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STRONG EXPANSIONS FOR TRIADS OF SPACES
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Abstract. Lisica and Mardešić introduced the notion of coherent ex-
pansion of a space to develop a strong shape theory for arbitrary topologi-
cal spaces. Mardešić then introduced the notion of strong ANR-expansion
of a space, which is an intermediate notion between ANR-resolution and
ANR-expansion, and showed that this notion can be used to define the
same strong shape category. The purpose of this paper is to generalize
those notions to triads of spaces and show that resolutions of triads are
strong expansions of triads and that strong expansions of triads are co-
herent expansions of triads. Hence the strong shape theory for triads is
well-defined, and all notions and results on strong expansions generalize to
triads of spaces. As an invariant, strong homotopy groups for triads are
defined, and the excision property with respect to strong homotopy groups
and Mayer-Vietoris sequences for strong homology groups are discussed.

1. Introduction

Lisica and Mardešić [3] defined a coherent expansion of an arbitrary topo-
logical space, and, using this notion, they defined the strong shape category
whose objects are aribitrary topological spaces. In their theoy, spaces are
represented as ANR-resolutions, which are shown to be coherent expansions
definig the strong shape of the spaces. As an intermediate notion between
ANR-resolution and ANR-expansion, Mardešić [11] introduced a strong ANR-
expansion of an arbitrary topological space. Strong expansions are suitable
for working in the strong shape category, while ANR-resolutions and ANR-
expansions are suitable for working in the category of topological spaces and
the shape category, respectively. In this paper, we develop the strong shape
theory for triads of spaces by extending to triads of spaces the notions of
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strong expansion and coherent expansion. More precisely, it is shown that ev-
ery resolution of a triad is a strong expansion of a triad and that every strong
expansion of a triad is a coherent expansion of a triad. Thus the strong shape
category for triads of spaces is obtained. As an invariant, strong homotopy
groups for triads are defined, and the excision property with respect to strong
homotopy groups and Mayer-Vietoris sequences for strong homology groups
are discussed.

The original work for the strong shape theory for single spaces is found
in Lisica and Mardešić [3]. The extended work for the strong shape theory
for pairs of spaces is found in Lisica and Mardešić [4, 5] and Mardešić [10].
This paper closely follows the ideas of those papers. A generalization of
the Kuratowsky-Wojdislawski embedding theorem for triads, which is a key
lemma in this paper, is obtained in the following section. The version for pairs
is found in [6, §. 3]. ANR-resolutions for triads were studied by Mardešić [8]
and used in the study of the excision property of strong homology by Lisica
and Mardešić [5]. Related work for the ordinary shape theory for triads is
found in Miyata [13, 14].

Throughout the paper, spaces mean topological spaces, and maps mean
continuous maps. A map of triads f : (X ;X0, X1) → (Y ;Y0, Y1) means a
map f : X → Y such that f(X0) ⊆ Y0 and f(X1) ⊆ Y1. A homotopy of
triads means a map of triads h : (X × I ;X0 × I,X1 × I) → (Y ;Y0, Y1). Let
f, g : X → Y be functions between sets. For any covering V of Y , (f, g) < V
means that f and g are V-near. For any covering U of a set X , if A is a subset
of X , then U|A means the covering {U ∩ A : U ∈ U} of A, and the star of A
in X with respect to U means the set St(A,U) = ∪{U ∈ U : U ∩A 6= ∅}. Also
the star covering of U means the covering StU = {St(U,U) : U ∈ U}. For
each space X , let Cov(X) denote the set of all normal open coverings of X .

2. Metric triads and ANR triads

In this section we prove a generalization of the Kuratowsky-Wojdislawski
embedding theorem (see [15, Theorem 2, p. 35]) for triads and obtain a key
lemma concerning a homotopy property of ANR triads. The version for pairs
was obtained by Mardešić and Lisica [6, Theorem 5].

A triad of spaces (X ;X0, X1) means a space X and two subspaces X0 and
X1 of X such that X = X0 ∪ X1. A triad of spaces (X ;X0, X1) is an ANR
triad if X0 and X1 are closed subsets of X and X,X0, X1, X0∩X1 are ANR’s,
and a triad of spaces (X ;X0, X1) is a polyhedral triad (resp., CW triad) if X
is a polyhedron (resp., CW-complex) and X0 and X1 are subpolyhedra (resp.,
subcomplexes) of X .

The following theorem is a generalization of the Kuratowsky-Wojdislawski
theorem for triads:
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Theorem 2.1. Let (X ;X0, X1) be a triad of metric spaces such that X0

and X1 are closed. Then there exist a normed vector space L and an embedding
h : X ↪→ L with the following properties:

1.) h(X0), h(X1) and h(X0 ∩X1) are closed in their convex hulls K0, K1

and K01, respectively;
2.) h(X) ∩Ki = h(Xi), i = 0, 1, and h(X) ∩K01 = h(X0 ∩X1);
3.) K0 ∩K1 = K01; and
4.) K0 and K1 are closed in K0 ∪K1.

For the proof, we need the two lemmas stated below. First of all, the
following lemma is proved in [6, Lemma 5]:

Lemma 2.2. Let f : X → K and f ′ : X → K ′ be any maps between
spaces. Then if f is an embedding, then the map h = f × f ′ : X → K ×K ′ is
also an embedding. Moreover, if f(X) is closed in K and K ′ is a Hausdorff
space, then h(X) is closed in K ×K ′.

