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2–ISOMETRIC OPERATORS

S. M. Patel
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Abstract. An operator T on a complex Hilbert space is called a
2–isometry if T ∗2T 2−2T ∗T +I = 0. Our underlying purpose in this article
is to investigate some algebraic and spectral properties of 2–isometries.

1. Introduction

Let H be a complex Hilbert space. By an operator on H , we shall mean a
bounded linear transformation from H to H . Let σ(T ), π(T ), π0(T ), π00(T )
and w(T ), respectively denote the spectrum, the approximate point spectrum,
the point spectrum, the set of eigenvalues with finite multiplicity and the Weyl
spectrum of an operator T . We use the symbol ∂σ(T ) for the boundary of
σ(T ). If for an operator T , w(T ) = σ(T ) ∼ π00(T ), then we say that the
Weyl’s theorem holds for T .The spectral radius and the numerical radius of
T will be denoted by r(T ) and |W (T )| respectively. If r(T ) = |W (T )|, then
T is called a spectraloid operator. By saying that an operator T is power
bounded, we mean that there exists some M > 0 such that ‖T n‖ ≤ M for
each positive integer n. According to [1], an operator T is defined to be a
2–isometry if T ∗2T 2 − 2T ∗T + I = 0. In the present note, we explore some
properties of 2–isometries.

Clearly every isometry is a 2–isometry. According to [1, Proposition 1.23],
an invertible 2–isometry turns out to be a unitary operator. It is obvious from
the definition that every 2–isometry is left invertible. In particular if both T
and T ∗ are 2–isometries then T is invertible and so must be unitary.

2. Results

Theorem 2.1. A power of a 2–isometry is again a 2–isometry.
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Proof. Let T be a 2–isometry. We prove the assertion by using the
mathematical induction. Since T is a 2–isometry, the result is true for n = 1.
Now assume that the result is true for n = k, i.e.,

(2.1) T ∗2kT 2k − 2T ∗kT k + I = 0.

Then

T ∗2(k+1)T 2(k+1) − 2T ∗k+1T k+1 + I

= T ∗2(T ∗2kT 2k)T 2 − 2T ∗k+1T k+1 + I

= T ∗2(2T ∗kT k − I)T 2 − 2T ∗k+1T k+1 + I (by (2.1))

= 2T ∗k+2T k+2 − T ∗2T 2 − 2T ∗k+1T k+1 + I

= 2T ∗k(T ∗2T 2 − T ∗T )T k − T ∗2T 2 + I

= 2T ∗k(T ∗T − I)T k − T ∗2T 2 + I (T is a 2–isometry)

= (2T ∗k+1T k+1 − 2T ∗kT k) − T ∗2T 2 + I

= 2(T ∗2T 2 − T ∗T ) − T ∗2T 2 + I (by (2.1))

= T ∗2T 2 − 2T ∗T + I

= 0.

This shows that the result is true for n = k + 1: thus T n is a 2–isometry
for each n.

It is well known and obvious that a unilateral weighted shift is an isometry
iff all its weights lie on the unit circle. In the next result, we obtain a necessary
and sufficient condition under which a non–isometric unilateral weighted shift
is a 2–isometry.

Theorem 2.2. A non–isometric unilateral weighted shift T with weights
{αn} is a 2–isometry if and only if

(i) |αn|2|αn+1|2 − 2|αn|2 + 1 = 0 for each n;
(ii) |αn| 6= 1 for each n.

Proof. Suppose T is a 2–isometry. If {en} is an orthonormal base for H ,
then Ten = αnen+1 and hence (i) follows. Suppose (ii) is false. Select the least
positive integer k such that |αk| = 1. If k > 1, then (i) gives |αk−1 = 1 which
is contrary to the selection of k. Therefore |α1 = 1. Using the induction
argument and (i), one can show that |αn| = 1 for each positive integer n.
But this will contradict our assumption that T is non–isometric. Hence we
conclude that (ii) is true. The converse assertion is obvious.

Corollary 2.3. Let T be a non–isometric unilateral weighted shift with
weights {αn}. If T is a 2–isometry, then the following assertions hold.

(i) {|αn|} is a strictly decreasing sequence of real numbers converging to
1.

(ii)
√

2 > |αn| > 1 for each n > 1.
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Proof. (i) Suppose |αn+1| ≥ |αn| for some n. Then by Theorem 2.2
(i), we find 0 ≥ (1 − |αn|2)2 or |αn| = 1. But this contradicts The-
orem 2.2 (ii). Thus {|αn|} is a strictly decreasing sequence of real
numbers and so must be convergent. By Theorem 2.2 (i), we infer
that |αn| → 1.

(ii) Rewriting equality (i) of Theorem 2.2 as

(2.2) |αn+1|2 − 2 + 1/|αn|2 = 0

we get
√

2 > |αn| for each n > 1. By (i) and Theorem 2.2 (ii), |αn| > 1.
This finishes the proof of (ii).

Theorem 2.4. A power bounded 2–isometry is an isometry.

Proof. Let T be a power bounded 2–isometry. Then there exists a
positive real number M such that

(2.3) ‖T n‖ ≤M

for n = 1, 2, 3, . . . . The definition of a 2–isometry yields

(2.4) ‖T 2‖2 + 1 = 2‖T‖2.

