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TOPOLOGIES GENERATED BY DISCRETE SUBSPACES
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York University, Canada and Universidad Autónoma Metropolitana, México

Abstract. A topological space X is called discretely generated if for ev-
ery subset A⊂X we have A=∪{D:D⊂A and D is a discrete subspace of X}.
We say that X is weakly discretely generated if A⊂X and A6=A implies D\A6=∅

for some discrete D⊂A. It is established that sequential spaces, mono-
tonically normal spaces and compact countably tight spaces are discretely
generated. We also prove that every compact space is weakly discretely
generated and under the Continuum Hypothesis any dyadic discretely gen-
erated space is metrizable.

1. Introduction

It is natural to say that the topology of a spaceX is determined by discrete
subspaces if for every A ⊂ X the closure of A is the union of the closures of
discrete subspaces of A. We will also call such spaces discretely generated.
There are two important classes of discretely generated topological spaces:
Fréchet–Urysohn spaces and the scattered spaces. In a Fréchet–Urysohn space
X every point x from a closure of a set A ⊂ X is the limit of a convergent
sequence S ⊂ A. Clearly, S is a discrete subspace of X . If X is scattered
then every subspace of X has a dense discrete subspace and so every point of
A is in the closure of a discrete subspace of A. The purpose of this paper is
to study the classes of discretely generated and weakly discretely generated
spaces both of which are wider than the class of Fréchet–Urysohn spaces and
the class of scattered spaces.
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On one hand, these properties seem to be interesting in themselves due
to their good categorical behaviour: (weak) discrete generability is (closed)
hereditary; every compact space is weakly discretely generated and not neces-
sarily discretely generated. On the other hand, discrete generability and weak
discrete generability often have surprising relationships with classical proper-
ties which make it possible to obtain new information. For example, every
compact space of countable tightness is discretely generated as well as any
monotonically normal space. Thus, theorems on discretely generated com-
pact spaces can be strengthenings of the results on countably tight compact
spaces. For example, it turns out that under the Continuum Hypothesis any
dyadic discretely generated compact space is metrizable.

In the third section of the paper we give examples which show that a
pseudocompact Tychonoff space can fail to be weakly discretely generated.
We show that the same can happen to a countably compact Hausdorff space.
We prove that it is consistent with ZFC that there are countably compact
Tychonoff spaces which are not weakly discretely generated. This result is
related to the theory of remote points, because it is easy to see that the
existence of countably compact Tychonoff non-weakly discretely generated
spaces is equivalent to the existence of a countably compact space X with
“discretely remote points” in βX , i.e., points of βX\X which are not in the
closure of any discrete subspace of X .

2. Notation and terminology

All spaces under consideration are assumed to be Hausdorff. We will often
abuse notation by saying ”discrete subset” instead of ”discrete subspace”.
Given a space X the family τ(X) is its topology and τ ∗(X) = τ(X)\{∅}. For
a point x ∈ X the family τ(x,X) consists of all open subsets of X which
contain the point x. A space X is scattered if every non-empty subspace of
X has an isolated point. A space X is called Fréchet–Urysohn if for every
A ⊂ X and each x ∈ A there is a sequence {an : n ∈ ω} ⊂ A such that
an → x. We say that X is sequential if A ⊂ X and A 6= A implies that there
is a sequence {an : n ∈ ω} ⊂ A such that an → y for some y /∈ A. By D

we denote the two-point space {0, 1} with the discrete topology. The rest of
notation is standard and can be found in [En].

3. Discretely generated spaces: definitions and general facts

Any Fréchet–Urysohn space as well as any scattered space is discretely
generated. Thus, discrete generability is a convergence-like property which
at the same time has a global flavour. As a consequence, it exhibits quite a
nontrivial categorical behaviour providing at the same time new information
about some known classes of spaces.
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Definition 3.1. A space X is discretely generated if for every A ⊂ X
and any x ∈ A there exists a discrete D ⊂ A such that x ∈ D.

Definition 3.2. A space X is weakly discretely generated if for every
A ⊂ X with A 6= A there is a discrete D ⊂ A such that D\A 6= ∅.

Let us formulate the simplest properties of discrete and weak discrete
generability. The evident proofs are left to the reader.

Proposition 3.3. Let X be a space. Then
(1) if X is Fréchet–Urysohn then it is discretely generated;
(2) if X is scattered then it is discretely generated;
(3) if X is sequential then it is weakly discretely generated;
(4) discrete generability is hereditary;
(5) weak discrete generability is closed-hereditary;
(6) every discretely generated space is weakly discretely generated;
(7) a space is discretely generated iff it is hereditarily weakly discretely gen-
erated.

Recall that a dense-in-itself space X is called maximal if any topology on
X , stronger than τ(X), has isolated points.

Example 3.4. There exist countable regular spaces which are not weakly
discretely generated. Therefore, countable tightness of a regular space does
not necessarily imply weak discrete generability.

Proof. Consider van Douwen’s example of a countable maximal space
V [vD]. For any x ∈ V , let A = V \{x}. Then x can not be in the closure
of any discrete subset of A because every discrete subspace of V is closed.
Therefore V is not weakly discretely generated.

Example 3.5. There exist discretely generated spaces of any given tight-
ness κ.

Proof. There are scattered spaces of any given tightness κ: take for
example a discrete space P of cardinality κ; add one point a and declare that
the neighbourhoods of a in the space X = P ∪{a} are the complements of the
subsets of P of power less than κ. The points of P are isolated in X . Then
X is scattered and t(X) = κ. Now apply Proposition 3.3(2).

Given a space X and A ⊂ X , let us call the set D(A) =
⋃{D : D ⊂ A

and D is discrete} the d-closure of A in X. It is evident that A ⊂ D(A) ⊂ A.

Proposition 3.6. Suppose that a space X is weakly discretely generated
and t(X) 6 κ. Then the closure of any A ⊂ X is the union of 6 κ+ iterations
of the d-closure of A. In other words, let A0 = A; if we have Aα, set Aα+1 =
D(Aα). If we have the sets {Aα : α < β}, where β < κ+ is a limit ordinal,
let Aβ =

⋃{Aα : α < β}. Then A =
⋃{Aα : α < κ+}.
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Proof. It is clear that A ⊃ ⋃{Aα : α < κ+}. To prove the equality, it
is sufficient to establish that the set B =

⋃{Aα : α < κ+} is closed. Suppose
not. Then there is a discrete C ⊂ B such that z ∈ C for some z ∈ B\B.
Since t(X) 6 κ, there exists an E = {eα : α < κ} ⊂ C with z ∈ E. Now
E ⊂ B implies that for every α < κ we have eα ∈ Aγα for some γα < κ+. If
γ = sup{γα : α < κ} then E ⊂ Aγ and hence z ∈ D(Aγ) ⊂ B, which is a
contradiction.

Given a space X and C ⊂ X , we say that C is strongly discrete if there
exists a disjoint family {Ux : x ∈ C} ⊂ τ(X) such that x ∈ Ux for all x ∈ C.
For an arbitrary A ⊂ X let SD(A) = {x ∈ X : there is a strongly discrete
B ⊂ A such that x ∈ B}. Let us call SD(A) the sd-closure of the set A.

Proposition 3.7. Given a cardinal κ, suppose that X is a space and
A ⊂ X. Define a family {A(α) : α < κ} as follows: A(0) = A and if
we have A(α), let A(α + 1) = SD(A(α)). If β < κ is a limit ordinal, and
we have the family {A(α) : α < β}, let A(β) =

⋃{A(α) : α < β}. Then
A(κ) =

⋃{A(α) : α < κ} is contained in D(A). In other words, any number
of iterations of sd-closure of any set is contained in the d-closure of this set.

Proof. Induction on α < κ. The case α = 0 is clear. Suppose that for
any α < β < κ we proved that A(α) ⊂ D(A). For any x ∈ A(β) there is a
strongly discrete B ⊂ ⋃{A(α) : α < β} such that x ∈ B. Fix a disjoint family
{Ub : b ∈ B} of open sets of X such that b ∈ Ub for any b ∈ B. The inductive
hypothesis gives a discrete Ab ⊂ A such that b ∈ Ab for every b ∈ B. Then
D =

⋃{Ub ∩ Ab : b ∈ B} is a discrete subset of A and x ∈ D.

Theorem 3.8. Let X be a regular space of countable tightness. If X is
weakly discretely generated then it is discretely generated.