The second lemma is the following, which is essentially proved in [6,
Lemma 6].

Lemma 2.3. Let (X ;X0, X1) be a triad of metric spaces such that X0 and
X1 are closed. Then there exist a normed vector space L and an embedding
h : X ↪→ L with the property that h(X0), h(X1) and h(X0 ∩X1) are closed in
their convex hulls K0, K1 and K01, respectively.

Proof. Let L be the space of bounded real-valued functions with the
sup-norm. For each x ∈ X , define the map fx : X → R by fx(z) = d(z, x) for
z ∈ X , where d is the metric on X , and then define the map h : X → L by
h(x) = fx. This map h is an isometric embedding. [6, Lemma 6] shows that
for each closed subset A of X , h(A) is closed in its convex hull, and hence the
map h certainly satisfies the condition in the assertion.

Proof of Theorem 2.1. Let h′ : X → L′ be an embedding into a
normed vector space L′ such that h′(X0), h

′(X1) and h′(X0 ∩X1) are closed
in their convex hulls K ′

0, K
′
1 and K ′

01, respectively (see Lemma 2.3), and let
ϕi : Xi → [0, 1], i = 0, 1, be a map such that ϕ−1

i (0) = X0 ∩ X1. Now
consider the normed vector space L = L′ × R × R where the norm is defined
by ||(x, s, t)|| = ||x|| + |s| + |t|. Then Lemma 2.2 implies that the maps
h0 = h′|X0×ϕ0×0 : X0 → L and h1 = h′|X1×0×ϕ1 : X1 → L are respectively
embeddings as closed subspaces of L. Since h0|X0∩X1 = h′|X0∩X1 × 0 × 0 =
h1|X0∩X1 , h0 and h1 define a map h : X → L. Indeed, h is an embedding.
Let K01 = K ′

01 × 0× 0 ⊆ L. Then K01 is the convex hull of h(X0 ∩X1). Let
Ki be the convex hull of h(Xi) in L for i = 0, 1. So K0 ⊆ L′ × R × 0 and
K1 ⊆ L′×0×R. Then h(X)∩Ki = h(Xi), i = 0, 1. Indeed, for the case i = 0,
if x ∈ X\X0, ϕ1(x) > 0 and hence h(x) 6∈ K0, and similarly for the other case.
Also h(X) ∩K01 = h(X0 ∩X1) since if x ∈ X \X0 ∩X1, either ϕ0(x) > 0 or
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ϕ1(x) > 0, so h(x) 6∈ K01. Thus property 2) has been verified. By Lemma 2.2,
(h′×ϕ0)(Xi), i = 0, 1, and (h′ ×ϕ0)(X0 ∩X1) are closed in L′×R, so h(X0),
h(X1) and h(X0 ∩X1) are closed in L′×R× 0, L′× 0×R and L′×R× 0 and
hence are closed in K0, K1 and K01, respectively. Thus property 1) is verified.
Since N0 = K01∪ (K ′

0 × (0, 1]×0) and N1 = K01∪ (K ′
1×0× (0, 1]) are convex

subsets of L containing h(X0) and h(X1), respectively, then Ki ⊆ Ni, i = 0, 1.
So, K01 ⊆ K0∩K1 ⊆ N0∩N1 = K01, and hence K0∩K1 = K01, verifying 3).
This then implies (K0 ∪K1) \K0 = K1 \K01 and (K0 ∪K1) \K1 = K0 \K01.
Since also K01 is closed in N0 and N1, and hence closed in K0 and K1, then
K0 and K1 are closed in K0 ∪K1, verifying property 4).

Lemma 2.4. Let (X ;X0, X1) be a triad of metric spaces such that X0 and
X1 are closed, let (P ;P0, P1) be an ANR triad, and let A be a closed subset of
X. Then every map of triads f : (A;A∩X0, A∩X1) → (P ;P0, P1) admits an
extension f : (U ;U ∩X0, U ∩X1) → (P ;P0, P1) for some open neighborhood
U of A in X.

Proof. See [14, Lemma 2.5].

Lemma 2.4 immediately implies

Theorem 2.5. Let (K;K0,K1) be a triad of metric spaces, and let
(P ;P0, P1) be an ANR triad such that P is a closed subspace of K and
P ∩ Ki = Pi, i = 0, 1. Then there exist an open neighborhood U of P in
K and a retraction of triads r : (U ;U ∩K0, U ∩K1) → (P ;P0, P1).

The following theorem is a key result for later sections:

Theorem 2.6. For each ANR triad (P ;P0, P1) and for each U ∈ Cov(P ),
there exists V ∈ Cov(P ) such that any V-near maps g0, g1 : (Z;Z0, Z1) →
(P ;P0, P1) admit a U-homotopy of triads H : (Z × I ;Z0 × I, Z1 × I) →
(P ;P0, P1) such that H( , 0) = g0 and H( , 1) = g1.

