OSCILLATORY AND ASYMPTOTIC PROPERTIES OF SOLUTIONS OF NONLINEAR FOURTH ORDER DIFFERENCE EQUATIONS

E. Thandapani and I. M. Arockiasamy

Periyar University, India

Abstract. The authors consider the difference equation

$$
\Delta^{2}\left(r_{n} \Delta^{2} y_{n}\right) \pm q_{n} f\left(y_{n}\right)=Q_{n} ; \quad n=1,2,3, \ldots
$$

where $r_{n}>0, q_{n}>0$, for all $n \geq 1$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous such that $u f(u)>0$ for $u \neq 0$. Dividing the solutions of $(*)$ into several classes for the cases $Q_{n}=0$ and $Q_{n} \neq 0$, the authors obtain conditions for the existence/nonexistence of solutions of $(*)$ in these classes. Examples are inserted to illustrate the results.

1. Introduction

In this paper we are concerned with the oscillatory and nonoscillatory behavior of solutions of the nonlinear nonhomogeneous fourth order difference equations
($\mathrm{E}_{ \pm}$)

$$
\Delta^{2}\left(r_{n} \Delta^{2} y_{n}\right) \pm q_{n} f\left(y_{n}\right)=Q_{n} ; \quad n=1,2,3, \ldots
$$

where Δ is the forward difference operator defined by $\Delta y_{n}=y_{n+1}-y_{n}$ and the real sequences $\left\{r_{n}\right\},\left\{q_{n}\right\},\left\{Q_{n}\right\}$ and the function f satisfies the following conditions:
(c1) $\left\{r_{n}\right\}$ is a positive real sequence such that $0<m \leq r_{n} \leq M$, for all $n \geq 1$;
(c2) $q_{n}>0$ for all $n \geq 1$ and $Q_{n} \not \equiv 0$ for all $n \geq 1$;
(c3) $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and nondecreasing such that $u f(u)>0$ for $u \neq 0$.

[^0]By a solution of equation $\left(E_{ \pm}\right)$, we always mean a real sequence $\left\{y_{n}\right\}$ satisfying equation $\left(E_{ \pm}\right)$for all $n \geq 1$ and for which $\sup \left\{\left|y_{n}\right|: n \geq s\right\}>0$ for any $s \geq 1$. A solution of $\left(E_{ \pm}\right)$is nonoscillatory if it is either eventually positive or eventually negative, and oscillatory otherwise.

The problem of oscillation and nonoscillation of solutions of difference equations has received a great deal of attention in the last few years, for example, see $[1,2,5]$, which cover a large number of recent papers. Compared to second order difference equations, the study of higher order equations and in particular fourth order equations has received considerably less attention, see, for example [3,4,6,9-14] and the references cited therein. Therefore, in this paper we study the oscillatory and asymptotic properties of solutions of the equation $\left(E_{ \pm}\right)$.

Before considering the nonhomogeneous equations ($E_{ \pm}$), we first study the oscillatory and asymptotic properties of the associated homogeneous equations

$$
\Delta^{2}\left(r_{n} \Delta^{2} y_{n}\right) \pm q_{n} f\left(y_{n}\right)=0
$$

In Section 2, we classify all nonoscillatory solutions of $\left(H_{ \pm}\right)$into several classes according to their asymptotic behavior and obtain conditions for the existence/nonexistence of solutions in these classes. In Section 3, we first transform the equation $\left(E_{ \pm}\right)$into ($H_{ \pm}^{ \pm}$) and then classify the nonoscillatory solutions into several classes as in Section 2. Using the results obtained in Section 2 we establish conditions for the existence/nonexistence of solutions of $\left(E_{ \pm}\right)$in these classes. Results obtained here are motivated by some of the results obtained in [3]. Examples are inserted to illustrate the results.

2. Classification of solutions of equation $\left(\mathrm{H}_{ \pm}\right)$

Following Yan and Liu [14] and Graef and Thandapani [3], we say that a solution $\left\{y_{n}\right\}$ is of type I or M_{1} if for n sufficiently large

$$
y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}<0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)>0
$$

and it is of type II or M_{2} if for n sufficiently large

$$
y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}>0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)>0 .
$$

Further it has been shown in [3] and [11] under the condition $\left(c_{1}\right)$ that a positive solution of $\left(H_{+}\right)$is necessarily of type M_{1} or M_{2}. Now we establish conditions for the nonexistence of solutions of $\left(H_{+}\right)$in the classes M_{1} and M_{2}.

Theorem 2.1. With respect to the difference equation $\left(H_{+}\right)$, assume that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}=\infty \tag{1}
\end{equation*}
$$

Then $M_{1}=\emptyset$.