Proof. Since the tightness of X is countable, for any A ⊂ X and x ∈
D(A) we have a countable discrete B ⊂ A with x ∈ B. It is an easy exercise
to see that in a regular space any countable discrete subspace is strongly
discrete. This proves that D(A) = SD(A) for any A ⊂ X . For each α < ω1

construct the sets Aα and A(α) for each α < ω1 like in Propositions 3.6 and
3.7. Now, it follows immediately from the above mentioned propositions that

A =
⋃{Aα : α < ω1} =

⋃{A(α) : α < ω1} ⊂ D(A),

and therefore A = D(A).

Theorem 3.9. Every Hausdorff sequential space is discretely generated.

Proof. Any sequential space X is weakly discretely generated and has
countable tightness. So, if X is regular, Theorem 3.8 finishes the proof. In the
general case, for any A ⊂ X let A[α] be the α-th iteration of the sequential
closure of A, i.e., A[0] = A; if we have A[α], let A[α+1] = {x ∈ X : there is a
sequence in A[α] which converges to x}. If for some limit ordinal β < ω1 we
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have the sets {A[α] : α < β} let A[β] =
⋃{A[α] : α < β}. The sequentiality

of X implies A =
⋃{A[α] : α < ω1}. Note that in any Hausdorff space

any convergent sequence is strongly discrete and hence A[α] ⊂ A(α) for each
α < ω1 (see Proposition 3.7 for the definition of the sets A(α)). Finally, apply
Proposition 3.7 to conclude that

A =
⋃{A[α] : α < ω1} ⊂ ⋃{A(α) : α < ω1} ⊂ D(A),

and hence A = D(A).

Recall that a space X is monotonically normal if and only if there is a
map

G : {(x, U) : x ∈ U ∈ τ(X)} → τ(X)

such that x ∈ G(x, U) and G(x, U)∩G(y, V ) 6= ∅ implies y ∈ U or x ∈ V . It is
an immediate consequence of the definition of the operator G, that G(x, U) ⊂
U .

Theorem 3.10. Any monotonically normal topological space X is dis-
cretely generated.

Proof. Suppose that A ⊂ X and x ∈ A\A. Denote by κ the cardinality
of the set A. Choose an arbitrary a0 ∈ A and a set U0 ∈ τ(a0, X) such that
x /∈ U0. Suppose that α < κ+ and we have constructed the points aβ ∈ A
and sets Uβ ∈ τ(aβ , X) in such a way that

(i) the family {Wβ : β < α} is disjoint, where Wβ = G(aβ , Uβ) for all β < α;

(ii) x /∈ Uβ for every β < α.

If x /∈ ⋃{Wβ : β < α}, choose an aα ∈
(
X\⋃{Wβ : β < α}

)
∩ A and a

set Uα ∈ τ(aα, X) such that x /∈ Uα and Uα ∩⋃{Wβ : β < α} = ∅. It is clear
that, if the step α is fulfilled, then the families {aβ : β 6 α} and {Uβ : β 6 α}
satisfy the conditions (i) and (ii).

Since |A| = κ < κ+, we can not make κ+ steps of our construction.

Therefore x ∈ ⋃{Wβ : β < α} for some α < κ+. The family {Wβ : β < α} is
disjoint, so the set D = {aβ : β < α} is discrete. Our proof will be finished if

we establish that x ∈ D.
Suppose not. Let W = G(x,X\D). Since x ∈ ⋃{Wβ : β < α}, there

exists a β < α with Wβ ∩ W 6= ∅. Recalling the definition of monotone
normality and the fact that Wβ = G(aβ , Uβ), we conclude that either aβ ∈
X \D or x ∈ Uβ . The first inclusion contradicts the fact that aβ ∈ D and the

second one is impossible because x /∈ Uβ . This proves that x ∈ D.

Since every stratifiable space is monotonically normal [Gr], we have the
following fact.

Corollary 3.11. Stratifiable spaces are discretely generated.
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Corollary 3.12. Any subspace of a linearly ordered topological space is
discretely generated.

Proof. One has only to note that any LOTS is monotonically normal
[Gr] and that discrete generability is hereditary.

Recall that a family P of sets is called nested if for any A,B ∈ P we have
A ⊂ B or B ⊂ A.

Theorem 3.13. If a regular space X has a nested local base at every point
then X is discretely generated.

Proof. Let us establish first that every point x ∈ X has a local base Bx

which can be enumerated in the following way: Bx = {Uα : α < κ}, where
α < β implies Uβ ⊂ Uα.

Indeed, let B be any nested local base at x. Choose a U0 ∈ B arbitrarily.
Suppose that we have chosen {Uα : α < β} ⊂ B in such a way that α < α′ < β
implies Uα′ ⊂ Uα. If the family {Uα : α < β} is a base at x, then we are
done. If not, there exists a W ∈ B such that no Uα is contained in W . Being
the base B a nested family, we have W ⊂ Uα for every α < β. Since X is a
regular space, there exists a Uβ ∈ B for which Uβ ⊂W . This shows that the
inductive recursion can go on until the chosen sets form a local base at x.

Suppose that A is a subset ofX and x ∈ A\A. Fix a local base Bx = {Uα :
α < κ} such that Uβ ⊂ Uα as soon as α < β. Take an x0 ∈ A ∩ U0 and let

F0 = U0. Suppose that β < κ and we have constructed points {xα : α < β}
and closed sets {Fα : α < β} with the following properties:

(i) for each α < β the set Fα is a closure of some Uγ where γ ¿ α;
(ii) xα ∈ Fα ∩ A for every α < β;

(iii) Fα ∩ {xδ : δ < α} = ∅ for all α < β;
(iv) Fα ⊂ Fδ as soon as δ < α < β.

If x ∈ {xα : α < β} then the inductive construction stops. If not, there

is a δ ¿ β such that {xα : α < β} ∩ U δ = ∅. Let Fβ = U δ and pick a point
xβ ∈ Uδ ∩A. It is immediate that the properties (i)-(iv) hold for {xα : α 6 β}
and {Fα : α 6 β}.

Since Bx is a base at x, there is a β 6 κ for which x ∈ {xα : α < β}. The
property (ii) implies that D = {xα : α < β} ⊂ A so it is sufficient to prove
that the subspace D is discrete.

Given an α < β we have xα /∈ {xδ : δ < α} due to xα ∈ Fα and property

(iii). On the other hand, {xδ : α < δ} ⊂ Fα+1 and xα /∈ Fα+1. This shows

that xα /∈ {xδ : δ 6= α} and hence D is discrete.



TOPOLOGIES GENERATED BY DISCRETE SUBSPACES 195

4. Discrete generability in compact and similar spaces.

It turns out that any compact space is weakly discretely generated but
not necessarily discretely generated. We will show that there are pseudo-
compact Tychonoff spaces in ZFC which are not weakly discretely generated.
Any Tychonoff countably compact space of weight 6 ω1 is weakly discretely
generated while there are models of ZFC with countably compact Tychonoff
spaces of weight ω2 which fail to be weakly discretely generated.

The following statement sounds surprising while having quite a short
proof.

Proposition 4.1. Any compact space is weakly discretely generated.

Proof. Let X be a compact space. If A ⊂ X and A 6= A then A is
not compact. Now apply a theorem of Tkachuk [Tk]: if the closure of every
discrete subset of a space is compact then the whole space is compact. There
is a discrete D ⊂ A such that clA(D) is not compact. Since D is compact we
have D\A 6= ∅.

Theorem 4.2. Each compact space of countable tightness is discretely
generated.

Proof. This is an immediate consequence of Proposition 4.1 and Theo-
rem 3.8.

Example 4.3. (1) The space Dc is not discretely generated;
(2) weak discrete generability is not hereditary;
(3) there exist pseudocompact Tychonoff spaces which are not weakly dis-
cretely generated;
(4) there exist Hausdorff non-regular countably compact spaces (in ZFC)
which are not weakly discretely generated.

Proof. The space V mentioned in Example 3.4 is countable and hence
has weight 6c. Therefore it can be embedded into Dc. Now apply Proposition
4.1 and Proposition 3.3(4) to finish the proof of (1) and (2).

(3) Any Tychonoff space can be embedded as a closed subspace in a Tychonoff
pseudocompact space [No]. Let X be a pseudocompact space which contains
V as a closed subspace. It is clear that X is not weakly discretely generated.

(4) Take a dense C ⊂ βω\ω of cardinality 2ω. The subspace B = (βω\ω)\C is
countably compact because any countable discrete subset of B has 2c cluster
points so all of them can not lie in C. Let µ be any maximal topology on C,
stronger than the topology induced in C from βω\ω. Let ν be the topology
generated by τ(βω\ω) ∪ µ as a subbase. Denote by X the space (βω\ω, ν).