Proof. By Theorems 2.1 and 2.5, there is an embedding of P into a
normed vector space L as a closed subspace with the following properties:

1.) Pi is closed in its convex hull Ki, i = 0, 1;
2.) P ∩Ki = Pi, i = 0, 1; and
3.) K0 and K1 are closed in K = K0 ∪K1,

and also there is a retraction of triads r : (U ;U ∩K0, U ∩K1) → (P ;P0, P1)
for some open neighborhood U of P in K. Now let U ∈ Cov(P ), and take
U ′ ∈ Cov(U) such that U ′ < r−1U and U ′|K0 and U ′|K1 consist of convex
sets. Let V = U ′|P ∈ Cov(P ). We wish to show that this V has the desired
property. Let g0, g1 : (X ;X0, X1) → (P ;P0, P1) be V-near maps of triads.
For each x ∈ X , if x ∈ Xi, then g0(x), g1(x) ∈ Pi ∩ U ′

x for some U ′
x ∈ U ′, and

since Pi ∩U ′
x ⊆ Ki ∩U ′

x and Ki ∩U ′
x is convex, g0(x) and g1(x) can be joined

by a line segment in Ki∩U ′
x. Thus we obtain a map H : X×I → U such that
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H( , 0) = g0, H( , 1) = g1 and H(x× I) ⊆ Ki ∩ U ′
x. Moreover, this H defines

a homotopy of triads H : (X × I ;X0 × I,X1 × I) → (U ;U ∩K0, U ∩K1), and
the map of triads G = rH : (X × I ;X0 × I,X1 × I) → (P ;P0, P1) defines a
desired homotopy of triads.

3. Resolutions of triads are strong expansions

Let TopT denote the category of triads of spaces and maps of triads.
Recall that a resolution of a triad (X ;X0, X1) is a morphism p = (pλ) :

(X ;X0, X1) → (X; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ) in pro-TopT with the
following two properties [8]:

(R1) Let (P ;P0, P1) be an ANR triad, and let V ∈ Cov(P ). Then every
map of triads f : (X ;X0, X1) → (P ;P0, P1) admits λ ∈ Λ and a map
of triads g : (Xλ;X0λ, X1λ) → (P ;P0, P1) such that (gpλ, f) < V ; and

(R2) Let (P ;P0, P1) be an ANR triad. Then for each V ∈ Cov(P )
there exists V ′ ∈ Cov(P ) such that whenever λ ∈ Λ and g, g′ :
(Xλ;X0λ, X1λ) → (P ;P0, P1) are maps of triads such that (gpλ, g

′pλ) <
V ′, then (gpλλ′ , g′pλλ′) < V for some λ′ ≥ λ.

A resolution p is called an ANR-resolution (resp., polyhedral resolution)
if all (Xλ;X0λ, X1λ) are ANR triads (resp., polyhedral triads).

For each triad of spaces (X ;X0, X1), for each morphism p = (pλ) :

(X ;X0, X1) → (X; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ) in pro-TopT and for
each class of triads C, consider the following two properties:

(S1) For each (P ;P0, P1) ∈ C and for each map f : (X ;X0, X1) →
(P ;P0, P1) there exist λ ∈ Λ and a map g : (Xλ;X0λ, X1λ) →
(P ;P0, P1) such that gpλ ' f as maps of triads; and

(S2) For each (P ;P0, P1) ∈ C and for each λ ∈ Λ and pair of maps of
triads f0, f1 : (Xλ;X0λ, X1λ) → (P ;P0, P1) with a homotopy of triads
F : (X × I ;X0 × I,X1 × I) → (P ;P0, P1) such that F ( , 0) = f0pλ

and F ( , 1) = f1pλ, there exist λ′ ≥ λ and a homotopy of triads
H : (Xλ′×I ;X0λ′×I,X1λ′×I) → (P ;P0, P1) such thatH( , 0) = f0pλλ′

and H( , 1) = f1pλλ′ , and H(pλ′ × 1I) ' F rel(X × ∂I) as maps of
triads.

A morphism p : (X ;X0, X1) → (X ; X0,X1) is said to be a strong expan-
sion if it satisfies conditions (S1) and (S2) with respect to the class of ANR
triads.

Lemma 3.1. Let C be a class of triads homotopy dominated by a class of
triads C′. Then for each i = 1, 2, condition (Si) for C implies condition (Si)
for C′.

Proof. The proof for [12, Lemma 7.4] can be easily modified for the case
of triads.



154 T. MIYATA AND T. WATANABE

Theorem 3.2. (Miyata [13]) The following statements are equivalent:

1.) (X ;X0, X1) has the homotopy type of a polyhedral triad;
2.) (X ;X0, X1) has the homotopy type of an ANR triad; and
3.) (X ;X0, X1) has the homotopy type of a CW triad.

By Lemma 3.1 and Theorem 3.2, for strong expansions, we can take the
class of polyhedral triads (or CW triads) instead of the class of ANR triads.

Let H(TopT ) denote the category of triads of spaces and the homo-

topy classes of maps of triads, and let HPolT denote the full subcategory
of H(Top

T ) whose objects are triads of spaces which have the homotopy type
of a polyhedral triad (equivalently, an ANR triad). We call a strong expan-

sion p : (X ;X0, X1) → (X; X0,X1) a strong HPolT -expansion if all triads

(Xλ;X0λ, X1λ) are objects of HPolT .
The following is the main theorem in this section:

Theorem 3.3. Each resolution p : (X ;X0, X1) → (X; X0,X1) is a
strong expansion.