Proof. Let $\left\{y_{n}\right\}$ be a M_{1}-type solution of equation $\left(H_{+}\right)$. Without loss of generality we may assume that

$$
y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}<0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)>0 \text { for all } n \geq N \geq 1
$$

Let $w_{n}=\frac{\Delta\left(r_{n} \Delta^{2} y_{n}\right)}{f\left(y_{n}\right)}$. Then from equation $\left(H_{+}\right)$, we have

$$
\begin{aligned}
\Delta w_{n} & \leq-q_{n}-\frac{\Delta\left(r_{n+1} \Delta^{2} y_{n+1}\right) \Delta f\left(y_{n}\right)}{f\left(y_{n}\right) f\left(y_{n+1}\right)} \\
& \leq-q_{n}
\end{aligned}
$$

Summing the last inequality we see that

$$
\sum_{s=N}^{n} q_{s} \leq w_{N}
$$

a contradiction to (1). This completes the proof of the theorem.
Example 2.2. Consider the equation

$$
\begin{equation*}
\Delta^{2}\left(\frac{n+1}{n+2} \Delta^{2} y_{n}\right)+\frac{2 n^{2}(4 n+9)}{(n-1)^{3}(n+1)(n+3)^{3}(n+2)^{2}} y_{n}^{3}=0, n \geq 2 \tag{2}
\end{equation*}
$$

All conditions of Theorem 2.1 are satisfied except condition (1). Hence the equation (2) has a solution $\left\{y_{n}\right\}=\left\{\frac{n-1}{n}\right\}$ belonging to the class M_{1}. To prove our next result we require the following lemma.

Lemma 2.3. Let $\left\{y_{n}\right\}$ be a $M_{2}-$ type solution of equation $\left(H_{+}\right)$. Then, for all sufficiently large n,
(a) $\Delta\left(r_{n} \Delta^{2} y_{n}\right) \leq \frac{2 r_{n} \Delta^{2} y_{n}}{n}$;
(b) $r_{n} \Delta^{2} y_{n} \leq \frac{6 M \Delta y_{n}}{n}$;
(c) $\Delta y_{n} \leq \frac{2}{n}\left(\frac{6 M}{m}+1\right) y_{n}$.

Proof. Since $\left\{y_{n}\right\}$ is a M_{2}-type solution of $\left(H_{+}\right)$, there is an integer $N \geq 1$ such that $\left\{y_{n}\right\},\left\{\Delta y_{n}\right\},\left\{r_{n} \Delta^{2} y_{n}\right\}$ and $\left\{\Delta\left(r_{n} \Delta^{2} y_{n}\right)\right\}$ are all positive for $n \geq N$. From equation $\left(H_{+}\right)$, we have $\Delta^{2}\left(r_{n} \Delta^{2} y_{n}\right)<0$ for $n \geq N$, so that $\Delta\left(r_{n} \Delta^{2} y_{n}\right)$ is decreasing for $n \geq N$. Hence

$$
r_{n} \Delta^{2} y_{n} \geq r_{n} \Delta^{2} y_{n}-r_{N} \Delta^{2} y_{N}=\sum_{s=N}^{n-1} \Delta\left(r_{s} \Delta^{2} y_{s}\right) \geq \Delta\left(r_{n} \Delta^{2} y_{n}\right)(n-N)
$$

Since $(n-N) \geq \frac{n}{2}$ for $n \geq 2 N$, we have $r_{n} \Delta^{2} y_{n} \geq \frac{n \Delta\left(r_{n} \Delta^{2} y_{n}\right)}{2}$ for $n \geq 2 N$, which proves (a).

For $n \geq N_{1} \geq 2 N$ we have from summation by parts formula

$$
\left.r_{s} \Delta^{2} y_{s}(s-N)\right|_{N_{1}} ^{n}-\sum_{s=N_{1}}^{n-1} r_{s} \Delta^{2} y_{s}=\sum_{s=N_{1}}^{n-1}\left(s-N_{1}+1\right) \Delta\left(r_{s} \Delta^{2} y_{s}\right)
$$

Now using the result (a) in the last equation, we obtain

$$
\begin{equation*}
\left(n-N_{1}\right) r_{n} \Delta^{2} y_{n} \leq 3 \sum_{s=N_{1}}^{n-1} r_{s} \Delta^{2} y_{s} \tag{3}
\end{equation*}
$$

Since $0<m \leq r_{n} \leq M$ and $\Delta^{2} y_{n}>0$ for $n \geq N_{1}$, (3) implies that

$$
\left(n-N_{1}\right) r_{n} \Delta^{2} y_{n} \leq 3 M\left(\Delta y_{n}-\Delta y_{N_{1}}\right) \leq 3 M \Delta y_{n} \text { for } n \geq N_{1}
$$

and $\frac{n r_{n} \Delta^{2} y_{n}}{2} \leq 3 M \Delta y_{n}$ for $n \geq 2 N_{1}$. This proves (b).
Again from summation by parts formula for $n \geq N_{2} \geq 2 N_{1}$, we have

$$
\left.m\left(s-N_{2}\right) \Delta y_{s}\right|_{N_{2}} ^{n}-m \sum_{s=N_{2}}^{n-1} \Delta y_{s}=m \sum_{s=N_{2}}^{n-1}\left(s-N_{2}+1\right) \Delta^{2} y_{s} \leq \sum_{s=N_{2}}^{n-1} s r_{s} \Delta^{2} y_{s}
$$

Now using the result (b) in the last inequality, we obtain

$$
m\left(n-N_{2}\right) \Delta y_{n}-m \sum_{s=N_{2}}^{n-1} \Delta y_{s} \leq 6 M \sum_{s=N_{2}}^{n-1} \Delta y_{n}
$$

Thus for $n \geq 2 N_{2}$, we have

$$
\frac{m n}{2} \Delta y_{n} \leq(6 M+m) \sum_{s=N_{2}}^{n-1} \Delta y_{s}=(6 M+m)\left(y_{n}-y_{N_{2}}\right) \leq(6 M+m) y_{n}
$$

from which (c) follows. This completes the proof of the lemma.

