2. LEMMAS
For the proofs of the theorems, we require the following lemmas.
LEMMA 2.1. Ifp(2) is a polynomial of degree n, having no zeros in |z| < k,
k> 1, then for s > 1
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This lemma is due to Govil and Rahman [2].

LEMMA 2.2. If p(2) is a polynomial of degree n such that

p(z) = 2"p(1/2),
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then for s > 1
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where Dy is as in Corollary 1.4.

This lemma is due to Dewan and Govil [1].

3. PROOFS OF THE THEOREMS

ProOF OF THEOREM 1.1. We obviously have
(3.1) p(z) = 2"9(2),

where ¢(z) is a polynomial of degree n — m, with the property that

$(0) # 0.
Then
(3.2) q(z) = 2"p(1/%)

= G,

is also a polynomial of degree n — m. Hence we have for s > 1,
1/s 1/s
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But by (3.2), we have for 0 < 0 <27

|q/(ei9)‘ _ |np(e“9) eiep/(ew)‘
lg(e™)| = [p(e)],
which, by (3.3), imply that for s > 1,
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Now, by Minkowski inequality, we have for s > 1
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0
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0 0
and Theorem 1.1 follows. O

PROOF OF THEOREM 1.3. The polynomial ¢(z), given by (3.2) will have
no zeros in |z| < 1. Now if

~

(3.5) mo = ‘minl |¢(2)] = min

I=%
then, by Rouché’s theorem, the polynomial
q(2) + moB""", Bl <K,

of degree n — m, will also have no zeros in |z| < %, % > 1. Hence, by Lemma
2.1, we have for s > 1 and || < k™™™
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Now by Minkowski inequality, we have for s > 1 and |3] < k™™
1/s

do <

27
i
n /‘p (ew) +%Beim0
0
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0
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and Theorem 1.3 follows, by (3.6). O

PRrROOF OF THEOREM 1.5. The polynomial

q(z) = 2"p(1/%)
is a polynomial of degree n, with the property
q(z) = 2"q(1/7), (by (1.8)).
Hence, by Lemma 2.2, we have for s > 1

27 1/s 27 1/s
/ ¢ () ‘S a6 <nD;, / lq () ‘S a6
0 0
Now Theorem 1.5 follows on lines, similar to those of Theorem 1.1. O
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