Proof. We can prove the theorem as in [12, Theorem 7.6], using Theo-
rem 2.6 and Lemma 3.4 below.

Lemma 3.4. Let

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

be a resolution of a triad of spaces (X ;X0, X1), and let (P ;P0, P1) be an
ANR triad and U ∈ Cov(P ). Suppose f0, f1 : (Xλ;X0λ, X1λ) → (P ;P0, P1)
are maps of triads and F : (X×I ;X0×I,X1×I) → (P ;P0, P1) is a homotopy
of triads such that F ( , 0) = f0pλ and F ( , 1) = f1pλ. Then there exist λ′ ≥ λ
and a homotopy of triads H : (Xλ′ × I ;X0λ′ × I,X1λ′ × I) → (P ;P0, P1) such
that H( , 0) = f0pλλ′ , H( , 1) = f1pλλ′ and (F,H(pλ′ × 1)) < U .

Proof. We can prove the lemma as for [12, Lemma 7.10], using Theorem
2.6, Lemmas 3.5 and 3.6 in the below and the fact that every resolution of
triads p : (X ;X0, X1) → (X; X0,X1) induces a resolution p|X : X → X.

Lemma 3.5. Let (P ;P0, P1) be an ANR triad, and let V ∈ Cov(P ). Sup-
pose K : (Y × I ;Y0 × I, Y1 × I) → (P ;P0, P1) is a homotopy of triads from
a triad of spaces (Y ;Y0, Y1) and L,M : (Y × I ;Y0 × I, Y1 × I) → (P ;P0, P1)
are V-homotopies of triads such that K( , 0) = L( , 1) and K( , 1) = M( , 1).
Then there exists a homotopy of triads H : (Y ×I ;Y0×I, Y1×I) → (P ;P0, P1)
such that H( , 0) = L( , 0), H( , 1) = M( , 0) and (H,K) < StV.

Proof. The same proof as for [12, Lemma 7.12] applies to our case.
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Lemma 3.6. Let

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

be a resolution of a triad (X ;X0, X1), and let Y be a compact Hausdorff space.
Then the morphism

p × 1Y = (pλ × 1Y ) : (X ;X0, X1) × Y → (X; X0,X1) × Y

= ((Xλ × Y ;X0λ × Y,X1λ × Y ), pλλ′ × 1Y ,Λ)

is a resolution.

Proof. First note that if (P ;P0, P1) is an ANR triad and if Y is a com-
pact Hausdorff space, then (P Y ;P Y

0 , P
Y
1 ) is an ANR triad. We will verify

(R1) and (R2) for p × 1Y . For (R1), let f : (X ;X0, X1) × Y → (P ;P0, P1)
be a map of triads into an ANR triad, and let V ∈ Cov(P ). Then f in-
duces a map of triads f ′ : (X ;X0, X1) → (P Y ;P Y

0 , P
Y
1 ). Let V ′ ∈ Cov(P )

such that StV ′ < V , and let U(V ′) be the open covering of P Y consisting
of the subsets U(f,V ′) = {g ∈ P Y : (f, g) < V ′} for f ∈ P Y . (R1) for
p : (X ;X0, X1) → (X; X0,X1) implies that there exist λ ∈ Λ and a map
of triads g′ : (Xλ;X0λ, X1λ) → (P Y ;P Y

0 , P
Y
1 ) such that (f ′, g′pλ) < U(V ′).

g′ induces a map of triads g : (Xλ × Y ;X0λ × Y,X1λ × Y ) → (P ;P0, P1).
Then (f, g(pλ × 1Y )) < StV ′ < V . Indeed, let x ∈ X and y ∈ Y . Then
f ′(x), g′(pλ(x)) ∈ U(h,V ′) for some h ∈ P Y , so f(x, y) = f ′(x)(y), h(y) ∈ V1

and g(pλ(x), y) = g′(pλ(x))(y), h(y) ∈ V2 for some V1, V2 ∈ V ′.
For (R2), let (P ;P0, P1) be an ANR triad, and let V ∈ Cov(P ).

Let V ′′ be an open covering of P such that StV ′′ < V . By (R2) for
p : (X ;X0, X1) → (X; X0,X1), there exists V ′ ∈ Cov(P ) so that when-
ever f ′

0, f
′
1 : (Xλ;X0λ, X1λ) → (P Y ;P Y

0 , P
Y
1 ) are maps of triads such that

(f ′
0pλ, f

′
1pλ) < U(V ′), then (f ′

0pλλ′ , f ′
1pλλ′) < U(V ′′) for some λ′ ≥ λ. Sup-

pose that f0, f1 : (Xλ × Y ;X0λ × Y,X1λ × Y ) → (P ;P0, P1) are maps of
triads such that (f0(pλ × 1Y ), f1(pλ × 1Y )) < V ′. Then f0 and f1 in-
duce maps of triads f ′

0, f
′
1 : (Xλ;X0λ, X1λ) → (P Y ;P Y

0 , P
Y
1 ) such that

(f ′
0pλ, f

′
1pλ) < U(V ′). So, (f ′

0pλλ′ , f ′
1pλλ′) < U(V ′′) for some λ′ > λ, which

implies that (f0(pλλ′ × 1Y ), f1(pλλ′ × 1Y )) < StV ′′ < V .