REMARK 2.4. If $\left\{y_{n}\right\}$ is a M_{1}-type solution of $\left(H_{+}\right)$, then a similar argument yields $n \Delta y_{n} \leq 2 y_{n}$ for all large n.

Theorem 2.5. With respect to the difference equation $\left(H_{+}\right)$assume that

$$
\begin{equation*}
\frac{f(u)}{u} \geq M_{1} \text { for all } u \neq 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n^{2} q_{n}=\infty \tag{5}
\end{equation*}
$$

Then $M_{2}=\emptyset$.

Proof. Let $\left\{y_{n}\right\}$ be a M_{2}-type solution of $\left(H_{+}\right)$. Without loss of generality, we may assume that $y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}>0$ and $\Delta\left(r_{n} \Delta^{2} y_{n}\right)>0$ for all $n \geq N \geq 1$. Define

$$
w_{n}=\frac{\Delta\left(r_{n} \Delta^{2} y_{n}\right)}{r_{n} \Delta^{2} y_{n}}
$$

Then from equation $\left(H_{+}\right)$we have

$$
\Delta w_{n} \leq-\frac{q_{n} f\left(y_{n}\right)}{r_{n} \Delta^{2} y_{n}} \leq 0, n \geq N
$$

or

$$
\begin{equation*}
\Delta w_{n}+\frac{q_{n} f\left(y_{n}\right)}{r_{n} \Delta^{2} y_{n}} \leq 0, n \geq N \tag{6}
\end{equation*}
$$

From Lemma 2.3, we have

$$
\begin{equation*}
r_{n} \Delta^{2} y_{n} \leq \frac{12 M}{n^{2}}\left(\frac{6 M}{m}+1\right) y_{n}, n \geq 2 N_{2} \tag{7}
\end{equation*}
$$

For $n \geq 2 N_{2}+N=N_{3}$, we have from (6) and (7)

$$
\begin{equation*}
\Delta w_{n}+\frac{n^{2} q_{n} f\left(y_{n}\right)}{12 M\left(\frac{6 M}{m}+1\right) y_{n}} \leq 0, n \geq N_{3} \tag{8}
\end{equation*}
$$

In view of condition (4), (8) implies that

$$
\Delta w_{n}+\frac{M_{1}}{12 M\left(\frac{6 M}{m}+1\right)} n^{2} q_{n} \leq 0, n \geq N_{3}
$$

Now summing the last inequality from N_{3} to n and then using the condition (5), we see that $\left\{w_{n}\right\}$ is eventually negative, which is absurd. This completes the proof of the theorem.

Example 2.6. Consider the difference equation

$$
\begin{equation*}
\Delta^{2}\left(\frac{n-1}{n} \Delta^{2} y_{n}\right)+\frac{4}{n^{3}(n+1)(n+2)\left(1+n^{4}\right)}\left(y_{n}+y_{n}^{3}\right)=0, n \geq 2 \tag{9}
\end{equation*}
$$

It is easy to see that all conditions of Theorem 2.5 are satisfied except condition (5). Hence the equation (9) has a solution $\left\{y_{n}\right\}=\left\{n^{2}\right\}$ which belongs to the class M_{2}.

From Theorem 2.1 and Theorem 2.5, we obtain the following oscillation criterion for equation $\left(H_{+}\right)$.

Theorem 2.7. With respect to the difference equation $\left(H_{+}\right)$assume conditions (4) and (5) hold. Then all solutions of $\left(H_{+}\right)$are oscillatory.

Next we shall give an improved version of Theorem 2.5.

THEOREM 2.8. With respect to the difference equation $\left(H_{+}\right)$assume that for all $c>0$

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n} f\left(c n^{2}\right)=\infty \tag{10}
\end{equation*}
$$

Then $M_{2}=\emptyset$.
Proof. Let $\left\{y_{n}\right\}$ be a solution of type M_{2}. Then, as in Theorem 2.5, we may assume $y_{n}, \Delta y_{n}, r_{n} \Delta^{2} y_{n}$ and $\Delta\left(r_{n} \Delta^{2} y_{n}\right)$ are all positive for $n \geq N$. Since $\left\{r_{n} \Delta^{2} y_{n}\right\}$ is positive and increasing for $n \geq N$, there is a constant $k>0$ such that $r_{n} \Delta^{2} y_{n}>k$ for all $n \geq N$. It then follows that

$$
y_{n}>c(n-N)(n-N-1) \text { for all } n \geq N, \quad \text { where } c=\frac{k}{2 M}
$$