Since Tn is also a 2–isometry by Theorem 2.1, an induction argument shows
that

(2.5) ‖T 2n‖2 = 2n‖T‖2 − (2n − 1)

for every positive integer n. Now (2.3) and (2.5) will give

M2/2n ≥ ‖T‖2 − 1 + 1/2n ≥ 0.

Letting n → ∞, we find ‖T‖ = 1. In particular, I ≥ T ∗T . Since T ∗T ≥ I [1,
Proposition 1.5], we conclude T ∗T = I .

Remark 2.5. Above theorem can be used to show that unlike isometries,
the class of 2–isometries is not bounded. To see this, use Theorem 2.2 to
construct a 2–isometry T , which is not an isometry. Then by Theorem 2.4,
we see that for each M > 0, there corresponds a positive integer n such that
‖Tn‖ > M . Since Theorem 2.1 says that T n is also a 2–isometry, we conclude
that the class of 2–isometries contains operators with arbitrarily large norm.

Corollary 2.6. A 2–isometry similar to a spectraloid operator is an
isometry.

Proof. Let T be a 2–isometry. Suppose it is similar to a spectraloid
operator A. Then r(T n) = r(An) = |W (An)| for n = 1, 2, 3, . . . . Since
r(T ) = 1, [1], we find 1 = |W (An)| and hence ‖An‖ ≤ 2 for each n. Now the
similarity of T and A shows that T is power bounded; thus the result follows
from the preceding theorem.
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Remark 2.7. Above corollary shows that unlike the class of isometries,
the class of 2–isometries fails to be a subclass of spectraloid operators.

Corollary 2.8. If T is a 2–isometry, then 1 ∈ σ(T ∗T ).

Proof. Suppose to the contrary that 1 /∈ (T ∗T ). Then the operator A =
T ∗T−I is invertible. MoreoverA ≥ 0 [1, Proposition 1.5]. From the definition
of a 2–isometry it follows that σT ∗AT = A or (A1/2TA−1/2)∗(A1/2TA−1/2) =
I where A1/2 denotes the positive square root of A. Thus T is similar to
an isometry and so must be an isometry by virtue of Corollary 2.6. This
contradicts our supposition that 1 /∈ σ(T ∗T ).

In the rest of the article, we shall obtain some spectral properties of 2-
isometries.

Theorem 2.9. Let T be a 2–isometry. Then

(i) z ∈ π(T ) implies z∗ ∈ π(T ∗).
(ii) z ∈ π0(T ) implies z∗ ∈ π0(T

∗).
(iii) Eigenvectors of T corresponding to distinct eigen-values are orthogonal.

Proof. (i) Let z ∈ π(T ). Choose a sequence {xn} of unit vectors such that
(T − zI)xn → 0. Then (T ∗2T 2 − z2T ∗2)xn → 0 and T ∗Txn − zT ∗xn → 0.
The hypothesis that T is a 2–isometry yields 0 = T ∗2T 2 − 2T ∗T + I =
T ∗2T 2−z2T ∗2−2T ∗T +2zT ∗+z2T ∗2−2zT ∗+ I . This will imply z2T ∗2xn −
2zT ∗xn + xn → 0. Since π(T ) is a subset of the unit circle [1], we find
(T ∗ − z∗I)2xn → 0. From this it follows that z∗ ∈ π(T ∗).

(ii) The argument is similar to one given in (i).

(iii) Let λ and µ be distinct eigen-values of T . Suppose Tx = λx and Ty =
µy. Then 0 = 〈(T ∗2T 2 − 2T ∗T + I)x, y〉 = 〈T 2x, T 2y〉 − 2〈Tx, Ty〉+ 〈x, y〉 =
(λ2µ∗2 − 2λµ∗ + 1)〈x, y〉. Since λ 6= µ with |λ| = 1 = |µ|, λ2µ∗2 − 2λµ∗ + 1 =
(λ/µ− 1)2 6= 0. This leads to 〈x, y〉 = 0 which proves the assertion.

Theorem 2.10. The spectrum of a 2–isometry is the closed unit disc
provided it is non–unitary.

Proof. Let T be a non–unitary 2–isometry. Then 0 ∈ σ(T ) ∼ π(T ).
Since ∂σ(T ) ⊆ π(T ), 0 turns out to be an interior point of σ(T ). Therefore
we can find the largest positive number r such that {z : |z| ≤ r} is contained
in σ(T ). It is possible to select a complex number z in ∂σ(T ) such that
r = |z|. Since ∂σ(T ) ⊆ π(T ) ⊆ {z : |z| = 1}[1], r = 1. Consequently we find
σ(T ) = {z : |z| ≤ 1}.

Corollary 2.11. If T is a 2–isometry, then each isolated point in its
spectrum is an eigen–value.

Proof. If σ(T ) has an isolated point, then it is clear from the above
theorem that T is unitary and hence the result follows.
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Corollary 2.12. Let T be a 2–isometry. If the Lebesgue planar measure
of σ(T ) is zero, then T is unitary.

Corollary 2.13. The Weyl’s theorem holds for 2–isometries.

Proof. The result holds if T is unitary. Assume that T is non-unitary.
Then Theorem 2.10 shows that π00(T ) = ∅. Also by Theorem 2.9 (ii) and
Lemma 3 of [2], σ(T ) ∼ π00(T ) ⊆ w(T ) and hence σ(T ) ⊆ w(T ). This
completes the argument.
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