ON REDUNDANCE OF ONE OF THE AXIOMS OF A GENERALIZED NORMED SPACE

Dijana Ilišević
University of Zagreb, Croatia

Abstract

It is shown that one of the Zalar's axioms of a generalized normed space is redundant. More precisely, Jordan-von Neumann type theorem for a pre-Hilbert module is also valid if that axiom is omitted.

The concept of an H^{*}-algebra was introduced by W. Ambrose in [1] in order to obtain an abstract characterization of Hilbert-Schmidt operators.

Definition 1. Let $(A,||$.$) be a complex Banach algebra with an inner$ product $\langle.,$.$\rangle such that \langle a, a\rangle=|a|^{2}$ for all $a \in A$. If for each $a \in A$ there exists some $a^{*} \in A$ such that

$$
\langle a b, c\rangle=\left\langle b, a^{*} c\right\rangle \text { and }\langle b a, c\rangle=\left\langle b, c a^{*}\right\rangle \text { for all } b, c \in A,
$$

then A is called an H^{*}-algebra.
Proper H^{*}-algebra is an H^{*}-algebra which satisfies the following equivalent conditions:
(i) $a A=0 \Rightarrow a=0$;
(ii) $A a=0 \Rightarrow a=0$.

An H^{*}-algebra A is proper if and only if each $a \in A$ has a unique adjoint $a^{*} \in A$. From now on, A will denote a proper H^{*}-algebra.

An element $a \in A$ is called
(i) self-adjoint if $a=a^{*}$;
(ii) a projection if $a=a^{*}=a^{2} \neq 0$;
(iii) normal if $a^{*} a=a a^{*}$;
(iv) positive $(a \geq 0)$ if $\langle a x, x\rangle \geq 0$ for every $x \in A$.

[^0]It is not difficult to establish that every $a \geq 0$ is self-adjoint. Projections $e, f \in$ A are called mutually orthogonal if $\langle e, f\rangle=\langle f, e\rangle=0$ which is equivalent to $e f=f e=0$. A primitive projection is a projection which can not be expressed as the sum of two mutually orthogonal projections. If $e \in A$ is a primitive projection, then $e A e=\mathbf{C e}$ holds. In this article, by a projection base in A we mean a maximal family of mutually orthogonal primitive projections. If $\left\{e_{i}\right\}$ is a projection base in A, then $|a|^{2}=\sum_{i}\left|a e_{i}\right|^{2}$ holds for every $a \in A$. The existence of a projection base in A, as well as other recalled facts, was proved in the pioneering paper [1].

According to [3], every normal element $a \in A$ can be expressed as $\sum_{i} \mu_{i} e_{i}$, where $\left\{\mu_{i}\right\}$ is a family of complex numbers and $\left\{e_{i}\right\}$ is a projection base which will be called a projection base associated with a.

The trace-class for A was defined to be the set $\tau(A)=\{a b: a, b \in A\}$. It is a self-adjoint ideal of A which is dense in A. There is a norm $\tau($.$) on$ the trace-class such that $(\tau(A), \tau()$.$) is a Banach algebra. The inequality$ $\tau(a b) \leq|a||b|$ holds for all $a, b \in A$.

Lemma 2. For all $a, b \in A, \tau\left(a^{2}-b^{2}\right) \leq|a-b||a+b|$.
Proof. The expression (used in [4])

$$
a^{2}-b^{2}=\frac{1}{2}(a-b)(a+b)+\frac{1}{2}(a+b)(a-b)
$$

implies

$$
\begin{aligned}
\tau\left(a^{2}-b^{2}\right) & \leq \frac{1}{2} \tau((a-b)(a+b))+\frac{1}{2} \tau((a+b)(a-b)) \leq \\
& \leq \frac{1}{2}|a-b||a+b|+\frac{1}{2}|a+b||a-b|=|a-b||a+b|
\end{aligned}
$$

If $a \in \tau(A)$ is positive, then there is a unique positive element $b \in A$ such that $b^{2}=a ; b$ is called a square root of a. For every $a \in A$, a square root of $a^{*} a$ is denoted by $[a]$.