The space X is Hausdorff since its topology is stronger than τ(βω\ω).
Observe that X is countably compact. Indeed, for any infinite subset A ⊂ X
one of the sets A ∩ B or A ∩ C is infinite. If A ∩ B is infinite, then A has
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cluster points in B because B is countably compact as a subspace of βω\ω
and its topology did not change. If |A ∩ C| ¿ ω then the set A has 2c cluster
points in βω\ω and therefore some point of B will be a cluster point for A in
X due to the fact that the topology did not change at the points of B.

Let us finally prove that X is not weakly discretely generated. Consider
any x ∈ C. There is no discrete A ⊂ X\{x} with x ∈ A. Indeed, if such an
A existed then x ∈ A ∩ C because C is an open neighbourhood of x. But the
subspace C is maximal and hence every discrete subspace of C is closed in C,
a contradiction.

Theorem 4.4. (1) If X is a discretely generated dyadic compact space
then w(X) < c.
(2) If the space Dω1 is not discretely generated then every dyadic compact
discretely generated space is metrizable.

Proof. (1) If w(X) ¿ c then Dc embeds in X [Ef]. Example 4.3(1) shows
that Dc is not discretely generated. Now apply Proposition 3.3(4) to conclude
that X is not discretely generated.

(2) If X is a dyadic compact space of uncountable weight, then Dω1 em-
beds into X [Ef]. Thus, if X is discretely generated, then Dω1 can not be a
subspace of X and hence the weight of X is countable.

Corollary 4.5. Under the Continuum Hypothesis any discretely gener-
ated dyadic compact space is metrizable.

A very natural question is whether it is possible to omit CH in Corollary
4.5. By Theorem 4.4(2) the statement “every dyadic discretely generated
compact space is metrizable” is equivalent to the statement “ Dω1 is not
discretely generated”.

Recall that an L-space is a hereditary Lindelöf non-separable regular
space. It is still an open question whether there exist models of ZFC in
which L-spaces do not exist. Thus, the following theorem “almost proves”
in ZFC that Dω1 is not discretely generated, i.e., we can say that Dω1 is not
discretely generated in all known models of ZFC. Recall that a space X is
called left-separated if it can be well-ordered in such a way that every initial
segment is closed in X .

Theorem 4.6. If there exists an L-space then Dω1 is not discretely gen-
erated.

Proof. Since Dc is not discretely generated in ZFC (see Example 4.3),
there is nothing to prove if CH holds. Now, suppose that ω1 < c and T is
an L-space. The space T is not separable, so there exists a subspace Z =

{zα : α < ω1} ⊂ T such that zβ /∈ {zα : α < β} for all β < ω1. Since Z is a
Tychonoff space of cardinality ω1 < c, it is zero-dimensional, i.e., has a base
B consisting of clopen sets. There exists a family B′ ⊂ B of cardinality ω1,
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which separates points of Z and witnesses that Z is not separable, i.e., for
any β < ω1 there is a U ∈ B′ such that xβ ∈ U and {xα : α < β} ∩ U = ∅. If
we generate a topology µ by the family B′∪{Z\U : U ∈ B′}, then Y = (Z, µ)
is a Tychonoff zero-dimensional L-space of weight and cardinality ω1.

Consider the family U = {U ∈ τ(Y ) : U is separable}. Since Y is hered-
itarily Lindelöf and non-separable, the set W =

⋃U is also separable and
Y ′ = Z\W is still an L-space. It is clear that in Y ′ every countable set is
nowhere dense. For each n ∈ ω let Xn be a copy of Y ′. Remembering that
Y ′ is a subspace of Z which is left-separated, we can choose an enumeration
{x(n, α) : α < ω1} of the space Xn such that {x(n, α) : α < β} is closed and
nowhere dense for every β < ω1. Given α < ω1 and n ∈ ω, fix some clopen
cover {U(α, n,m) : m ∈ ω} of the set {x(n, β) : β ¿ α}.

For each n ∈ ω let m(n, 0) = 0 and W0 =
⋃{U(0, n, 0) : n ∈ ω}. Assume

that, for some β < ω1 we have constructed natural numbers m(α, n) and sets
Wα for all α < β and n ∈ ω so that

(i) Wα =
⋃{U(α, n,m(α, n)) : n ∈ ω} for all α < β;

(ii) for any α < β and any finite F ⊂ α the set Wα ∩⋂γ∈F Wγ meets all but
finitely many of the Xn’s.

Fix some enumeration {βn : n ∈ ω} of the ordinal β = {α : α < β}
and let Fn = {βi : i 6 n} for all n ∈ ω. By the inductive assumption,
there is a natural k0 such that

⋂{Wγ : γ ∈ F0} ∩ Xl 6= ∅ for all l ¿ k0.
If we have natural k0, . . . , kn−1, choose a kn ∈ ω such that kn > kn−1 and⋂{Wγ : γ ∈ Fn} ∩ Xl 6= ∅ for any l ¿ kn. For each natural n choose
m(n, β) as follows: m(n, β) = 0 for n < k0; if n ∈ [ki, ki+1) choose m(n, β)
so that U(β, n,m(n, β)) meets

⋂{Wγ : γ ∈ Fi}. It is possible due to the
fact that

⋂{Wγ : γ ∈ Fi} ∩ Xn 6= ∅ and
⋃{U(β, n,m) : m ∈ ω} is dense

in Xn. It is easy to see that the sequence {m(β, n) : n ∈ ω} and the set
Wβ =

⋃{U(β, n,m(β, n)) : n ∈ ω} maintain the inductive conditions.
Our space X will be

⊕{Xn : n ∈ ω} ∪ {a}, where a /∈ ⊕{Xn : n ∈ ω}.
The topology at the points of

⊕{Xn : n ∈ ω} is that of the free union and
the base at a is generated by the family {Wα : α < ω1}. It is immediate that
X is a Tychonoff zero-dimensional space of weight ω1 in which all discrete
subspaces are countable. Now, if D is a discrete subspace of

⊕{Xn : n ∈ ω},
then there is an α < ω1 such that D ⊂ {x(n, β) : β < α, n ∈ ω}. Therefore
Wα ∩ D = ∅ and a /∈ D. To finish our proof, note that X is not discretely
generated and embeds into Dω1 .

Observation 4.7. If we want to prove in ZFC that Dω1 is not discretely
generated, we must find a zero-dimensional space of weight ω1 which is not
discretely generated. This space can not be countable like the one of Example
3.4. Indeed, under Martin’s Axiom and the negation of CH any countable
space of weight ω1 is Fréchet–Urysohn [Ar] and hence discretely generated.
Thus, such a space X must have a point x which is not in the closure of any
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countable subset of X\{x}. The following result shows that such a point must
be a Gδ-set in X .

Theorem 4.8. Let X be a regular space. Suppose that A ⊂ X, x ∈ A
and for any countable discrete B ⊂ A we have x /∈ B. If the character of x
in X is at most ω1 and ψ(x, {x} ∪A) > ω then there is a discrete set D ⊂ A
with x ∈ D.

Proof. Let {Uα : α < ω1} be a local base of x in X . Observe that the
uncountable pseudocharacter of x in {x} ∪ A implies that F ∩ A 6= ∅ for any
Gδ-set F containing x. Use the regularity of X to find a closed Gδ-set F0

such that x ∈ F0 ⊂ U0 and let d0 ∈ F0 ∩ A. Suppose that for some β < ω1

we have constructed points {dα : α < β} and closed Gδ-sets {Fα : α < β} so
that

(i) x ∈ Fα ⊂ Uα for all α < β;
(ii) Fα ⊂ Fα′ if α > α′;
(iii) dα ∈ Fα ∩A for any α < β;

(iv) {dα : α < γ} ∩ Fγ = ∅ for all γ < β.

Denote by Dβ the set {dα : α < β}. Note that for any ordinal α < β we

have (X\{dν : ν < α}) ∩ (X\Fα+1) ∩ Dβ = {dα}, which shows that Dβ is a
discrete set.

Since x can not be in the closure of a countable discrete subset of A, we
have x /∈ Dβ , so there exists a closed Gδ-set F such that x ∈ F ⊂ Uβ\Dβ.
Now let Fβ = F ∩ ⋂{Fα : α < β} and choose any dβ ∈ Fβ ∩ A. It is clear
that the properties (i)-(iv) hold for all α 6 β.