From equation $\left(H_{+}\right)$we have

$$
\Delta\left(r_{N} \Delta^{2} y_{N}\right)=\Delta\left(r_{n} \Delta^{2} y_{n}\right)+\sum_{s=N}^{n-1} q_{s} f\left(y_{s}\right)>\sum_{s=N}^{n-1} q_{s} f(c(s-N)(s-N+1)
$$

for all $n \geq N$. Thus,

$$
\sum_{n=N}^{\infty} q_{n} f\left(c n^{2}\right)<\infty
$$

which contradicts (10). This completes the proof.
In an analogous manner we may define a solution $\left\{y_{n}\right\}$ of equation $\left(H_{-}\right)$ to be of type M_{1} if for n sufficiently large

$$
y_{n}>0, \Delta y_{n}<0, r_{n} \Delta^{2} y_{n}>0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)<0
$$

a solution $\left\{y_{n}\right\}$ is of type M_{2} if for n sufficiently large

$$
y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}>0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)<0
$$

and a solution $\left\{y_{n}\right\}$ is of type M_{3} if for n sufficiently large

$$
y_{n}>0, \Delta y_{n}>0, r_{n} \Delta^{2} y_{n}>0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)>0
$$

It is easily seen that a positive solution of equation $\left(H_{-}\right)$is necessarily of type M_{1}, M_{2} or M_{3} and the following analogue of Lemma 2.3 can be derived for M_{2}-type solutions.

Lemma 2.9. Let $\left\{y_{n}\right\}$ be a M_{2}-type solution of equation $\left(H_{-}\right)$. Then for $n \geq N_{1}$,
(i) $n r_{n} \Delta^{2} y_{n} \leq 3 M \Delta y_{n}$,
(ii) $n \Delta y_{n} \leq 2\left(\frac{6 M}{m}+1\right) y_{n}$.

In the following we obtain criteria for the nonexistence of M_{1}, M_{2} and M_{3}-type solution for the equation (H_{-}).

ThEOREM 2.10. (a) Equation (H_{-}) has no M_{2}-type solutions if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}=\infty \tag{11}
\end{equation*}
$$

(b) Any M_{1}-type solution of equation $\left(H_{-}\right)$tends to zero as $n \rightarrow \infty$ if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n^{(3)} q_{n}=\infty \tag{12}
\end{equation*}
$$

where $n^{(3)}$ is the usual factorial notation.
Proof. To prove (b), let $\left\{y_{n}\right\}$ be a positive solution of equation $\left(H_{-}\right)$of the type M_{1}. Then there is an integer $N \geq 1$ such that

$$
\left.y_{n}>0, \Delta y_{n}<0, r_{n} \Delta^{2} y_{n}>0 \text { and } \Delta\left(r_{n} \Delta^{2} y_{n}\right)\right)<0 \text { for } n \geq N
$$

Let $n \geq N_{1}$ and $j>2 n=N$. Assume that $\lim _{n \rightarrow \infty} y_{n}=c>0$.
Summing equation $\left(H_{-}\right)$twice and using the estimate

$$
r_{n} \Delta^{2} y_{n}<M \Delta^{2} y_{n}
$$

then sum twice the resulting inequality, we have

$$
\begin{array}{r}
y_{n} \geq y_{j}-\Delta y_{j}(j-n)+M^{-1} r_{j} \Delta^{2} y_{j} \frac{(j-n)^{(2)}}{2!}- \\
M^{-1} \Delta\left(r_{j} \Delta^{2} y_{j}\right) \frac{(j-n)^{(3)}}{3!}+\frac{1}{M 3!} \sum_{s=n}^{j-3}(s-n)^{(3)} q_{s} f\left(y_{s}\right)
\end{array}
$$

from which we may obtain

$$
\sum_{s=N_{*}}^{\infty} s^{(3)} q_{s}<3!2^{3} M c^{-1} y_{N}
$$

This contradicts the condition (12). The proof of (a) is similar and hence the details are omitted. This completes the proof of the theorem.

Example 2.11. Consider the difference equation

$$
\begin{equation*}
\Delta^{2}\left(\frac{n+2}{n+1} \Delta^{2} y_{n}\right)-\frac{4}{n^{3}(n+1)^{4}(n+2)(n+3)} y_{n}^{3}=0, n \geq 2 \tag{13}
\end{equation*}
$$

All conditions of Theorem 2.10 (a) are satisfied except condition (11). Hence the equation (13) has a solution $\left\{y_{n}\right\}=\{n(n+1)\}$ which belongs to the class M_{2}. The difference equation

$$
\begin{equation*}
\Delta^{4} y_{n}-\frac{24 n^{2}}{(n+1)(n+2)(n+3)(n+4)} y_{n}^{3}=0 \tag{14}
\end{equation*}
$$

satisfies all conditions of Theorem 2.10 (b) and hence any M_{1}-type solution of equation (14) tends to zero as $n \rightarrow \infty$. One such solution of (14) is $\left\{y_{n}\right\}=\left\{\frac{1}{n}\right\}$.