We have the following existence theorem for a resolution of triads:

Theorem 3.7. 1.) (Mardešić [8]) Every triad (X ;X0, X1) of spaces
admits an ANR-resolution p = (pλ) : (X ;X0, X1) → (X; X0,X1) =
((Xλ;X0λ, X1λ), pλλ′ ,Λ) such that Λ is cofinite and Xλ = Int(X0λ) ∪
Int(X1λ) for each λ ∈ Λ.

2.) (Miyata [13]) Every triad (X ;X0, X1) of spaces admits a polyhedral
resolution

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

such that Λ is cofinite.
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Theorems 3.3 and 3.7 imply

Theorem 3.8. Every triad of spaces (X ;X0, X1) admits a cofinite strong

HPolT -expansion.

We also need the following result for later sections:

Theorem 3.9. (Miyata [14]) Every triad (X ;X0, X1) of spaces such that
X0 and X1 are closed and X0 ∩ X1 is normally embedded in X admits a
polyhedral resolution

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

with Λ being cofinite such that the following restrictions are resolutions:




p|X = (pλ|X) : X → X = (Xλ, pλλ′ |X′
λ
,Λ)

p|Xi = (pλ|Xi) : Xi → Xi = (Xiλ, pλλ′ |X′
iλ
,Λ), i = 0, 1

p|X0∩X1 = (pλ|X0∩X1) : X0 ∩X1 → X0 ∩ X1

= (X0λ ∩X1λ, pλλ′ |X0λ′∩X1λ′ ,Λ)

.

4. Coherent homotopy for triads

In this section we define the coherent homotopy category CH(pro-TopT )
for triads. This is completely analogous to the case of single spaces, which
was introduced by Lisica and Mardešić [3] (see also [12, Chapters 7, 8]). Here
we will recall the definitions and outline the important results for triads.

A coherent map of inverse systems f = (f, fµ) : (X; X0,X1) →
(Y ; Y 0,Y 1) consists of an increasing function f : M → Λ and maps fµ :
(Xf(µ);X0f(µ), X1f(µ)) × ∆n → (Yµ0 ;Y0µ0 , Y1µ0) for µ = (µ0, . . . , µn) ∈ Mn

with the following property:

(C)
fµ(x, djt) =





qµ0µ1fd0µ(x, t) j = 0;

fdjµ(x, t) 0 < j < n;

fdnµ(pf(µn−1)f(µn)(x), t) j = n,

fµ(x, sjt) = fsjµ(x, t) 0 ≤ j ≤ n.

Here for n ≥ 0, let

Mn = {µ = (µ0, µ1, . . . , µn) : µi ∈ M,µ0 ≤ µ1 ≤ . . . ≤ µn},
and let dj

n : Mn → Mn−1 and sj
n : Mn → Mn+1 be respectively the face

operator and the degeneracy operator defined by

dj
n(µ0, . . . , µn) = (µ0, . . . , µj−1, µj+1, . . . , µn); and

sj
n(µ0, . . . , µn) = (µ0, . . . , µj , µj , . . . , µn).
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Also, for n ≥ 0, let ∆n be the standard n-simplex, and let dn
j : ∆n−1 → ∆n

and sn
j : ∆n+1 → ∆n be respectively the face operator and the degeneracy

operator defined by

dn
j (t0, . . . , tn−1) = (t0, . . . , tj−1, 0, tj+1, . . . , tn−1); and

sn
j (t0, . . . , tn+1) = (t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tn+1).

Let f = (f, fµ),f = (f ′, f ′
µ) : (X; X0,X1) → (Y ; Y 0,Y 1) be coherent

maps. Then a coherent homotopy from f to f ′ is a coherent map F = (F, Fµ) :
(X; X0,X1) × I → (Y ; Y 0,Y 1) such that

1.) F ≥ f, f ′; and
2.) for each x ∈ XF (µn) and t ∈ ∆n,

{
Fµ(x, 0, t) = fµ(pf(µn)F (µn)(x), t);

Fµ(x, 1, t) = fµ(pf ′(µn)F (µn)(x), t).

In this case we write f ' f ′, and denote by [f ] the homotopy class of f .
For each map of inverse systems f = (f, fµ) : (X; X0,X1) →

(Y ; Y 0,Y 1) we define a coherent map C(f ) = (f, fµ) : (X ; X0,X1) →
(Y ; Y 0,Y 1) as follows: for each µ = (µ0, . . . , µn) ∈ Mn, the map fµ :
(Xf(µ);X0f(µ), X1f(µ)) × ∆n → (Yµ0 ;Y0µ0 , Y1µ0) is defined by

fµ(x, t) = fµ0pf(µ0)f(µn)(x).