We claim that the set D = {dα : α < ω1} ⊂ A is discrete and x ∈ D.
Indeed, the property (i) implies D ∩ Uα 6= ∅ for all α < ω1 and therefore

x ∈ D. Given an α ∈ ω1 we have (X\{dβ : β < α}) ∩ (X\Fα+1) ∩D = {dα},
which shows that D is discrete.

Corollary 4.9. Let Σ = {x ∈ Dω1 : |x−1(1)| 6 ω} be the Σ-product
of Dω1 . Then each point y ∈ Dω1 is an accumulation point of some discrete
D ⊂ Σ.

However, if we want a subset A ⊂ Dω1 and some x ∈ Dω1 which is not in
the closure of any discrete subset of A, we must have ψ(x, {x}∪A) = ω while
no countable subset from A reaches x. Since Dω1 is homogeneous, we may
assume that x(α) = 1 for all α < ω1. A good candidate seems to be the set
σ = {x ∈ Dω1 : |x−1(1)| < ω}, but it turns out that any point of Dω1 is in the
closure of a discrete subset of σ. To establish this, we will need the following
fact.

Proposition 4.10. Let X be a space of character 6 ω1. Suppose that
A ⊂ X, x ∈ A and no countable subset of A contains x in its closure. Then
the following conditions are equivalent:



TOPOLOGIES GENERATED BY DISCRETE SUBSPACES 199

(1) There exists a discrete D ⊂ A such that x ∈ D;

(2) There exists a family γ of open subsets of A such that x ∈ (
⋃
γ)\(⋃µ)

for any countable µ ⊂ γ.

Proof. It is clear that χ(x,A∪ {x}) = ω1. If D ⊂ A is a discrete subset
of A we can assume, without loss of generality, that |D| = ω1. Let D = {dα :
α < ω1}. For any α < ω1 take a Vα ∈ τ(X) such that Vα ∩D = {dα}. Then
the family γ = {Vα ∩ A : α < ω1} has property (2). Thus, we have proved
that (1) =⇒ (2).

To show (2) =⇒ (1), suppose that γ satisfies the condition (2) from the
lemma. Let {Oα : α < ω1} be a local base at the point x. Assume that α < ω1

and we have defined a set {xβ : β < α} ⊂ A and a family {Uβ : β < α} ⊂ γ
so that the following conditions are satisfied for every β < α:

(a) xβ ∈ Uβ ∩ Oβ ;
(b) xβ /∈ Uδ if δ < β;

(c) xβ /∈ {xδ : δ < β}.
Consider the set Xα = {xβ : β < α} and the family µ = {Uβ : β < α}.

Since x /∈ Xα, there exists a point xα ∈ (Oα ∩ (
⋃
γ\⋃µ))\Xα. Denote by

Uα any element of γ which contains the point xα. Clearly, D = {xβ : β < ω1}
and λ = {Uβ : β < ω1} satisfy (a)-(c) for all β < ω1. From (a) it follows that

x ∈ D. For every α < ω1 let Wα = Uα\Xα. Then by (a) and (c) the set Wα

is an open neighbourhood of xα and Wα ∩ D = {xα} for each α, i.e., D is
discrete.

Theorem 4.11. For any point y ∈ Dω1 there is a discrete subspace of σ
which contains y in its closure.

Proof. First, let us prove this for the point x ∈ Dω1 such that x(α) = 1
for all α ∈ ω1. It suffices to construct a family γ of open subsets of σ as in
Proposition 4.10. Given a finite F ⊂ ω1 and a function f : F → D, we have a
standard open subset U(f, F ) = {y ∈ Dω1 : y|F = f} of the space Dω1 .

Call a standard open set U(f, F ) admissible if it satisfies the following
two conditions:

(i) there exist distinct limit ordinals (the zero is also considered a limit)
α1, . . . , αn < ω1 and positive integers k1, . . . , kn such that F =

⋃n
i=1{[αi, αi +

2ki];
(ii) for every i ∈ {1, . . . , n} we have f(αi + j) = 0 for any j ∈ {0, . . . , ki} and
f(αi + j) = 1 for all j ∈ {ki + 1, . . . , 2ki}.

Denote by U the family of all admissible open sets. Let γ = {U ∩ σ : U ∈
U}. We claim that the family γ is as required. Indeed, let µ be countable
subfamily of γ and U a neighbourhood of x in Dω1 . One can assume without
loss of generality that U = U(f,K) where f(α) = 1 for any α ∈ K. By
definition of γ, there exists a countable subfamily V ⊂ U such that µ =
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{V ∩ σ : V ∈ V}. Since µ is countable, there exists a limit ordinal α < ω1

such that K ⊂ α and P ⊂ α whenever U(f, P ) ∈ V . In addition, we can find
distinct limit ordinals β1, . . . , βm < α and positive integers l1, . . . , lm each
greater than or equal to 2 for which K ⊂ ⋃m

j=1[βj , βj + lj ]. Consider the

set F = (
⋃m

j=1[βj , βj + lj + 2]) ∪ [α, α + 2]. It is clear that K ⊂ F . Define

a function h : F → D by h(β) = 1 if and only if β ∈ ⋃m
j=1[βj , βj + lj ] or

β = βj + lj + 2 for some j 6 m or β ∈ {α, α + 1}. Then h|K = f whence
U(h, F ) ⊂ U(f,K). Define the point z ∈ U(h, F ) by z|F = h|F and z(β) = 0
for all β ∈ ω1\F . It remains to show that z ∈ ⋃ γ\⋃µ.

Note that if h∗ = h|[α, α+ 2] and H = [α, α+ 2] then W = U(h∗, H) ∈ U
and hence z ∈ W ′ ∈ γ where W ′ = W ∩ σ. Therefore z ∈ ⋃

γ. Now,
if z ∈ U(g,G) ∈ µ then z coincides with g on G. Since g is admissible
and G ⊂ α, there are distinct limit ordinals α1, . . . , αn < α and positive
integers k1, . . . , kn such that G =

⋃n
i=1{[αi, α + 2ki] and g(ν) = 1 if and

only if ν ∈ ⋃n
i=1{[αi, α + ki]. We have z(β) = 0 if β ∈ ω1\F , which implies⋃n

i=1[αi, αi + ki] ⊂ F . Therefore there exists j 6 m such that [α1, α1 + k1] ⊂
[βj , βj + lj ]. This immediately implies that α1 = βj and k1 6 lj . If k1 < lj
then the inequalities βj < α1 + k1 + 1 6 βj + lj imply z(α1 + k1 + 1) = 1,
while from z ∈ U(g,G) it follows that z(α1 + k1 + 1) = 0, a contradiction.
This proves that k1 = lj . By definition of z we have z(α1 + k1 +2) = 1, while
the inequalities βj + lj < βj + lj + 2 6 βj + 2lj and z ∈ U(g,G) imply that
z(α1 + k1 + 2) = 0, which is a contradiction. As a consequence, z /∈ U(g,G)
for all U(g,G) ∈ V , i.e., z /∈ ⋃µ.

Now, let y be an arbitrary point of Dω1 . If y ∈ Σ then there is a se-
quence from σ converging to y, so let us suppose that the set B = y−1(1) is
uncountable.

Denote by πB : Dω1 → DB the natural projection. By the above ar-
gument, there exists a discrete set D ⊂ πB(σ) such that πB(x) ∈ clDB (D).
Given a point d ∈ D, let d∗(ν) = d(ν) for all ν ∈ B and d∗(ν) = 0 for all
ν ∈ ω1\B. The set D∗ = {d∗ : d ∈ D} is a discrete subspace of σ and y ∈ D.

Example 4.12. We saw that any point of Dω1 is reachable from Σ by a
discrete subset. However this can not be proved for all dense subsets of Σ,
because under CH there exists a dense subspace L ⊂ Σ such that no point
from Dω1\Σ can be reached from L by a discrete subset.

Proof. Under CH, there exists a dense Luzin subspace L of the space Σ
[Ar]. If D is a discrete subspace of L then D is countable, so D ⊂ Σ.

Remark 4.13. The argument of Example 4.12 is not applicable to σ
because it is a union of a countably many discrete subspaces, so any subspace
of σ of countable spread is countable and hence can not be dense in σ. So,
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the question arises as to whether for any dense subspace X ⊂ σ any point of
Dω1 is in the d-closure of X . It turns out that the answer is not trivial at all.

Theorem 4.14. Assume MA+(ω1 < c). Then for any dense subspace X
of the space σ any point x ∈ Dω1 is in the closure of a discrete subspace of X.