Lemma 3. For every $a \in A,|[a]|=|a|$.
Proof.
$|[a]|^{2}=\sum_{i}\left|[a] e_{i}\right|^{2}=\sum_{i}\left\langle[a]^{2} e_{i}, e_{i}\right\rangle=\sum_{i}\left\langle a^{*} a e_{i}, e_{i}\right\rangle=\sum_{i}\left|a e_{i}\right|^{2}=|a|^{2}$

Hilbert A-modules were first defined by P. P. Saworotnow in [2]. A Hilbert A-module arises as a generalization of a complex Hilbert space when the complex field is replaced by a proper H^{*}-algebra. We shall omit the axiom of completeness and consider pre-Hilbert A-modules.

Definition 4. Let H be a right module over A. If a $\tau(A)$-valued mapping (., .) on $H \times H$ has the following properties:
(i) $(f, g+h)=(f, g)+(f, h)$ for all $f, g, h \in H$;
(ii) $(f, g a)=(f, g) a$ for all $f, g \in H$ and $a \in A$;
(iii) $(f, g)^{*}=(g, f)$ for all $f, g \in H$;
(iv) $(f, f) \geq 0$ for every $f \in H$ and $(f, f)=0 \Rightarrow f=0$;
then it is called a generalized inner product and (H,(.,.)) is called a preHilbert A-module.

Naturally, the question of analogous generalization of a complex normed space appeared. The notion of a generalized normed space was introduced by B. Zalar in [4].

Definition 5. Let H be a right module over A. Let $N: H \rightarrow A$ be a mapping with the following properties:
(i) $N(f) \geq 0$ for every $f \in H$;
(ii) $N(f)=0 \Rightarrow f=0$;
(iii) $N(f a)=[N(f) a]$ for all $f \in H$ and $a \in A$;
(iv) $|N(f+g)| \leq|N(f)|+|N(g)|$ for all $f, g \in H$;
(v) If $\left\{f_{\alpha}\right\}$ is a generalized sequence in H such that for all $\varepsilon>0$ there exists α_{0} such that for all $\alpha, \beta \geq \alpha_{0}$ we have $\left|N\left(f_{\alpha}-f_{\beta}\right)\right|<\varepsilon$, then $\left\{N\left(f_{\alpha}\right)\right\}$ is a generalized Cauchy sequence in A.
Then N is called an A-valued generalized norm (A-norm) and (H, N) is called a generalized normed space or a normed A-module.

If A is the H^{*}-algebra of complex numbers, then H is a usual complex normed space.

The main result in [4] is a generalization of the well-known Jordanvon Neumann theorem which characterizes pre-Hilbert spaces among normed spaces:

Theorem 6. A normed A-module (H, N) satisfies the parallelogram law

$$
N(f+g)^{2}+N(f-g)^{2}=2 N(f)^{2}+2 N(g)^{2} \text { for all } f, g \in H
$$

if and only if H is a pre-Hilbert A-module with respect to the generalized inner product (., .) such that $N(f)^{2}=(f, f)$ holds for all $f \in H$.

Let us note that axiom (v) represents some sort of A-norm continuity. Zalar questioned if that axiom was redundant. The aim of this article is to show that axiom (v) can be omitted, by proving

Theorem 7. Let H be a right module over A. If $N: H \rightarrow A$ is a mapping that satisfies the axioms (i)-(iv) in Definition 5 and the parallelogram law, then it also satisfies (v).

The proof of this theorem consists of several steps.

Step 1. If $f \in H$ and $e \in A$ is a primitive projection, then there exists a nonnegative number λ such that $N(f e)=\lambda e$.