Now the coherent homotopy category CH(pro-TopT ) for triads is defined as
follows: The objects are inverse systems consisting of triads of spaces, maps
of triads and cofinite directed index sets. The morphisms are the homotopy
classes of coherent maps, and the identity morphism is [C(1(X;X0,X1))] :
(X; X0,X1) → (X; X0,X1). Then the composition [g][f ] = [gf ] is well-
defined (see [12, Lemma 2.4]), and all the properties required for a category
can be verified (see [12, Theorems 2.8, 2.11]). The coherence functor C :

pro-TopT → CH(pro-TopT ) is defined by C(X ; X0,X1) = (X; X0,X1) for

each object (X; X0,X1) of pro-TopT and C[f ] = [C(f)] for each morphism

f of pro-TopT . The well-definedness is proved as for [12, Lemma 1.17].
A coherent map p : (X ;X0, X1) → (X ; X0,X1) is said to be a coherent

expansion of (X ;X0, X1) provided the following condition holds:

(CE) for each morphism [f ] : (X ;X0, X1) → (Y ; Y 0,Y 1) of CH(pro-TopT )
there exists a unique morphism [h] : (X ; X0,X1) → (Y ; Y 0,Y 1) such
that [h]C(p) = [f ].

Then we have

Theorem 4.1. Every strong expansion of a triad of spaces is a coherent
expansion of a triad of spaces.
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The proof is analogous to the case for a single space (see [12, Theorem
8.1]) as outlined in the following:

Lemma 4.2. Every strong expansion p : (X ;X0, X1) → (X ; X0,X1) of
a triad (X ;X0, X1) satisfies the following property for every n ≥ 1 and ANR
triad (P ;P0, P1):

(S2)n For each λ ∈ Λ and for any maps f : (Xλ;X0λ, X1λ) × ∂∆n →
(P ;P0, P1) and F : (X ;X0, X1) × ∆n → (P ;P0, P1) such that
F |(X;X0,X1)×∂∆n = f(pλ × 1∂∆n), there exist λ′ ≥ λ and a map of
triads H : (Xλ′ ;X0λ′ , X1λ′) × ∆n → (P ;P0, P1) such that

H |(Xλ′ ;X0λ′ ,X1λ′ )×∂∆n = f(pλλ′ × 1∂∆n) and

H(pλ′ × 1∆n) ' F rel X × ∂∆n as maps of triads.

Proof. The proof is similar to that for [12, Lemma 8.3]. In the proof,
the following lemma is used in an appropriate place.

Lemma 4.3. Let

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

be a strong expansion and let Y be a compact Hausdorff. Then the morphism

p × 1Y : (X ;X0, X1) × Y → (X; X0,X1) × Y

is a strong expansion.

Proof. The proof for [12, Theorem 7.5] can be easily modified for the
case of triads, using the fact that for any ANR triad (P ;P0, P1) and compact
Hausdorff space Y , (P Y ;P Y

0 , P
Y
1 ) is an ANR triad.

Proof of Theorem 4.1. Lemmas 1.14, 2.12, 1.13 of [12] hold for triads,
and, using those lemmas together with Lemma 4.2, we can prove Theorem
4.1 similarly to [12, Lemmas 8.5, 8.6].

Theorems 3.3 and 4.1 imply

Corollary 4.4. Every resolution for a triad of spaces is a coherent ex-
pansion for a triad of spaces.

All the results in Sections 3 and 4 are true for pointed triads.

5. Strong shape category for triads and invariants

In this section, we define the strong shape category for triads of spaces,
using the same inverse system approach as for [3, 11].

We define the strong shape category for triads SSh(TopT ) as follows: Its
objects are all triads of spaces. The morphisms F : (X ;X0, X1) → (Y ;Y0, Y1)
are the equivalence classes of triples (p, q, [f ]) where p : (X ;X0, X1) →
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(X; X0,X1) and q : (Y ;Y0, Y1) → (Y ; Y 0,Y 1) are cofinite strong HPolT -
expansions of (X ;X0, X1) and (Y ;Y0, Y1), respectively, and [f ] : (X ; X0,X1)

→ (Y ; Y 0,Y 1) is a morphism of CH(pro-Top
T ). Note that every triad

of spaces admits such a strong expansion (Theorem 3.8). The equivalence
relation ∼ between triples (p, q, [f ]) and (p′, q′, [f ′]) is defined as follows:
(p, q, [f ]) ∼ (p′, q′, [f ′]) provided [f ′][i] = [j][f ] where [i] : (X; X0,X1) →
(X ′; X ′

0,X
′
1) and [j] : (Y ; Y 0,Y 1) → (Y ′; Y ′

0,Y
′
1) are the unique isomor-

phisms such that C(p′) = [i]C(p) and C(q′) = [j]C(q), respectively. The

identity morphism 1(X;X0,X1) : (X ;X0, X1) → (X ;X0, X1) of SSh(Top
T )

and the composition of morphisms F : (X ;X0, X1) → (Y ;Y0, Y1) and
G : (Y ;Y0, Y1) → (Z;Z0, Z1) are defined as for the strong shape cate-

gory SSh(Top) for single spaces. The strong shape functor S : H(TopT ) →
SSh(TopT ) and the forgetful functor E : SSh(TopT ) → Sh(TopT ) are de-
fined analogously to the strong shape category for single spaces, and we have
E ◦ S = S where Sh(TopT ) is the shape category for triads of spaces, and

S : H(TopT ) → Sh(TopT ) is the shape functor (see [13]).
Strong homology groups. For each abelian group G and space X , let

Hn(X ;G) denote the strong homology groups of X with coefficients in G (see
[4, 12]). For the class of normal pairs, i.e., pairs (X,X0) of spaces such that
X0 is normally embedded in X , the strong homology groups are invariants in
the strong shape category, and satisfy all the Eilenberg-Steenrod axioms. In
particular, for each normal pair (X,X0), there is an exact sequence:

· · · → Hm(X0;G)
i∗→ Hm(X ;G)

j∗→ Hm(X,X0;G)
∂→ Hm−1(X0;G) → · · ·

and for each triad of spaces (X ;X0, X1), the excision maps i0 : (X0, X0 ∩
X1) ↪→ (X,X1) and i1 : (X1, X0∩X1) ↪→ (X,X0) induce isomorphisms (i0)∗ :
Hm(X0, X0 ∩ X1;G) → Hm(X,X1;G) and (i1)∗ : Hm(X1, X0 ∩ X1;G) →
Hm(X,X0;G), respectively. Those facts together with Theorem 3.9 imply
the following theorem (see [1, Chap. I., §15]):

Theorem 5.1. For each triad of spaces (X ;X0, X1) such that X0 and X1

are closed in X and X0 ∩X1 is normally embedded in X, there is a natural
exact sequence

· · · → Hm(X0 ∩X1;G) → Hm(X0;G) ⊕Hm(X1;G) →
Hm(X ;G) → Hm−1(X0 ∩X1;G) → · · ·

This exact sequence is called the Mayer-Vietoris sequence for (X ;X0, X1) and
denoted by MV(X;X0,X1).

Let SSh(TopT
N ) denote the full subcategory of SSh(TopT ) whose objects

are triads of spaces (X ;X0, X1) such that X0 and X1 are closed in X and X0∩
X1 is normally embedded inX , and let MV denote the category whose objects
are all Mayer-Vietoris sequences MV (X;X0,X1) of strong homology groups for
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triads of spaces (X ;X0, X1) such that X0 and X1 are closed in X and X0 ∩
X1 is normally embedded in X and whose morphisms Φ : MV(X;X0,X1) →
MV(Y ;Y0,Y1) are homomorphisms of Mayer-Vietoris sequences (see [1, p. 9]).

Then we have

Theorem 5.2. There exists a covariant functor F from SSh(TopT
N ) to

MV.

Proof. First, for each (X ;X0, X1) ∈ obSSh(TopT
N ), let F(X ;X0, X1)

be the Mayer-Vietoris sequence MV (X;X0,X1). Let F be a morphism from

(X ;X0, X1) to (Y ;Y0, Y1) in SSh(TopT
N), and let F be represented by the

morphism f = (f, fµ) : (X ; X0,X1) → (Y ; Y 0,Y 1) in CH(pro-TopT ) where
p : (X ;X0, X1) → (X; X0,X1) and q : (Y ;Y0, Y1) → (Y ; Y 0,Y 1) are strong

HPolT -expansions such that the restrictions




p|X : X → X

p|Xi : Xi → Xi, i = 0, 1

p|X0∩X1 : X0 ∩X1 → X0 ∩ X1

and





q|Y : Y → Y

q|Yi : Yi → Y i, i = 0, 1

q|Y0∩Y1 : Y0 ∩ Y1 → Y 0 ∩ Y 1

are strong expansions. Then f induces morphisms in CH(pro-Top)




f |X = (f, fµ|X) : X → Y

f |Xi
= (f, fµ|Xi

) : Xi → Y i, i = 0, 1

f |X0∩X1 = (f, fµ|X0∩X1) : X0 ∩ X1 → Y 0 ∩ Y 1

and these morphisms induce the following commutative diagram in the strong
shape category SSh(Top) for i = 0, 1:

X0 ∩X1
j−−−−→ Xi

k−−−−→ X

F |X0∩X1

y F |Xi

y
yF |X

Y0 ∩ Y1
j′−−−−→ Yi

k′

−−−−→ Y

Here the horizontal morphisms are induced by the inclusions. This diagram in-
duces a homomorphism of Mayer-Vietoris sequences F(F ) : MV (X;X0,X1) →
MV(Y ;Y0,Y1). It is easy to verify this defines a functor.

Strong homotopy groups. Let Top
T
∗ denote the category of pointed

triads of spaces and base point preserving maps of pointed triads. Anal-
ogously to SSh(Top

T ), we have the strong shape category SSh(Top
T
∗ ) for

pointed triads. Let HPolT∗ denote the category whose objects are pointed
triads of spaces which have the homotopy type of a pointed polyhedral
triad and whose morphisms are homotopy classes. For each pointed triad
of spaces (X ;X0, X1, x0), we wish to define the strong homotopy groups
πm(X ;X0, X1, x0). For this purpose, we consider the triple of spaces together
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with a base point (Em;Em−1
+ , Em−1

− , s0) where Em is the unit m-cell in Rm

with the boundary Sm−1, and




Em−1
+ = {t = (t1, . . . , tm) ∈ Sm−1 : tm ≥ 0}

Em−1
− = {t = (t1, . . . , tm) ∈ Sm−1 : tm ≤ 0}

s0 = (1, 0, . . . , 0)

and maps of (Em;Em−1
+ , Em−1

− , s0) to pointed triads of spaces. Note here that

(Em;Em−1
+ , Em−1

− , s0) is a more general type of pointed triad (Z;Z0, Z1, z0)
where not necessarily Z = Z0 ∪ Z1. For such pointed triads, the notions of
coherent map and coherent homotopy and the coherent homotopy category
are well-defined.