3. Classification of solutions of equation $\left(E_{ \pm}\right)$

Let $u_{n}=y_{n}-R_{n}$ where $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{ \pm}\right)$and $\left\{R_{n}\right\}$ is a solution of

$$
\begin{equation*}
\Delta^{2}\left(r_{n} \Delta^{2} R_{n}\right)=Q_{n} \tag{E}
\end{equation*}
$$

Then we may transform $\left(E_{+}\right)$to homogeneous difference equation for which the results of Section 2 may be applied. Since the resulting equation does not have precise form $\left(H_{+}\right)$or $\left(H_{-}\right)$, the arguments have to be modified accordingly. Specifically

$$
\Delta^{2}\left(r_{n} \Delta^{2} u_{n}\right)=\Delta^{2}\left(r_{n} \Delta^{2} y_{n}\right)-\Delta^{2}\left(r_{n} \Delta^{2} R_{n}\right)=-q_{n} f\left(y_{n}\right)
$$

eliminating y_{n}, we see that $\left\{u_{n}\right\}$ is a solution of the homogeneous equation

$$
\begin{equation*}
\Delta^{2}\left(r_{n} \Delta^{2} u_{n}\right)+q_{n} f\left(u_{n}+R_{n}\right)=0 \tag{+}
\end{equation*}
$$

Since $y_{n}>0$ for $n \geq N \geq 1$, we have $u_{n}+R_{n}>0$ and $\Delta^{2}\left(r_{n} \Delta^{2} u_{n}\right)<0$ for all $n \geq N$. Therefore $\left\{\Delta\left(r_{n} \Delta^{2} u_{n}\right)\right\},\left\{r_{n} \Delta^{2} u_{n}\right\},\left\{\Delta u_{n}\right\}$ and $\left\{u_{n}\right\}$ are monotonic and one-signed. If $u_{n}<0$, that is, $0<y_{n}<R_{n}$, we may further transform the equation by assuming $v_{n}=-u_{n}$. Then

$$
\Delta^{2}\left(r_{n} \Delta^{2} v_{n}\right)=-\Delta^{2}\left(r_{n} \Delta^{2} u_{n}\right)=q_{n} f\left(R_{n}-v_{n}\right)
$$

Thus $v_{n}=R_{n}-y_{n}$ is positive solution of the equation

$$
\begin{equation*}
\Delta\left(r_{n} \Delta^{2} v_{n}\right)-q_{n} f\left(R_{n}-v_{n}\right)=0 \tag{+}
\end{equation*}
$$

If $\left\{u_{n}\right\}$ is a positive solution of $\left(H_{+}^{+}\right)$of type M_{1} or M_{2}, we say that $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{+}\right)$of type M_{1}^{R} or M_{2}^{R}.
If $\left\{v_{n}\right\}$ is a positive solution of $\left(H_{+}^{-}\right)$of type M_{1}, M_{2} or M_{3}, we say that $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{+}\right)$of M_{1}^{R}, M_{2}^{R} or M_{3}^{R}.

Similarly for the equation $\left(E_{-}\right)$, we may let $u_{n}=y_{n}-R_{n}$. As above, it follows that $\left\{u_{n}\right\}$ is a nonoscillatory solution of

$$
\begin{equation*}
\Delta\left(r_{n} \Delta^{2} u_{n}\right)-q_{n} f\left(u_{n}+R_{n}\right)=0 \tag{-}
\end{equation*}
$$

If $u_{n}<0$, we may let, $v_{n}=-u_{n}$ then $\left\{v_{n}\right\}$ is a positive solution of

$$
\begin{equation*}
\Delta^{2}\left(r_{n} \Delta^{2} v_{n}\right)+q_{n} f\left(R_{n}-v_{n}\right)=0 \tag{-}
\end{equation*}
$$

If $\left\{u_{n}\right\}$ is a positive solution of $\left(H_{-}^{-}\right)$of type M_{1}, M_{2} or M_{3}, we say that $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{-}\right)$of type M_{1}^{R}, M_{2}^{R} or M_{3}^{R}; if $\left\{v_{n}\right\}$ is a positive solution of $\left(H_{-}^{+}\right)$of type M_{1} or M_{2}, then we say that $\left\{y_{n}\right\}$ a positive solution of (E_{-}) of type M_{1}^{R} or M_{2}^{R}.

In this section we obtain conditions for the nonexistence of positive solutions of $\left(E_{+}\right)$of types $M_{j}^{R}(j=1,2)$ and $M_{j}^{R}(j=1,2,3)$. Similar results are also obtained for the equation $\left(E_{-}\right)$.