Proof. Axiom (iii) implies

$$
N(f e)^{2}=[N(f) e]^{2}=e N(f)^{2} e \in e A e=\mathbf{C} e
$$

Hence there exists $\mu \in \mathbf{C}$ such that $N(f e)^{2}=\mu e$. But

$$
\mu|e|^{2}=\langle\mu e, e\rangle=\left\langle N(f e)^{2} e, e\right\rangle=|N(f e) e|^{2}
$$

implies $\mu \geq 0$. If we put $\lambda=\sqrt{\mu}$, then we have $N(f e)^{2}=\lambda^{2} e=(\lambda e)^{2}$. Since $N(f e) \geq 0$ and $\lambda e \geq 0$, it follows that $N(f e)=\lambda e$.

Step 2. For all $f \in H$ and $a \in A,|N(f a)|=|N(f) a|$.
Proof. Directly from axiom (iii) and Lemma 3.
Step 3. If $\left\{e_{i}\right\}$ is a projection base in A, then $\sum_{i} N\left(f e_{i}\right) \in A$ for every $f \in H$ and $\left|\sum_{i} N\left(f e_{i}\right)\right|=|N(f)|$ holds.

Proof. Step 1 implies the existence of a family $\left\{\lambda_{i}\right\}$ of nonnegative numbers such that $N\left(f e_{i}\right)=\lambda_{i} e_{i}$ holds for every i. Consequently, the family $\left\{N\left(f e_{i}\right)\right\}$ is orthogonal. Moreover,

$$
\sum_{i}\left|N\left(f e_{i}\right)\right|^{2} \stackrel{\text { Step }}{=}{ }^{2} \sum_{i}\left|N(f) e_{i}\right|^{2}=|N(f)|^{2}
$$

Thus, $\sum_{i} N\left(f e_{i}\right) \in A$ and $\left|\sum_{i} N\left(f e_{i}\right)\right|=|N(f)|$.
STEP 4. If $f, g \in H$ and $e \in A$ is a primitive projection, then the inequality

$$
|N(f e+g e)| \leq|N(f e)+N(g e)|
$$

holds.
Proof. According to axiom (iv),

$$
|N(f e+g e)| \leq|N(f e)|+|N(g e)| .
$$

Let $\alpha, \beta \geq 0$ be such that $N(f e)=\alpha e$ and $N(g e)=\beta e$ hold. We have

$$
\begin{aligned}
|N(f e)|+|N(g e)| & =|\alpha e|+|\beta e|=\alpha|e|+\beta|e|= \\
& =|(\alpha+\beta) e|=|\alpha e+\beta e|=|N(f e)+N(g e)|
\end{aligned}
$$

Step 5. For all $f, g \in H$,

$$
|N(f+g)|^{2}+|N(f-g)|^{2}=|N(f)+N(g)|^{2}+|N(f)-N(g)|^{2}
$$

Proof. Let $\left\{e_{i}\right\}$ be a projection base in A. For every i, we have

$$
\begin{aligned}
\mid N(f & +g)\left.e_{i}\right|^{2}+\left|N(f-g) e_{i}\right|^{2}=\left\langle N(f+g)^{2} e_{i}, e_{i}\right\rangle+\left\langle N(f-g)^{2} e_{i}, e_{i}\right\rangle= \\
& =\left\langle\left(N(f+g)^{2}+N(f-g)^{2}\right) e_{i}, e_{i}\right\rangle=\left\langle\left(2 N(f)^{2}+2 N(g)^{2}\right) e_{i}, e_{i}\right\rangle= \\
& =2\left\langle N(f)^{2} e_{i}, e_{i}\right\rangle+2\left\langle N(g)^{2} e_{i}, e_{i}\right\rangle=2\left|N(f) e_{i}\right|^{2}+2\left|N(g) e_{i}\right|^{2} .
\end{aligned}
$$

Summing over the set of all i gives

$$
|N(f+g)|^{2}+|N(f-g)|^{2}=2|N(f)|^{2}+2|N(g)|^{2} .
$$

Since the norm $|$.$| in A$ satisfies the parallelogram law, the right side is equal to $|N(f)+N(g)|^{2}+|N(f)-N(g)|^{2}$.