Proof. Take a sequence {xn : n ∈ ω} ⊂ Dω1\{x} with xn → x. Choose
disjoint clopen subsets {Un : n ∈ ω} of Dω1 such that xn ∈ Un for all n ∈ ω
and let Xn = X ∩ Un. It is easy to see that any neighbourhood of x hits
all but finitely many of the sets Xn. Each Xn is a union of countably many
discrete subsets, because so is σ. It is easy to see that if we have two discrete
subsets A and B in a space Y , then A∪B is scattered and hence there exists
a discrete C ⊂ Y such that A ∪ B ⊂ C. This makes it possible to choose for
each natural m a discrete set D(m,n) ⊂ Xn so that

⋃{D(m,n) : m ∈ ω} is

dense in Xn and D(m,n) ⊂ D(m+ 1, n) for every m ∈ ω.
Let {Wα : α < ω1} be a neighbourhood base for x in Dω1 . For any

α < ω1 there exists a function gα ∈ ωω such that for all but finitely many n
we have Wα ∩D(gα(n), n) 6= ∅. Use Martin’s Axiom to find a function g ∈ ωω

such that g is eventually larger than each gα. It is not difficult to check that
D =

⋃{D(g(n), n) : n ∈ ω} is a discrete set and x ∈ D.

Recall that the axiom of Jensen (♦) states that for any α < ω1 there is
a set Aα ⊂ α such that for every A ⊂ ω1 the set {α < ω1 : A ∩ α = Aα} is
stationary, i.e., meets every cofinal subset of ω1, which is closed in the interval
topology on ω1.

Theorem 4.15. Under the axiom of Jensen (♦) there exists a dense
subspace X of the space σ such that the point x ≡ 1 ∈ Dω1 is not in the
closure of any discrete subset of X.

Proof. A standard argument shows that there exists a ♦-sequence of
functions {fλ : λ < ω1} such that

(Ω1) fλ : λ→ [λ]<ω × D for any λ < ω1;
(Ω2) for any function f : ω1 → [ω1]

<ω × D the set {λ < ω1 : f |λ = fλ} is
stationary.

For every λ < ω1, let (F λ
β , e

λ
β) = fλ(β) and Jλ = {β < λ : eλ

β = 1}.
Denote by L the set of limit ordinals of ω1 and by F the set of all finite partial
functions from ω1 to D; let {sα : α < ω1} be an enumeration (possibly with
repetitions) of F for which dom(sα) ⊂ α for each α < ω1. Given an f ∈ F
let [f ] = {s ∈ σ : f ⊂ s} and define e(f) ∈ σ as follows: e(f)(α) = f(α) for
all α ∈ supp(f) and e(f)(α) = 0 for every α /∈ supp(f).

Our subset X ⊂ σ will have the form {xα : α < ω1}. To start with, for
every n ∈ ω, let xn = e(sn) for all n ∈ ω. Suppose that for some α ¿ ω we have
constructed the points {xβ : β < α}. For each λ < α, let Dλ = {xβ : β ∈ Jλ}.
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Claim. There exists an xα ∈ σ with the following properties

(U(α)) dom(xα) ⊂ α+ 1, sα ⊂ xα;
(V (α)) if µ 6 α is some limit ordinal with xα(µ) = 1, then either there is
some finite H ⊂ µ such that [xα|H ] misses Dµ or there is a β ∈ Jµ such that
xβ |F µ

β ⊂ xα.

Proof of the claim. Let t0 = sα. We have two possibilities:

(P0) t
−1
0 (1) ∩ L = ∅ or

(Q0) t
−1
0 (1) ∩ L 6= ∅.

If (P0) holds, let xα = e(t0). If not, then (Q0) is true and we can define
the ordinal µ0 = max{µ : µ ∈ L ∩ t−1

0 (1)}. Note that µ0 6 α. Suppose that
we have constructed t0, . . . , tn ∈ F and µ0, . . . , µn ∈ ω1 so that

(a) µ0 > . . . > µn;
(b) t0 ⊂ . . . ⊂ tn.

To construct tn+1, check if the following statement holds:

(Rn) there exists a βn < µn such that xβn ∈ Dµn and tn is compatible with
xβn |F µn

βn
.

If (Rn) holds, set tn+1 = tn ∪ xβn |F µn

βn
. If not, let tn+1 = tn. We have two

possibilities:

(Pn+1) t
−1
n+1(1) ∩ L ∩ µn = ∅.

(Qn+1) t
−1
n+1(1) ∩ L ∩ µn 6= ∅.

If (Pn+1) is true, let xα = e(tn+1). If not, then (Qn+1) holds and we can
define the ordinal µn+1 = max{µ : µ ∈ L ∩ µn ∩ t−1

n+1(1)}. It is clear that the
properties (a) and (b) also hold for µ0, . . . , µn+1 and t0, . . . , tn+1. By (a), the
sequence {µi} can not be infinite, the property (Pn+1) holds for some n ∈ ω
and therefore xα = e(tn+1).

It is clear that sα ⊂ xα. Suppose that µ 6 α is a limit ordinal such
that xα(µ) = 1. Assume first that µ = µi for some i. If (Ri) is true then
for β = βi we have xβ |F µ

β ⊂ xα. If not, then for H = dom(ti) ∩ µ we have

[xα|H ] ∩Dµ = ∅.
Now, if µ 6= µi for all i 6 n then it is impossible that µ < µn because

t−1
n+1(1) = x−1

α (1) and t−1
n+1(1) ∩ L ∩ µn = ∅. It is also impossible that µ0 < µ

due to the fact that µ0 = max{x−1
α (1)∩L}. If µi+1 < µ < µi for some i, then

max{t−1
i+1(1)∩L∩µi} = µ 6= µi+1, which is a contradiction proving our claim.

The claim shows that we can construct the set X = {xα : α < ω1} so
that the conditions (U(α)) and (V (α)) are satisfied for all α < ω1. Let us
prove that the point x ≡ 1 is not in the closure of any discrete D ⊂ X . For
any β < ω1 with xβ ∈ D, let eβ = 1 and choose a finite Fβ ⊂ ω1 such that
Wβ = [xβ |Fβ ] witnesses that xβ is isolated in D, i.e., Wβ ∩ D = {xβ}. If
xβ /∈ D, let eβ = 0 and choose a finite Fβ ⊂ ω1 such that Wβ ∩ D = ∅ if
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xβ /∈ D. If xβ ∈ D, then it does not matter what Fβ is, so let Fβ = {0} and
define the function f : ω1 → [ω1]

<ω × D by f(β) = (Fβ , eβ).
Let B1 = {λ ∈ ω1 : for every β < λ we have Fβ ⊂ λ} and B2 = {λ < ω1 :

for any H ⊂ [λ]<ω and any s : H → D such that [s] ∩D 6= ∅ there is a β < λ
such that xβ ∈ [s] ∩ D}. A standard argument shows that the sets B1 and
B2 are closed and unbounded in ω1. Apply (Ω2) to conclude that there is a
λ ∈ B1 ∩ B2 such that f |λ = fλ. As a consequence, F λ

β = Fβ for each β < λ

and D ∩ {xβ : β < λ} = Dλ.
The set W = {y ∈ Dω1 : y(λ) = 1} is an open neighbourhood of the

point x. Let us prove that W ∩ D = ∅. Indeed, if d ∈ Dλ, then (U(λ))
implies d(λ) = 0. Now, suppose that xγ ∈ D for some γ ¿ λ such that
xγ(λ) = 1. Observe that for any finite H ⊂ λ we have xγ ∈ [xγ |H ] ∩D and
hence [xγ |H ]∩D 6= ∅. Now, λ ∈ B2 implies [xγ |H ]∩Dλ 6= ∅. Applying (V (γ))
to the limit ordinal λ 6 γ we can conclude that there exists an xβ ∈ Dλ such
that xβ |Fβ ⊂ xγ and therefore xγ ∈Wβ ∩D = {xβ}, which is a contradiction.

Corollary 4.16. The statement “for any dense X ⊂ σ any point from
Dω1 is in the closure of a discrete subset of X” is independent of ZFC.

The last group of results describes the situation with regard to the weak
generability of regular countably compact spaces.

Theorem 4.17. Any countably compact regular space X of character 6 ω1

is weakly discretely generated.