Theorem 3.1. Let $\left\{R_{n}\right\}$ be a bounded solution of (E). Assume that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n^{2} q_{n}=\infty \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(u)}{u} \geq B>0 \quad \text { for } \quad u \neq 0 \tag{16}
\end{equation*}
$$

then equation $\left(E_{+}\right)$has no M_{2}^{R}-type solutions.
Proof. Assume that $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{+}\right)$of $M_{2}^{R-t y p e ~ f o r ~}$ $n \geq N$. Then $u_{n}=y_{n}-R_{n}$ is a M_{2}-type solution of $\left(H_{+}^{+}\right)$for $n \geq N$. Let

$$
z_{n}=\frac{\Delta\left(r_{n} \Delta^{2} u_{n}\right)}{r_{n} \Delta^{2} u_{n}}, n \geq N
$$

Then

$$
\begin{align*}
\Delta z_{n} & =-\frac{q_{n} f\left(u_{n}+R_{n}\right)}{r_{n} \Delta^{2} u_{n}}-\frac{\Delta\left(r_{n+1} \Delta^{2} u_{n+1}\right) \Delta\left(r_{n} \Delta^{2} u_{n}\right)}{r_{n} \Delta^{2} u_{n} r_{n+1} \Delta^{2} u_{n+1}} \\
& \leq-\frac{q_{n} f\left(u_{n}+R_{n}\right)}{r_{n} \Delta^{2} u_{n}}, n \geq N . \tag{17}
\end{align*}
$$

By Lemma 2.3, we have $r_{n} \Delta^{2} u_{n} \leq \frac{12 M}{n^{2}}\left(\frac{6 M}{m}+1\right) u_{n}$ and using this in (17), we obtain

$$
\begin{equation*}
\Delta z_{n} \leq-\frac{q_{n} n^{2} f\left(u_{n}+R_{n}\right)}{12 M\left(\frac{6 M}{m}+1\right) u_{n}}=-A q_{n} n^{2} \frac{f\left(u_{n}+R_{n}\right)}{u_{n}} \tag{18}
\end{equation*}
$$

where A is constant. From (16) and (18), we have

$$
\begin{equation*}
\Delta z_{n}+A B q_{n} n^{2}\left(\frac{u_{n}+R_{n}}{u_{n}}\right) \leq 0 \tag{19}
\end{equation*}
$$

Since $\left\{R_{n}\right\}$ is bounded and $\left\{y_{n}\right\}$ is of type $M_{2}^{R},\left\{u_{n}\right\}$ is unbounded, which implies $\frac{R_{n}}{u_{n}} \rightarrow 0$ as $n \rightarrow \infty$. So for any $\varepsilon>0$ with $0<\varepsilon<1,1+\frac{R_{n}}{u_{n}} \geq 1-\varepsilon$ for n sufficiently large $\left(n>N_{1} \geq N\right)$. Substituting this estimate in (19) and summing the resulting inequality, we obtain

$$
A B(1-\varepsilon) \sum_{s=N_{1}}^{n-1} s^{2} q_{s}<\infty
$$

which contradicts (13). This completes the proof of the theorem.
REMARK 3.2. If $\left\{R_{n}\right\}$ is oscillatory or eventually negative, then $u_{n}>0$ and the conclusion of Theorem 3.1 becomes: A positive solution of $\left(E_{+}\right)$is of type M_{1}^{R}.

Theorem 3.3. Let $\left\{R_{n}\right\}$ be a solution of equation (E). Equation (E_{+}) has no positive solutions of types M_{1}^{R} or M_{2}^{R} if

$$
\begin{equation*}
\sum_{n=N}^{\infty} q_{n} f\left(R_{n}+c\right)=\infty \tag{20}
\end{equation*}
$$

for all positive constant c.
Proof. Suppose that $\left\{y_{n}\right\}$ is a positive solution of $\left(E_{+}\right)$of type M_{1}^{R} or M_{2}^{R} for $n \geq N$. Then $u_{n}=y_{n}-R_{n}$ is a M_{1} or M_{2}-type solution of $\left(E_{+}^{+}\right)$for $n \geq N_{2} \geq N$. Summing $\left(E_{+}^{+}\right)$we obtain

$$
\sum_{s=N_{2}}^{n-1} q_{s} f\left(u_{s}+R_{s}\right)=\Delta\left(r_{N_{2}} \Delta^{2} u_{N_{2}}\right)-\Delta\left(r_{n} \Delta^{2} u_{n}\right)
$$

or

$$
\sum_{s=N_{2}}^{n-1} q_{s} f\left(u_{s}+R_{s}\right) \leq \Delta\left(r_{N_{2}} \Delta^{2} u_{N_{2}}\right)
$$

Since $\left\{u_{n}\right\}$ is M_{1} or M_{2}-type solution, we have $\Delta u_{n}>0$ for $n \geq N_{1}$ and hence there is a constant $c>0$ such that $u_{n} \geq c$ for $n \geq N_{2}$ and

$$
\sum_{s=N_{2}}^{n-1} q_{s} f\left(R_{s}+c\right)<\infty
$$

a contradiction to (20). This completes the proof.
Example 3.4. Consider the difference equation

$$
\begin{align*}
& \Delta^{4} y_{n}+\frac{24}{n^{2}(n+1)^{2}(n+2)(n+3)(n+4)(1+n(n+1))} y_{n}\left(1+\left|y_{n}\right|\right) \\
& =\frac{24}{n(n+1)(n+2)(n+3)(n+4)} \tag{21}
\end{align*}
$$

With $R_{n}=\frac{1}{n}$ all conditions of Theorem 3.1 are satisfied except condition (15) and hence the equation (21) has a solution $\left\{y_{n}\right\}=\{n(n+1)\}$ which belongs to the class M_{2}^{R}.

