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ON CERTAIN CHARACTERIZATIONS AND INTEGRAL

REPRESENTATIONS OF CHATTERJEA’S GENERALIZED

BESSEL POLYNOMIAL
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Abstract. The present paper deals with certain recurrence re-
lations, integral representations, characterizations and a Rodrigue’s type
n-th derivative formula for the generalized Bessel polynomial of Chatterjea.

1. Introduction

In 1949 Krall and Frink [10] initiated serious study of what they called
Bessel polynomials. In their terminology the simple Bessel polynomial is

(1.1) yn(x) = 2F0

[
−n, 1 + n;−;−x

2

]

and the generalized one is

(1.2) yn(a, b, x) = 2F0

[
−n, a− 1 + n;−;−x

b

]
.

Several other authors including Agarwal [1], Al-Salam [2], Brafman [3], Burch-
nall [4], Carlitz [5], Dickinson [8], Grosswald [9], Rainville [11] and Toscano
[14] have contributed to the study of the Bessel polynomials.

In 1965, Chatterjea [7] generalized (1.2) and obtained certain generating
functions for his generalized polynomial defined by

2F0 (−n,C + kn;−;x) ,

where k is a positive integer.
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In this paper we propose to study further the generalized Bessel polynomi-
als due to Chatterjea [7]. In particular we shall find some recurrence relations,
integral representations and certain characterizations of these polynomials.

We shall adopt in this paper a notation used by Al-Salam [2]. In the
notation of hypergeometric series, the generalized Bessel polynomials due to
Chatterjea [7] are given by

(1.3) y(α)
n (x; k) = 2F0

[
−n, kn+ α;−;−x

2

]
,

where k is a positive integer and n = 0, 1, 2, . . . .
Sometimes we shall find it convenient to consider the following polynomial

(1.4) θ(α)
n = xny(α)

n (x; k).

2. Recurrence relations

From (1.3) it is easy to find that

(2.1) y(α+1)
n (x; k) − y(α)

n (x; k) =
nx

2
y
(α+k+1)
n−1 (x; k).

This suggests the difference formula

(2.2) ∆αy
(α)
n (x; k) =

nx

2
y
(α+k+1)
n−1 (x; k)

where ∆αf(α) = f(α+ 1) − f(α) and ∆r+1
α f(α) = ∆α∆r

αf(α).
In particular

(2.3) ∆n
αy

(α)
n (x; k) =

(x
2

)n

.

Now Newton’s formula

f(α+ u) =
∑

r

(
u

r

)
∆rf(α)

and (2.3) imply

(2.4) y(α+u)
n (x; k) =

∑

r

(
u

r

)
n!

(n− r)!

(x
2

)r

y
(α+r+rk)
n−r (x; k)

or equivalently

(2.5) θ(α+u)
n (x; k) =

∑

r

(
u

r

)
n!2−r

(n− r)!
θ
(α+r+rk)
n−r (x; k).

Also, from (1.3) we find that

(2.6)
d

dx
y(α)

n (x; k) =
1

2
n(kn+ α+ 1)y

(α+r+rk)
n−1 (x; k).
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From (2.6) and (2.2), we see that the polynomial given in (1.3) satisfy the
mixed equation

(2.7) ∆αy
(α)
n (x; k) =

x

kn+ α+ 1

d

dx
y(α)

n (x; k).

The following recurrence relation can easily be verified:

(2.8) y
(α−k+1)
n+1 (x; k) − y(α)

n (x; k) =
1

2
x(kn+ n+ α+ 2)y(α+1)

n (x; k).

3. Integral representations

It is easy to derive the following integral representations for the Chatter-
jea’s generalized Bessel polynomials (1.3):

1∫

0

tβ−1(1 − t)γ−1y(α)
n (xt; k) =

=
Γ(β)Γ(γ)

Γ(β + γ)
3F1



−n, β, kn+ α+ 1;

−x
2

β + γ;


 .

(3.1)

1∫

0

tβ−1(1 − t)γ−1y(α)
n (x(1 − t); k) =

=
Γ(β)Γ(γ)

Γ(β + γ)
3F1



−n, γ, kn+ α+ 1;

−x
2

β + γ;


 .