Proof. Take a non-closed subset A ⊂ X and suppose that the closure of
every discrete subset of A is contained in A. This implies, in particular, that
A is countably compact. Take any p ∈ A\A. For any Gδ-set G 3 p we have
G∩A 6= ∅ for otherwise it is easy to construct a decreasing sequence of closed
non-empty subsets of A with empty intersection which contradicts countable
compactness of A. Hence ψ(p, {p} ∪ A) > ω. Since p does not belong to the
closure of any (countable) discrete B ⊂ A, Theorem 4.8 is applicable, so we
can conclude that there is a discrete D ⊂ A with p ∈ D, a contradiction.

Corollary 4.18. Any countably compact regular space of weight 6 ω1 is
weakly discretely generated.

We will now show that there are models of ZFC where not all countably
compact Tychonoff spaces of weight ω2 are weakly discretely generated. Since
the proofs depend heavily on the construction of certain special trees, let us
recall some basic notions and facts about trees.

A tree is a partially ordered set (S,<) such that for any s ∈ S the set
{t ∈ S : t < s} is well ordered by <. We write S instead of (S,<). A
subset S′ ⊂ S is called a subtree of the tree S if {t ∈ S : t < s} ⊂ S ′

for any s ∈ S′. A subset C ⊂ S of a tree S is called a chain if s < s′ or
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s′ < s for any distinct s, s′ ∈ C. A set A ⊂ S is an antichain if any distinct
a, b ∈ A are incomparable, i.e., neither a < b nor b < a is true. A tree S
is countably closed, or ω-closed if for any countable chain C ⊂ S there is an
s ∈ S such that t 6 s for all t ∈ C. If S is a tree and s ∈ S then ht(s) is
the order type of the well ordered set {t ∈ S : t < s}. An element s of a
tree S is called a successor if ht(s) is a successor ordinal. Given a tree S and
an s ∈ S let TS(s) = {t ∈ S : s 6 t}. For any ordinal α and a tree S let
Sα = {s ∈ S : ht(s) = α}. The set Sα is called the α-th level of S. A tree S
is ever branching if for any s ∈ S there are incomparable a, b ∈ S such that
s < a and s < b.

If S is a tree and {sn : n ∈ ω} ⊂ Sα for some α, let T =
∏

∗{TS(sn) : n ∈
ω} = {f : ω → S : f(ω) ⊂ Sβ for some β and f(n) ¿ sn for all n ∈ ω}. If
f, g ∈ T then f < g if f(n) < g(n) for all n ∈ ω. The pair (T,<) is called the
tree product of the trees {TS(sn) : n ∈ ω}.

In this paper we will work with the tree ω<ω2
1 = {f : f is a function from

α to ω1 for some α < ω2} and its subtrees with the order defined by f < g if
g extends f . Given an s ∈ ω<ω2

1 with dom(s) = β and α < ω1 the function
t = s_α has domain β + 1 and t¯β = s, t(β) = α.

Recall that a subset C ⊂ ω2 is closed unbounded if it is closed in the order
topology on ω2 and cofinal in ω2. A subset B ⊂ ω2 is called stationary if it
intersects any closed unbounded subset of ω2. Let ω1

2 = {α < ω2 : cf(α) =
ω1}. Observe that we do not use the standard notation S2

1 for the set of
ordinals from ω2 of cofinality ω1 to avoid possible confusion of this statement
with the square of the first level S1 of the tree S which will be constructed in
3.19. The set-theoretic principle ♦(ω1

2) says that for each α < ω2 there exists
a set Aα ⊂ α such that for any A ⊂ ω2 the set {α ∈ ω1

2 : A ∩ α = Aα} is
stationary. It is well known that ♦(ω1

2) is consistent with CH and the usual
axioms of ZFC. It is not difficult to prove that ♦(ω1

2) is equivalent to the
following statement:

For an arbitrary set A of cardinality ω2 and any α < ω2 there exists a
function fα : α → A such that for any map f : ω2 → A the set {α ∈ ω1

2 :
f¯α = fα} is stationary. The family {fα : α < ω2} is called ♦(ω1

2)-sequence
for A.

Theorem 4.19. Suppose that CH and ♦(ω1
2) hold. Then there exists a

tree S with the following properties;
(1) S is a countably closed subtree of the tree ω<ω2

1 and |S| = ω2;
(2) S has neither chains nor antichains of cardinality ω2;
(3) every member of S has exactly ω1 successors at every higher level of S;
(4) if {si : i ∈ ω} ⊂ S ∩ (ω1)

α for some α < ω2, then the tree
∏

∗{TS(si) : i ∈
ω} has no antichains of cardinality ω2.

Proof. Since |(ω<ω2
1 )ω| = ω2, we can fix a sequence {gα : α < ω2} such

that
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(♦1) gα : α → (ω<ω2
1 )ω for each α ∈ ω2;

(♦2) for each g : ω2 → (ω<ω2
1 )ω the set {α : cf(α) = ω1 and g¯α = gα} is

stationary.

Our tree S will have the form S =
⋃{Sα : α < ω2}, where Sα ⊂ (ω1)

α for
each α < ω2. We are going to construct the sets Sα by tranfinite induction.
To start with, let Sα = (ω1)

α for all α < ω1.

Suppose that for some β < ω2 we have constructed the sets Sα for all
α < β so that

(Ω1(β)) the set S(β) =
⋃{Sα : α < β} is an ω-closed tree;

(Ω2(β)) if s ∈ S(β) and ht(s) + 1 < β, then s_γ ∈ S(β) for all γ < ω1;
(Ω3(β)) if α < γ < β then for every s ∈ Sα there is t ∈ Sγ such that s < t;
(Ω4(β)) |Sα| = ω1 for each α < β.

If β = γ + 1, for every s ∈ Sγ let Ps = {s_α : α < ω1} and Sβ =⋃{Ps : s ∈ Sγ}. If β is an ordinal of countable cofinality, let Sβ = {s ∈
(ω1)

β : s¯α ∈ Sα for all α < β}. It is clear that in both cases the properties
(Ω1(β + 1)) − (Ω4(β + 1)) hold. Moreover, whatever we do at the ordinals
of uncountable cofinality, after the construction is finished, the conditions
(Ω1(ω2)) and (Ω2(ω2)) will be satisfied.

Now assume that cf(β) = ω1. It follows easily from the Continuum Hy-
pothesis, that the set E = S(β) × (ω1)

ω has cardinality ω1; let {(xα, fα) :
α < ω1} be some enumeration of E in which every pair (x, f) ∈ S(β)× (ω1)

ω

occurs ω1 times. In addition, let {βα : α < ω1} be any continuous increasing
sequence cofinal in β. The set Sβ will be constructed as {sµ : µ < ω1} ⊂ (ω1)

β .
First, look at the function gβ to check if the following statement P (β) holds:

P (β):
“There exists an α < β such that {gβ(0)(n) : n ∈ ω} ⊂ Sα

and the sequence {gβ(γ) : 0 < γ < β} is a maximal antichain of∏
∗{TS(β)(gβ(0)(n)) : n ∈ ω}”.

If P (β) is not true, then note that, by ω-closedness of S(β), for
each µ < ω1 there exists a chain Cµ ⊂ S(β) such that xµ ∈ Cµ and
Cµ ∩Sγ 6= ∅ for all γ < β. Let Sβ = {sµ : µ < ω1}, where sµ =

⋃
Cµ

for each µ < ω1.

However, if P (β) is true, more work is required. In this case we
will construct Sβ = {sµ : µ < ω1} by transfinite induction of length
ω1. For ν1 = max{β1, ht(x0)} choose any s ∈ Sν1 for which x0 6 s
and let s01 = s.

Suppose that for some ξ < ω1 we constructed the sequences
{sµ

γ : µ < γ < ξ} and {νγ : 0 < γ < ξ} so that the following
conditions hold:

(i) νγ is an ordinal and βγ 6 νγ < β for each γ < ξ;
(ii) sµ

γ ∈ (ω1)
νγ for all µ < γ < ξ;

(iii) νγ < νγ′ and sµ
γ′¯ νγ = sµ

γ for any µ < γ < γ′ < ξ.
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If ξ is a limit ordinal, let νξ = sup{νγ : γ < ξ} and sµ
ξ =

⋃{sµ
γ :

µ < γ < ξ} for all µ < ξ. It is clear that the properties (i)–(iii) hold
for all µ < γ 6 ξ.

Now, if ξ = δ + 1, check whether the following statement Q(δ)
is true:

Q(δ):
“fδ(n) < δ for every n ∈ ω and the ω-tuple 〈sfδ(n)

δ : n ∈ ω〉 belongs to
the tree

∏
∗{TS(β)(gβ(0)(n)) : n ∈ ω}.”