REMARK 3.5. If $\left\{R_{n}\right\}$ is oscillatory or eventually negative, the conclusion of Theorem 3.3 may be strengthened to: Equation $\left(E_{+}\right)$has no positive solutions.

Theorem 3.6. Let $\left\{R_{n}\right\}$ be a solution of equation (E).
(i) Equation $\left(E_{+}\right)$has no positive solution of type M_{2}^{R} such that $r_{n} \Delta^{2}\left(y_{n}-R_{n}\right)$ is bounded if for all positive constants c

$$
\begin{equation*}
\sum_{n=N}^{\infty} n q_{n} f\left(R_{n}+c\right)=\infty \tag{22}
\end{equation*}
$$

(ii) Equation (E_{+}) has no positive solution of type M_{1}^{R} such that $y_{n}-R_{n}$ is bounded if for all positive constants c

$$
\begin{equation*}
\sum_{n=N}^{\infty} n^{(3)} q_{n} f\left(R_{n}+c\right)=\infty \tag{23}
\end{equation*}
$$

where $n^{(3)}$ is the usual factorial notation.
Proof. We prove part (ii) of the theorem since the proof of part (i) is similar and hence the details are omitted. Let $\left\{y_{n}\right\}$ be a M_{1}^{R}-type solution of $\left(E_{+}\right)$for $n \geq N$. Then $u_{n}=y_{n}-R_{n}$ is a M_{1}-type solution of $\left(H_{+}^{+}\right)$for $n \geq N_{1} \geq N$, and $\Delta^{2}\left(r_{n} \Delta^{2} u_{n}\right)$ for $n \geq N_{1} \geq N$. Multiplying $\left(H_{+}^{+}\right)$by $n^{(3)}$ and summing from N_{1} to $n-1$, we obtain

$$
\begin{aligned}
\sum_{s=N_{1}}^{n-1} s^{(3)} q_{s} f\left(u_{s}+R_{s}\right) & =-\sum_{s=N_{1}}^{n-1} s^{(3)} \Delta^{2}\left(r_{s} \Delta^{2} u_{s}\right) \\
& \leq-[\rho(s)]_{N_{1}}^{n}-6 m u_{N_{1}+3}+6 m u_{n+3}
\end{aligned}
$$

where $\rho(s)=s^{(3)} \Delta\left(r_{s} \Delta^{2} u_{s}\right)-3 s^{(2)} r_{s+1} \Delta^{2} u_{s+1}+6 m s \Delta u_{s+2}$.
This contradicts (23) if $\left\{u_{n}\right\}$ is bounded for large n. This completes the proof.

Corollary 3.7. Let $\left\{R_{n}\right\}$ be a bounded solution of (E). Then the equation $\left(E_{+}\right)$has no bounded positive solutions of type M_{1}^{R} or M_{2}^{R} if (23) holds for all positive constants c.

The proof follows by observing that since $\left\{R_{n}\right\}$ is bounded, a M_{1}^{R} or M_{2}^{R} solution $\left\{y_{n}\right\}$ is bounded if and only if $u_{n}=y_{n}-R_{n}$ is bounded. A M_{2}^{R} solution is unbounded by Lemma 2.3. A bounded M_{1}^{R} solution is excluded by Theorem 3.6 (ii).

Remark 3.8. In view of Remarks 3.2 and 3.5 we may assume, without loss of generality, that $R_{n}>0$ in considering the behavior of positive solutions of $\left(E_{+}\right)$of types M_{1}^{R}, M_{2}^{R} and M_{3}^{R}.

Applying the proof of Theorem 2.10 to the equations $\left(H_{+}^{-}\right)$one can obtain information regarding the behavior of M_{1}^{R} or M_{2}^{R} type solutions of $\left(E_{+}\right)$for large n.

Theorem 3.9. Let $\left\{R_{n}\right\}$ be a positive solution of equation (E).
(i) Equation $\left(E_{+}\right)$has no M_{2}^{R}-type solution which is bounded away from zero as $n \rightarrow \infty$ if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}=\infty \tag{24}
\end{equation*}
$$

(ii) Equation $\left(E_{+}\right)$has no M_{1}^{R}-type solution which is bounded away from zero as $n \rightarrow \infty$ if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n^{(3)} q_{n}=\infty \tag{25}
\end{equation*}
$$