Step 6. If $\left\{e_{i}\right\}$ is a projection base in A and $f, g \in H$, then

$$
\left|\sum_{i} N\left(f e_{i}\right)-\sum_{i} N\left(g e_{i}\right)\right| \leq|N(f-g)|
$$

holds.
Proof. Since Step 5 implies
$\left|N\left(f e_{i}+g e_{i}\right)\right|^{2}+\left|N\left(f e_{i}-g e_{i}\right)\right|^{2}=\left|N\left(f e_{i}\right)+N\left(g e_{i}\right)\right|^{2}+\left|N\left(f e_{i}\right)-N\left(g e_{i}\right)\right|^{2}$ and Step 4

$$
\left|N\left(f e_{i}+g e_{i}\right)\right| \leq\left|N\left(f e_{i}\right)+N\left(g e_{i}\right)\right|,
$$

therefore for every i we have

$$
\left|N\left(f e_{i}\right)-N\left(g e_{i}\right)\right| \leq\left|N\left(f e_{i}-g e_{i}\right)\right|=\left|N\left((f-g) e_{i}\right)\right| \stackrel{\text { Step }}{=}{ }^{2}\left|N(f-g) e_{i}\right|
$$

and hence

$$
\sum_{i}\left|N\left(f e_{i}\right)-N\left(g e_{i}\right)\right|^{2} \leq \sum_{i}\left|N(f-g) e_{i}\right|^{2}=|N(f-g)|^{2}
$$

According to Step $3, \sum_{i} N\left(f e_{i}\right) \in A$ and $\sum_{i} N\left(g e_{i}\right) \in A$. Applying Step 1, we conclude that for every i there exist $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$ such that $N\left(f e_{i}\right)=\alpha_{i} e_{i}$ and $N\left(g e_{i}\right)=\beta_{i} e_{i}$. Now we have

$$
\begin{gathered}
\left|\sum_{i} N\left(f e_{i}\right)-\sum_{i} N\left(g e_{i}\right)\right|^{2}=\left|\sum_{i} \alpha_{i} e_{i}-\sum_{i} \beta_{i} e_{i}\right|^{2}= \\
=\left|\sum_{i}\left(\alpha_{i}-\beta_{i}\right) e_{i}\right|^{2}=\sum_{i}\left|\alpha_{i} e_{i}-\beta_{i} e_{i}\right|^{2}= \\
=\sum_{i}\left|N\left(f e_{i}\right)-N\left(g e_{i}\right)\right|^{2} \leq|N(f-g)|^{2}
\end{gathered}
$$

Step 7. For all $f, g \in H$,

$$
|N(f)-N(g)|^{2} \leq|N(f-g)| \cdot(|N(f)|+|N(g)|)
$$

Proof. Let $\left\{e_{i}\right\}$ be a projection base in A associated with $N(f)^{2}-N(g)^{2}$ and let $\left\{\mu_{i}\right\}$ be a family of complex numbers such that $N(f)^{2}-N(g)^{2}=$ $\sum_{i} \mu_{i} e_{i}$. Step 1 implies the existence of families $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ of nonnegative numbers such that $N\left(f e_{i}\right)=\alpha_{i} e_{i}$ and $N\left(g e_{i}\right)=\beta_{i} e_{i}$ hold for every i. Since