(3.2)

(3.3)

∞∫

0

esttkn+α

(
1 +

sxt

2

)n

dt =
Γ(kn+ α+ 1)

skn+α+1
y(α)

n (x; k).

1∫

0

y(α)
m

(
t

x
; k

)
y(β)

n

(
t

1 − x
; k

)
x−km−α−1(1 − x)−kn−β−1dx

= − π sinπ(α + β)Γ(km+ kn+ α+ β + 1)

sinπα sinπβΓ(km+ α+ 1)Γ(kn+ β + 1)
y
(α+β)
m+n (t; k).(3.4)

Some interesting particular cases of (3.1), (3.2), (3.3) and (3.4) are as follows:

(i) Taking β = kn+ 1, γ = α in (3.1), we get

(3.5)

1∫

0

tkn(1 − t)α−1y(α)
n (xt; k)dt =

Γ(kn+ 1)Γ(α)

Γ(kn+ α+ 1)
y(0)

n (x; k).
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(ii) Taking β = n+ α+ 1, γ = kn− n in (3.1), we obtain

(3.6)

1∫

0

tn+α(1 − t)kn−n−1y(α)
n (xt; k)dt =

Γ(kn− n)Γ(n+ α+ 1)

Γ(kn+ α+ 1)
y(α)

n (x; k).

(iii) Replacing β by kn+ α+ β + 1 and taking γ = 1 − β in (3.1), we get

1∫

0

tkn+α+β(1 − t)βy(α)
n (xt; k)dt =

= − πΓ(kn+ α+ β + 1)

sinπβΓ(1 + β)Γ(kn+ α+ 1)
y(α+β)

n (x; k).

(3.7)

(iv) Replacing β by kn+ α− β + 1 and taking γ = 1 + β in (3.1), we have

(3.8)

1∫

0

tkn+α−β(1 − t)βy(α)
n (xt; k)dt =

Γ(kn+ α− β + 1)Γ(β)

Γ(kn+ α+ 1)
y(α−β)

n (x; k).

Results similar to (3.5), (3.6), (3.7) and (3.8) will hold by suitable
selection of β and γ in (3.2) also.

(v) Taking γ = 1 in (3.3), it becomes

(3.9)

∞∫

0

e−ttkn+α

(
1 +

xt

2

)n

dt = Γ(kn+ α+ 1)y(α)
n (x; k).

(vi) Taking γ = 1 in (3.1), it reduces to

(3.10)

1∫

0

tβ−1y(α)
n (xt; k)dt =

1

β
3F1




−n, β, kn+ α+ 1;
−x

2
β + 1;


 .

(vii) Taking β = 1 in (3.2), it reduces to

(3.11)

1∫

0

(1− t)γ−1y(α)
n (x(1− t); k)dt =

1

γ
3F1




−n, γ, kn+ α+ 1;
−x

2
γ + 1;


 .

(viii) Taking β = kn+ α, γ = 1 in (3.1), it reduces to

(3.12)

1∫

0

tkn+α−1y(α)
n (xt; k)dt =

1

kn+ α
y(α+1)

n (x; k).

(ix) Taking β = 1 and γ = kn+ α in (3.2), it becomes

(3.13)

1∫

0

(1 − t)kn+α−1y(α)
n (x(1 − t); k)dt =

1

kn+ α
y(α+1)

n (x; k).
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(x) For n = 0, (3.4) becomes

1∫

0

y(α)
m

(
t

x
; k

)
x−km−α−1(1 − x)−β−1dx

= − π sinπ(α+ β)Γ(km+ α+ β + 1)

sinπα sinπβΓ(km+ α+ 1)Γ(1 + β)
y(α+β)

m (t; k).(3.14)

(xi) For m = 0, (3.4) becomes

1∫

0

y(β)
n

(
t

1 − x
; k

)
x−α−1(1 − x)−kn−β−1dx

= − π sinπ(α + β)Γ(kn+ α+ β + 1)

sinπα sinπβΓ(α+ 1)Γ(kn+ β + 1)
y(α+β)

n (t; k).(3.15)

We now give a two dimensional version of (3.4). It is given by
∫ ∫

u+v≤1

y(α)
m

(
t

u
; k

)
y(β)

n

(
t

v
; k

)
y(γ)

p

(
t

1− u− v
; k

)

u−km−α−1v−kn−β−1(1 − u− v)−kp−γ−1dudv

=
π2 sinπ(α+ β + γ)

sinπα sinπβ sinπγ

Γ(km+ kn+ kp+ α+ β + γ + 1)

Γ(km+ α+ 1)Γ(kn+ β + 1)Γ(kp+ γ + 1)
y
(α+β+γ)
m+n+p (t; k)(3.16)

where the integration is over the interior of the triangle bounded by the u and
v axes and the line u + v = 1. The extension of (3.16) to higher dimensions
is immediate.