For each m ≥ 2 and for each pointed triad (X ;X0, X1, x0), denote by
πm(X ;X0, X1, x0) the set of all homotopy classes of coherent maps

f : (Em;Em−1
0 , Em−1

1 , s0) → (X; X0,X1,x0)

where p : (X ;X0, X1, x0) → (X; X0,X1,x0) is a strong HPolT∗ -expansion of
(X; X0,X1,x0). This definition is well-defined. For, if p′ : (X ;X0, X1, x0) →
(X ′; X ′

0,X
′
1,x

′
0) is another strong HPolT∗ -expansion of (X ;X0, X1, x0), then

there is an isomorphism

[i] : (X; X0,X1,x0) → (X ′; X ′
0,X

′
1,x

′
0)

in CH(pro-TopT
∗ ) such that [i]C(p) = C(p′), which gives a one-to-one corre-

spondence between the homotopy classes of coherent maps

f : (Em;Em−1
0 , Em−1

1 , s0) → (X; X0,X1,x0)

and the homotopy classes of coherent maps

f ′ : (Em;Em−1
0 , Em−1

1 , s0) → (X ′; X ′
0,X

′
1,x

′
0).

For m ≥ 3, let πm(X ;X0, X1, x0) has a group structure by the H-
cospace structure on (Em;Em−1

0 , Em−1
1 , s0). For each morphism F :

(X ;X0, X1, x0) → (Y ;Y0, Y1, y0) in SSh(TopT
∗ ), let a morphism

f : (X; X0,X1,x0) → (Y ; Y 0,Y 1,y0)

in CH(pro-TopT
∗ ) represent F where p : (X ;X0, X1, x0) → (X ; X0,X1,x0)

and q : (Y ;Y0, Y1, y0) → (Y ; Y 0,Y 1,y0) are strong HPolT∗ -expansions
of (X ;X0, X1, x0) and (Y ;Y0, Y1, y0), respectively. Then for each α ∈
πm(X ;X0, X1, x0), if α is represented by a morphism

g : (Em;Em−1
0 , Em−1

1 , s0) → (X; X0,X1,x0)

in CH(pro-TopT
∗ ), F∗α ∈ πm(Y ;Y0, Y1, y0) is defined as

[fg] : (Em;Em−1
0 , Em−1

1 , s0) → (Y ; Y 0,Y 1,y0).
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This is well-defined. Indeed, it is easy to see that the definition does not
depend on the choice of the representatives f and g. Then we can easily
show that π defines a functor from SSh(TopT

∗ ) to the category Set of sets and
functions for m ≥ 2 and to the category Gp of groups and homomorphisms
for m ≥ 3.

Theorem 5.3. For each pointed triad of spaces (X ;X0, X1, x0) such that
X0 and X1 are closed and X0 ∩ X1 is normally embedded in X, there are
natural exact sequences:

· · · → πm+1(X ;X0, X1, x0)
∂→ πm(X0, X0 ∩X1, x0)

(i0)∗→ πm(X,X1, x0)

(j0)∗→ πm(X ;X0, X1, x0)
∂→ πm−1(X0, X0 ∩X1, x0) → · · ·

and

· · · → πm+1(X ;X0, X1, x0)
∂→ πm(X1, X0 ∩X1, x0)

(i1)∗→ πm(X,X0, x0)

(j1)∗→ πm(X ;X0, X1, x0)
∂→ πm−1(X1, X0 ∩X1, x0) → · · ·

Proof. Let p = (pλ) : (X ;X0, X1, x0) → (X ; X0,X1,x0) be a polyhe-
dral resolution of (X ;X0, X1, x0). By [2, Lemma 2.7] X0 and X1 are normally
embedded in X , and by [8, Section 5] the restricted morphisms
{

p|(Xi,X0∩X1) = (pλ|(Xi,X0∩X1)) : (Xi, X0 ∩X1) → (X i,X0 ∩ X1), i = 0, 1

p|(X,Xi) = (pλ|(X,Xi)) : (X,Xi) → (X ,Xi), i = 0, 1

are resolutions. These resolutions for pairs induce strong expansions for pairs
(see [6, 10]) and hence induce the strong homotopy groups for pairs. By
an argument similar to the case for ordinary homotopy groups, we have the
desired natural homotopy sequences.

Using Theorem 5.3, we immediately have

Theorem 5.4. For each pointed triad of spaces (X ;X0, X1, x0) such that
X0 and X1 are closed and X0 ∩X1 is normally embedded in X, the following
statements are equivalent:

1.) The excision map i0 : (X0, X0 ∩ X1, x0) ↪→ (X,X1, x0) induces an
isomorphism (i0)∗ : πm(X0, X0 ∩ X1, x0) → πm(X,X1, x0) for 2 ≤
m < n and an epimorphism for m = n;

2.) The excision map i1 : (X1, X0 ∩ X1, x0) ↪→ (X,X0, x0) induces an
isomorphism (i1)∗ : πm(X1, X0 ∩ X1, x0) → πm(X,X0, x0) for 2 ≤
m < n and an epimorphism for m = n; and

3.) πm(X ;X0, X1, x0) ∼= 0 for 2 ≤ m ≤ n.
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