If Q(δ) does not hold, let νξ = max{βξ, νδ, ht(xδ)}. Define sδ
ξ to be any

element s from Sνξ
for which xδ 6 s. If µ < δ, define sµ

ξ to be any

element t ∈ Sνξ
such that sµ

δ 6 t.

Now, if Q(δ) is satisfied, then the ω-tuple 〈sfδ(n)
δ : n ∈ ω〉 is compatible

with some gβ(ν) due to the fact that {gβ(γ) : 0 < γ < β} is a maximal
antichain of the tree product

∏
∗{TS(β)(gβ(0)(n)) : n ∈ ω}. If gβ(ν) =

〈tn : n ∈ ω〉 then all elements of the set {tn : n ∈ ω} belong to some

level Sµ of the tree S(β). Analogously, {sfδ(n)
δ : n ∈ ω} ⊂ Sµ′ for

some µ′ < β. Let νξ = max{βξ, νδ, ht(xδ), µ, µ
′}. Define sδ

ξ to be

any element s ∈ Sνξ
for which xδ 6 s. Since 〈sfδ(n)

δ : n ∈ ω〉 and
〈tn : n ∈ ω〉 are compatible, there exists a sequence {un : n ∈ ω} ⊂ Sνξ

such that the ω-tuple 〈un : n ∈ ω〉 is an extension of 〈tn : n ∈ ω〉 and

〈sfδ(n)
δ : n ∈ ω〉 at the same time. For each n ∈ ω, let s

fδ(n)
ξ = un;

if γ /∈ {δ} ∪ {fδ(n) : n ∈ ω}, take any w ∈ Sνξ
with sγ

δ 6 w and
let sγ

ξ = w. This ends our inductive construction and gives us the

sequences {sµ
γ : µ < γ < ω1} and {νγ : 0 < γ < ω1} for which the

conditions (i)–(iii) are satisfied.

For each µ < ω1, let sµ =
⋃{sµ

γ : µ < γ < ω1} and Sβ = {sµ : µ < ω1}.
Note that the properties Ω1(β + 1), Ω2(β + 1) and Ω4(β + 1) hold
trivially. To prove Ω3(β + 1), fix an s ∈ Sα. There is nothing to prove
if γ < β. Now if γ = β, take a ξ < ω1 such that xξ = s and note that

xξ 6 sξ
ξ+1 < sξ ∈ Sβ . Thus, Ω3(β + 1) also holds.

This concludes the construction of the tree S =
⋃{Sα : α < ω2}. Let us

show that S has the properties (1)–(4).

Note first, that the properties (Ω1(β)) − (Ω4(β)) hold for each β < ω2

and therefore (Ω1(ω2)) − (Ω4(ω2)) are fulfilled as well. That (1) is
satisfied follows immediately from Ω1(ω2) and Ω4(ω2). If α < β < ω2

and s ∈ Sα then α + 1 6 β and there are ω1 many successors of s
in Sα+1 by (Ω2(ω2)). Since every t ∈ Sα+1 has a successor in Sβ by
(Ω3(ω2)), this proves (3). Since S is an ever branching tree, to prove
(2) it suffices to establish that there are no antichains of cardinality ω2

in S.
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Suppose that C is an antichain in S with |C| = ω2. Since |S1| = ω1, there
is an s ∈ S1 such that the set C1 = {f ∈ C : f¯1 = s} has cardinality
ω2. Take a faithful enumeration {fα : α < ω2} of the set C1. Let
D = {〈fα

n : n ∈ ω〉 : α < ω2}, where fα
n = fα for all n ∈ ω. It is

evident that D is an antichain in
∏

∗{TS(si) : i ∈ ω} where si = s for
all i ∈ ω. As a consequence, the property (4) implies (2) so we only
have to prove (4).

Take an arbitrary α < ω2 and {sn : n ∈ ω} ⊂ Sα. Suppose that a function
g : ω2\{0} → ∏

∗{TS(sn) : n ∈ ω} enumerates a maximal antichain in
the tree product U =

∏
∗{TS(sn) : n ∈ ω}. Set g(0) = 〈sn : n ∈ ω〉.

Given a u = 〈tn : n ∈ ω〉 ∈ U let l(u) = ht(u(0)). Evidently, l(u) =
ht(u(n)) for any natural n. For any β ∈ ω2\{0} let p(β) = l(g(β)).
Since for each γ < ω2 the set {p(β) : β < γ} has cardinality ω1, for
the ordinal q(γ) = min{δ ¿ γ : {p(β) : β < γ} ⊂ δ} < ω2 we have
{p(β) : β < γ} ⊂ q(γ). It takes a standard routine proof to show
that there is a closed unbounded B1 ⊂ ω2 such that q(γ) = γ for any
γ ∈ B1.

Since CH holds, for any β < ω2 the set U(β) = {u ∈ U : l(u) 6 β} has
cardinality at most ω1. Let r(β) = min{γ ¿ β : {λ : p(λ) < β} ⊂ γ}.
Then p(λ) ¿ β for each λ ¿ r(β). This shows that it can be proved
in a standard way that there exists a closed unbounded B2 ⊂ ω2 such
that for each λ ∈ B2 we have r(λ) = λ. The set {g(λ) : 0 < λ < ω2}
is a maximal antichain in U so for each u ∈ U there is a λ(u) < ω2

for which g(λ(u)) is compatible with u. For each β < ω1 consider
w(β) = min{γ : λ(U(β)) ⊂ γ}. Then λ(u) < w(β) for all u ∈ U(β). As
a result, there exists a closed unbounded B3 ⊂ ω2 such that w(β) = β
for every β ∈ B3. Since the set B = B1 ∩B2 ∩B3 is closed unbounded,
we can apply ♦2 to conclude that there is a β ∈ B of cofinality ω1 such
that g¯β = gβ .

Since β ∈ B2 we have p(β) ¿ β. The level Sβ was constructed as the set
{sµ : µ < ω1}. For each natural n we have g(β)(n)¯β = sµn for some
µn < ω1. Then f = 〈µn : n ∈ ω〉 ∈ (ω1)

ω and hence there are ω1 many
ξ < ω1 such that f = fξ. Take any δ < ω1 with f = fδ and µn < δ for
every n ∈ ω.

Observe that β ∈ B3 implies that for every u ∈ U there is a γ < β such
that g(γ) is compatible with u. This means that {g(γ) : 0 < γ < β} =
{gβ(γ) : 0 < γ < β} is a maximal antichain in U , i.e., the condition
P (β) holds. Now remember the (δ + 1)-th step of the construction of

Sβ . Since µn = f(n) = fδ(n) < δ and s
fδ(n)
δ = g(β)(n)¯νδ for each

n ∈ ω, the condition Q(δ) is satisfied. This means that there is a γ < β

such that gβ(γ) is compatible with 〈sfδ(n)
δ : n ∈ ω〉 which is evidently

compatible with 〈µn : n ∈ ω〉 which in its turn is compatible with g(β).
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Thus, g(β) is compatible with g(γ) 6= g(β), a contradiction with the
fact that {g(λ) : 0 < λ < β} = {gβ(λ) : 0 < λ < β} is an antichain.

Recall that a space X is called ω-bounded if for any countable A ⊂ X the
subspace A is compact. Clearly, each ω-bounded space is countably compact.

Theorem 4.20. Under CH and ♦(ω1
2) there is an ω-bounded Tychonoff

space X of weight ω2 and a point w ∈ βX\X such that w /∈ clβX(D) for
any discrete subspace D ⊂ X. Therefore X ∪ {w} is a countably compact
ω-bounded space which is not weakly discretely generated.

Proof. Consider the tree S =
⋃{Sα : α < ω2} constructed in Theorem

4.19. Let τ be the topology generated on S by the family

S = {TS(s) : s ∈ Sα+1, α ∈ ω2} ∪ {S\TS(s) : s ∈ Sα+1, α ∈ ω2}
as a subbase. Clearly, for each α < ω2 and s ∈ Sα+1 the set TS(s) is clopen in
(S, τ). It is an easy exercise to see that (S, τ) is a Tychonoff space. In what
follows we identify S with the topological space (S, τ) and the subsets of S
with the respective subspaces of (S, τ). Let Y = S\S0 and X = {z ∈ βY :
there is a countable Az ⊂ Y such that z ∈ Az}. It is clear that X is ω-
bounded. Observe that, for any s ∈ S, the family {TS(s_n) : n ∈ ω} is a
local π-base of s in S.

Claim. Each discrete subset of X has cardinality at most ω1.