Proof. We shall prove part (ii) since the proof of part (i) is similar and hence the details are omitted. Let $\left\{y_{n}\right\}$ be a M_{1}^{R}-type solution of $\left(E_{+}\right)$for $n \geq N$. Then $v_{n}=R_{n}-y_{n}$ is a positive solution of $\left(H_{+}^{-}\right)$of type M_{1} for $n \geq N$ and $\Delta^{2}\left(r_{n} \Delta^{2} v_{n}\right)>0$ for $n \geq N_{1} \geq N$. If we assume that $\left\{y_{n}\right\}$ is bounded away from zero as $n \rightarrow \infty$, then there exists a positive constant c such that $\left(R_{n}-v_{n}\right) \geq c$ for $n \geq N_{2} \geq N_{*}$. We may suppose $n \geq N_{2}$ and if $j \geq 2 n=N_{1}$. As in the proof of Theorem 2.10, we may obtain via summation of equation $\left(H_{+}^{-}\right)$from n to $j-1$ and elementary estimates

$$
\sum_{s=N_{*}}^{\infty} s^{(3)} q_{s} \leq 3!2^{3} M C^{-1} y_{N_{1}}
$$

which contradicts (25).
Finally we consider the nonhomogeneous equation $\left(E_{-}\right)$under the assumption that $\left\{R_{n}\right\}$ is a solution of (E). We first provide conditions for the nonexistence of M_{1}^{R} and M_{2}^{R} type solutions.

Theorem 3.10. Let $\left\{R_{n}\right\}$ be a solution of equation (E).
(i) Equation (E_{-}) has no M_{2}^{R}-type solutions if for all positive constants c

$$
\sum_{n=n_{0}}^{\infty} n q_{n} f\left(R_{n}+c\right)=\infty
$$

(ii) Suppose that for all positive constants c

$$
\sum_{n=n_{0}}^{\infty} n^{(3)} q_{n} f\left(R_{n}+c\right)=\infty
$$

then any M_{1}^{R} type solution $\left\{y_{n}\right\}$ of $\left(E_{-}\right)$satisfies

$$
\lim _{n \rightarrow \infty}\left(y_{n}-R_{n}\right)=0
$$

Proof. The proof is similar to that of Theorems 2.10 and 3.9 and hence the details are omitted.

Now letting $w_{n}=\frac{\Delta\left(r_{n} \Delta v_{n}\right)}{v_{n}}$ and $z_{n}=\frac{\Delta\left(r_{n} \Delta v_{n}\right)}{r_{n} \Delta v_{n}}$ and repeating the procedures which led to Theorem 3.1, we may obtain the following analogue.

ThEOREM 3.11. Let $\left\{R_{n}\right\}$ be a bounded solution of equation (E).
(i) Equation (E_{-}) has no positive M_{2}^{R} solution which is bounded away from zero if

$$
\sum_{n=n_{0}}^{\infty} n^{(2)} q_{n}=\infty
$$

(ii) Equation (E_{-}) has no positive M_{1}^{R} solution which is bounded away from zero as $n \rightarrow \infty$ if

$$
\sum_{n=n_{0}}^{\infty} q_{n}=\infty
$$

References

[1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
[2] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Publications, Dordrecht, 1997.
[3] J. R. Graef and E. Thandapani, Oscillatory and asymptotic behavior of fourth order nonlinear difference equations, Fasc. Math. 31 (2001), 23-36.
[4] J. W. Hooker and W. T. Patula, Growth and oscillation properties of solutions of a fourth order difference equation, J. Austral. Math. Soc. Sec 26 (1985), 310-328.
[5] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Publications, Dordrecht, 1993.
[6] J. Popenda and E. Schmeidal, On the solutions of fourth order difference equations, Rocky Mountain J. Math. 25 (1995), 1485-1499.
[7] Raymond D. Terry and Pui-Kei Wong, Oscillatory properties of fourth order delay differential equation, Funkcialaj Ekvacioj 15 (1972), 209-220.
[8] Raymond D. Terry, Oscillatory and asymptotic properties of homogeneous and nonhomogeneous delay differential equations of fourth order, Funcialaj Ekvacioj 18 (1975) 207-218.
[9] L. Rempulska and B. Szmanda, On the limitability of solutions of some difference equations, Acta. Math. Scientia. 17 (1997), 64-68.
[10] B. Smith and W. E. Taylor Jr., Oscillatory and asymptotic behavior of fourth order difference equations, Rocky Mountain J. Math. 16 (1986), 401-406.
[11] B. Smith and W. E. Taylor Jr., Oscillation and nonoscillation theorems for some mixed difference equations, Internat. J. Maths. and Math. Sci. 15 (1992), 537-542.
[12] W. E. Taylor Jr., Oscillation properties of fourth order difference equations, Portugal Math. 45 (1998), 105-114.
[13] W. E. Taylor Jr., Fourth order difference equations: oscillation and nonoscillation, Rocky Mountain J. Math. 23 (1993), 781-795.
[14] J. Yan and B. Liu, Oscillatory and asymptotic behavior of fourth order difference equations, Acta. Math. Sinica, 13 (1997), 105-115.

Department of Mathematics,
Periyar University,
Salem-636 011, Tamilnadu, India
E-mail: ethandapani@yahoo.co.in
Received: 10.12.1999

[^0]: 2000 Mathematics Subject Classification. 39A10.
 Key words and phrases. Difference equation, Nonhomogeneous, Asymptotic behavior, nonoscillatory.

