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Abstract. For a polynomial p(z) of degree n, it is known that
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We have obtained inequalities in the reverse direction for the polynomials
having a zero of order m at the origin.

1. Introduction and statement of results

Let p(z) be a polynomial of degree n. Zygmund [3] has shown that for
s ≥ 1

(1.1)




2π∫

0

∣∣p′
(
eiθ
)∣∣s dθ




1/s

≤ n




2π∫

0

∣∣p
(
eiθ
)∣∣s dθ




1/s

.

In this paper, we have obtained similar type of integral inequalities, but in
the reverse direction, for polynomials having a zero of order m at the origin.
More precisely, we prove

Theorem 1.1. Let p(z) be a polynomial of degree n, having a zero of
order m at z = 0. Then for s ≥ 1
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By letting s→ ∞ in (1.2), we obtain

Corollary 1.2. Let p(z) be a polynomial of degree n, having a zero of
order m at z = 0. Then

max
|z|=1

|p′(z)| ≥ mmax
|z|=1

|p(z)|.

Theorem 1.3. Let p(z) be a polynomial of degree n, having all its zeros in
|z| ≤ k, k ≤ 1, with a zero of order m at z = 0. Then for β with |β| < kn−m

and s ≥ 1
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where

(1.4) m′ = min
|z|=k

|p(z)|,

(1.5) C(k)
s = k
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By taking k = 1 and β = 0 in Theorem 1.3, we obtain

Corollary 1.4. If p(z) is a polynomial of degree n, having all its zeros
in |z| ≤ 1, with a zero of order m at z = 0, then for s ≥ 1

(1.6)
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where

(1.7) Ds = 1
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Inequality (1.6), with m = 0, is also true for self–inversive polynomials.
In other words we have

Theorem 1.5. If p(z) is a polynomial of degree n such that

(1.8) p(z) = znp(1/z),
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then for s ≥ 1,

(1.9)
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where Ds is as in Corollary 1.4.

By letting s→ ∞ in Theorem 1.3, we obtain

Corollary 1.6. Let p(z) be a polynomial of degree n, having all its zeros
in |z| ≤ k, k ≤ 1, with a zero of order m at z = 0. Then for β with |β| < kn−m
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where m′ is, as in Theorem 1.3.

By choosing argument of β suitably and letting |β| → kn−m in Corollary
1.6, we obtain

Corollary 1.7. If p(z) is a polynomial of degree n, having all its zeros
in |z| ≤ k, k ≤ 1, with a zero of order m at z = 0, then
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where m′ is as in Theorem 1.3.

2. Lemmas

For the proofs of the theorems, we require the following lemmas.

Lemma 2.1. If p(z) is a polynomial of degree n, having no zeros in |z| < k,
k ≥ 1, then for s ≥ 1
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This lemma is due to Govil and Rahman [2].

Lemma 2.2. If p(z) is a polynomial of degree n such that

p(z) = znp(1/z),
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then for s ≥ 1
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where Ds is as in Corollary 1.4.

This lemma is due to Dewan and Govil [1].

3. Proofs of the theorems

Proof of Theorem 1.1. We obviously have

(3.1) p(z) = zmφ(z),

where φ(z) is a polynomial of degree n−m, with the property that

φ(0) 6= 0.

Then

q(z) = znp(1/z)(3.2)

= zn−mφ(1/z),

is also a polynomial of degree n−m. Hence we have for s ≥ 1,
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But by (3.2), we have for 0 ≤ θ ≤ 2π
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Now, by Minkowski inequality, we have for s ≥ 1
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and Theorem 1.1 follows.

Proof of Theorem 1.3. The polynomial q(z), given by (3.2) will have
no zeros in |z| < 1
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Now by Minkowski inequality, we have for s ≥ 1 and |β| < kn−m
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and Theorem 1.3 follows, by (3.6).

Proof of Theorem 1.5. The polynomial

q(z) = znp(1/z)
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Now Theorem 1.5 follows on lines, similar to those of Theorem 1.1.

References

[1] K. K. Dewan and N. K. Govil, An inequality for self inversive polynomials, J. Math.
Anal. Appl. 95 (1983), 490.

[2] N. K. Govil and Q. L. Rahman, Functions of exponential type not vanishing in a half
plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.

[3] A. Zygmund, A remark on conjugate series, Proc. Lond. Math. Soc. (2) 34 (1932),
392-400.

Mathematics Department,
I.I.T., Kharagpur-721302,
India

Received : 09.02.2000