$$
\begin{aligned}
\left(\sum_{i}\right. & \left.N\left(f e_{i}\right)\right)^{2}-\left(\sum_{i} N\left(g e_{i}\right)\right)^{2}=\left(\sum_{i} \alpha_{i} e_{i}\right)^{2}-\left(\sum_{i} \beta_{i} e_{i}\right)^{2}= \\
& =\sum_{i}\left(\alpha_{i} e_{i}\right)^{2}-\sum_{i}\left(\beta_{i} e_{i}\right)^{2}=\sum_{i} N\left(f e_{i}\right)^{2}-\sum_{i} N\left(g e_{i}\right)^{2}= \\
& =\sum_{i}\left[N(f) e_{i}\right]^{2}-\sum_{i}\left[N(g) e_{i}\right]^{2}=\sum_{i} e_{i} N(f)^{2} e_{i}-\sum_{i} e_{i} N(g)^{2} e_{i}= \\
& =\sum_{i} e_{i}\left(N(f)^{2}-N(g)^{2}\right) e_{i}=\sum_{i} \mu_{i} e_{i}=N(f)^{2}-N(g)^{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \tau\left(N(f)^{2}-N(g)^{2}\right)=\tau\left(\left(\sum_{i} N\left(f e_{i}\right)\right)^{2}-\left(\sum_{i} N\left(g e_{i}\right)\right)^{2}\right) \stackrel{\text { Lemma } 2}{\leq} \\
& \leq\left|\sum_{i} N\left(f e_{i}\right)-\sum_{i} N\left(g e_{i}\right)\right| \cdot\left|\sum_{i} N\left(f e_{i}\right)+\sum_{i} N\left(g e_{i}\right)\right| \stackrel{\text { Step } 6}{\leq} \\
& \leq|N(f-g)| \cdot\left|\sum_{i} N\left(f e_{i}\right)+\sum_{i} N\left(g e_{i}\right)\right| \leq \\
& \leq|N(f-g)| \cdot\left(\left|\sum_{i} N\left(f e_{i}\right)\right|+\left|\sum_{i} N\left(g e_{i}\right)\right|\right) \text { Step }_{=}^{3} \\
&=|N(f-g)| \cdot(|N(f)|+|N(g)|)
\end{aligned}
$$

Lemma 10(3) from [4] completes the proof.
STEP 8. If $\left\{f_{\alpha}\right\}$ is a generalized sequence in H such that for all $\varepsilon>0$ there exists α_{0} such that for all $\alpha, \beta \geq \alpha_{0}$ we have $\left|N\left(f_{\alpha}-f_{\beta}\right)\right|<\varepsilon$, then $\left\{N\left(f_{\alpha}\right)\right\}$ is a generalized Cauchy sequence in A.

Proof. There exists α^{\prime} such that

$$
\begin{aligned}
\alpha \geq \alpha^{\prime} & \Rightarrow\left|N\left(f_{\alpha}-f_{\alpha^{\prime}}\right)\right|<1 \Rightarrow\left|N\left(f_{\alpha}\right)\right|=\left|N\left(\left(f_{\alpha}-f_{\alpha^{\prime}}\right)+f_{\alpha^{\prime}}\right)\right| \leq \\
& \leq\left|N\left(f_{\alpha}-f_{\alpha^{\prime}}\right)\right|+\left|N\left(f_{\alpha^{\prime}}\right)\right|<1+\left|N\left(f_{\alpha^{\prime}}\right)\right| \stackrel{\text { def }}{=} M .
\end{aligned}
$$

For a given $\varepsilon>0$, there exists $\alpha^{\prime \prime}$ with the property

$$
\alpha, \beta \geq \alpha^{\prime \prime} \Rightarrow\left|N\left(f_{\alpha}-f_{\beta}\right)\right|<\frac{\varepsilon^{2}}{2 M}
$$

There is α_{0} such that $\alpha^{\prime} \leq \alpha_{0}$ and $\alpha^{\prime \prime} \leq \alpha_{0}$ hold. Step 7 now gives

$$
\alpha, \beta \geq \alpha_{0} \Rightarrow\left|N\left(f_{\alpha}\right)-N\left(f_{\beta}\right)\right|^{2}<\frac{\varepsilon^{2}}{2 M} \cdot(M+M)=\varepsilon^{2}
$$

References

[1] W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191-197.
[3] P. P. Saworotnow, J. C. Friedell, Trace-class for an arbitrary H^{*}-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100.
[4] B. Zalar, Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space, Acta Math. Hungar. 69 (1995), 301-325.

Department of Mathematics,
University of Zagreb,
Bijenička 30, P.O.Box 335,
10002 Zagreb, Croatia
E-mail: ilisevic@math.hr
Received: 09.04.2001.

[^0]: 2000 Mathematics Subject Classification. 46K15, 46C15, 46H25.
 Key words and phrases. H*-algebra, Hilbert module, normed module, Jordan-von Neumann theorem.