4. Some characterizations

In this section we obtain some characterizations of Chatterjea’s general-
ized Bessel polynomials (1.3) similar to those obtained by Al-Salam [2] for
Bessel polynomial.

Theorem 4.1. Given a sequence {f (α)
n (x; k)} of polynomials in x where

deg f
(α)
n (x; k) = n, and α is a parameter, such that

(4.1)
d

dx
f (α)

n (x; k) =
1

2
n(kn+ α+ 1)f

(α+k+1)
n−1 (x; k)

and f
(α)
n (0; k) = 1. Then f

(α)
n (x; k) = y

(α)
n (x; k).

Proof. Let

f (α)
n (x; k) =

n∑

r=0

Cr(α, n, k)
(
−x

2

)r

.
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Then by (3.1), we have

Cr(α, n, k) = −n(kn+ α+ a)

r
Cr−1(α+ k + 1, n− 1, k).

Since C0(α, n, k) = 1,

Cr(α, n, k) =
(−n)r(kn+ α+ 1)r

r!
,

which proves the theorem.

Another characterization is suggested by (2.2) as given in the following
theorem:

Theorem 4.2. Given a sequence of functions {f (α)
n (x; k)} such that

(4.2) ∆αf
(α)
n (x; k) =

1

2
nxf

(α+k+1)
n−1 (x; k)

(4.3) f (α)
n (0; k) = 1, f

(α)
0 (x; k) = 1.

Then f
(α)
n (x; k) = y

(α)
n (x; k).

Proof. We observe from (4.2) that f
(α)
n (x; k) is a polynomial in α of

degree n. Hence we can write

f (α)
n (x; k) =

n∑

r=0

Cr(n, x)
(kn + α+ 1)r

r!
.

Hence (4.2) gives

Cr(n, x) =
nx

2
Cr−1(n− 1, x).

From this recurrence and condition (4.3), we obtain

Cr(n, x) = (−n)r

(
−x

2

)r

.

This proves the theorem.

Now equation (2.7) gives the following:

Theorem 4.3. Let the sequence {f (α)
n (x; k)}, where f

(α)
n (x; k) is a poly-

nomial of degree n in x, and α is a parameter, satisfy

(4.4) ∆αf
(α)
n (x; k) =

x

kn+ α+ 1

d

dx
f (α)

n (x; k)

such that

(4.5) f (0)
n (x; k) = 2F0

[
−n, kn+ 1;−;−x

2

]
.

Then f
(α)
n (x; k) = y

(α)
n (x; k).
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The proof is similar to that of Theorem 4.1 and 4.2.

Similarly (2.8) suggests yet another characterization of y
(α)
n (x; k) given in

the form of the following theorem:

Theorem 4.4. Given a sequence of functions f
(α)
n (x; k)} such that

(4.6) f
(α−k+1)
n+1 (x; k) − f (α)

n (x; k) =
1

2
x(kn+ n+ α+ 2)f (α+1)

n (x; k)

and

f
(α)
0 (x; k) = 1 for all x and α.

Then f
(α)
n (x; k) = y

(α)
n (x; k).

The proof of this theorem follows by induction on n.

5. Rodrigue’s formula

Krall and Frink [10] gave the following Rodrigue’s type formula for the
Bessel polynomials yn(x, a, b):

(5.1) yn(x, a, b) = b−nx2−aeb/x dn

dxn

(
x2n+a−2e−b/x

)
.

It is not difficult to establish the following Rodrigue’s type formula for the

polynomial y
(α)
n (x; k):

(5.2) y(α)
n (x; k) =

1

2nxkn−n+α
e

2
xDn

[
xkn+n+αe−

2
x

]
, D ≡ d

dx
.
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