Proof of the claim. Suppose that D ⊂ X is discrete and has cardinality
ω2. For each d ∈ D fix a clopen neighbourhood Ud of the point d such that
Ud ∩ D = {d}. Using the remark about the π-bases, for each d ∈ D, and
s ∈ Ad ∩Ud choose a countable Ps ⊂ S such that {TS(p) : p ∈ Ps} is a π-base
at s and

⋃{TS(p) : p ∈ Ps} ⊂ Ud. Let Bd =
⋃{Ps : s ∈ Ad ∩ Ud}. Then the

sets Bd have the following properties for each d ∈ D:

P (d) :
⋃{TS(s) : s ∈ Bd} ⊂ Ud;

Q(d) : the family {TS(s) : s ∈ Bd} is a π-base at d.

It is clear that if d, e ∈ D and d 6= e then d /∈ ⋃{TS(t) : t ∈ Be}. Observe
that if s 6 t then TS(t) ⊂ TS(s). As a consequence, if d ∈ D and for every
s ∈ Bd we choose in a non-limit level of S an f(s) ¿ s then {TS(f(s)) : s ∈ Bd}
is still a π-base at d and

⋃{TS(f(s)) : s ∈ Bd} ⊂ ⋃{TS(s) : s ∈ Bd}.
The property (3) for S implies that for any d ∈ D and any s ∈ Bd there
exists an f(s) ∈ Sα+1 ∩ TS(s), where α = sup{ht(s) : s ∈ Bd}. Therefore
B′

d = {f(s) : s ∈ Bd} ⊂ Sα+1, the family {TS(s) : s ∈ B′
d} is a π-base at d

and
⋃{TS(s) : s ∈ B′

d} ⊂ ⋃{TS(s) : s ∈ Bd} ⊂ Ud. This shows that, without
loss of generality, we can assume that each Bd is contained in some Sα+1. Let
µ(d) = min{α < ω2 : Bd ⊂ Sα+1}.
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Our plan is to find distinct d, e ∈ D such that for each s ∈ Bd there is a
t ∈ Be such that t < s. This will imply

⋃{TS(s) : s ∈ Bd} ⊂ ⋃{TS(t) : t ∈
Be} and hence d ∈ ⋃{TS(t) : t ∈ Be} which is a contradiction.

By CH, there only ω1 countable subsets contained in each level of S and
therefore the set {µ(d) : d ∈ D} is cofinal in ω2. This makes it possible to
choose a sequence {γα : α < ω2} so that the following properties hold:

(a) γα = µ(dα) for some dα ∈ D;
(b) γβ > sup{γα : α < β} for each β < ω2.

Note that it follows from (a) and (b) that dα 6= dβ if α 6= β. Let C be the
closure of {γα : α < ω2} in ω2 (considered with the interval topology). Then
C is a closed unbounded subset of ω2 and therefore E = C ∩ω1

2 is stationary.
For each λ ∈ E let ν(λ) = min{γα : λ < γα}. Let Fλ = Bdα and eλ = dα,
where α is determined by the condition γα = ν(λ). Note that λ, δ ∈ E, λ < δ
implies that ν(λ) < ν(δ) and therefore eλ 6= eδ.

For any λ ∈ ω2 and s ∈ S denote by πλ : S → Sλ the projection:
πλ(s) = s¯λ. For each λ ∈ E choose a Gλ ⊂ Fλ such that πλ¯Gλ : Gλ →
πλ(Fλ) is a bijection. Since λ has cofinality ω1, there exists a β(λ) < λ
such that the restriction πβ(λ) : Gλ → Sβ(λ) is a bijective map. By pressing
down lemma, there is a δ < ω1 such that the set {λ ∈ E : β(λ) = δ} is
stationary. Using CH find a set P = {sn : n ∈ ω} ⊂ Sδ such that the set
R = {λ ∈ E : πδ(Gλ) = P} has cardinality ω2. Let fλ : ω → Gλ be any
surjection. Then F = {fλ : λ ∈ R} ⊂ ∏

∗{TS(sn) : n ∈ ω} can not be an
antichain in

∏
∗{TS(sn) : n ∈ ω} by property (4) of the tree S. Thus, there

are distinct λ, β ∈ R, say, λ < β such that fλ(n) < fβ(n) for all n ∈ ω. If
s ∈ Fβ , then s¯β = fβ(n)¯β for some n ∈ ω and therefore t = fλ(n) ∈ Fλ and
t = fλ(n) < fβ(n)¯β 6 s. Remember that Fβ = Bd and Fλ = Be for some
distinct d and e and for each s ∈ Bd there is a t ∈ Be such that t < s. We
saw already that this is a contradiction which finishes the proof of our claim.

Returning to the proof of our theorem, note that for any discrete D ⊂ X
we have |D| 6 ω1. For each d ∈ D there exists a countable Bd ⊂ S such that
{TS(s) : s ∈ Bd} is a π-base at d. If α = sup{ht(s) : s ∈ Bd, d ∈ D}+ 1 then
by the property (3) of the tree S for each d ∈ D and for every s ∈ Bd there

is an h(s) ∈ Sα ∩ TS(s). It is clear that d ∈ {h(s) : s ∈ Bd} and therefore
D ⊂ Sα. Thus, to construct the promised point, it is sufficient to find a point
w ∈ βX\X such that w /∈ Sα for all α < ω2.

To do this, we will construct a family W = {Wγ : γ < ω2} such that

(i) Wγ is a clopen subset of Y ;
(ii) Wγ ∩ Sγ = ∅ for each γ < ω2;
(iii) the family W has finite intersection property.
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To see that it is sufficient, observe that βY = βX and the family
U = {clβY (Wγ) : γ < ω2} consists of compact open sets. Since U has fi-
nite intersection property and clβY (Wγ) ∩ clβY (Sγ) = ∅ for each γ < ω2, any
point w ∈ ⋂{clβY (Wγ) : γ < ω2} will be as promised.

Let {sα : α < ω1} be a faithful enumeration of the first level S1 of the
tree S. For each γ < ω2 we will construct a function fγ : ω1 → S′ =

⋃{Sλ+1 :
λ < ω2} with the following properties:

(c) fγ(α) ¿ sα for all γ < ω2 and α < ω1;
(d) ht(fγ(α)) > γ for every γ < ω2 and α < ω1;
(e) if γ < λ < ω2 then there exists a β < ω1 such that fλ(α) ¿ fγ(α) for all
α ¿ β.

To start with, let f0(α) = sα for all α < ω1. Assume that, for some
δ < ω2, we have constructed the functions {fγ : γ < δ}. There are three cases
to consider.

1) δ = µ+ 1. Then for each α, let fδ(α) = fµ(α)_0. It is clear that the
properties (c)-(e) hold for all γ 6 δ.

2) cf(δ) = ω. Take a strictly increasing sequence {δn : n ∈ ω} cofinal in
δ. There exists a β < ω1 such that fδn+1(α) ¿ fδn(α) for all α ¿ β and n ∈ ω.
Since the tree S is countably closed, for each α ¿ β there is a tα ∈ S′ such
that fδn(α) < tα for all n ∈ ω; set fδ(α) = tα. If α < β, let fδ(α) = fδ0(α).
We omit the routine and straightforward verification that (c)-(e) hold for all
γ 6 δ.

3) cf(δ) = ω1. Choose a strictly increasing sequence {δν : ν < ω1} cofinal
in δ. The property (e) guarantees the existence of a cofinal in ω1 strictly
increasing sequence {βν : ν < ω1} such that β0 = 0 and for any ν < ω1 and
α ¿ βν we have fδν (α) ¿ fδµ(α) for all µ < ν. Let ξ = sup{ht(fγ(α)) : γ < δ
and α < ω1}. Now, for each α < ω1, choose a ν < ω1 such that βν 6 α < βν+1

and select fδ(α) ∈ Sξ+1 so that fδ(α) > fβν (α). It is again straightforward
to see that (c)-(e) hold for all γ 6 δ.

Once we have the sequence {fγ : γ < ω2}, let Wγ =
⋃{TS(fγ(α)) : α <

ω1}. The condition (e) implies that the family W = {Wγ : γ < ω1} has the
finite intersection property. Observe that the family {TS(sα) : α < ω1} is
discrete and consists of clopen subsets of Y . The condition (c) shows that
TS(fγ(α)) ⊂ TS(sα) for each α < ω1. Thus, the family {TS(fγ(α)) : α < ω1}
is discrete for each γ < ω2. This proves (i). The property (ii) is an immediate
consequence of (d) and our theorem is proved.

5. Unsolved problems

In this section we list some open problems, which indicate a natural line
of further investigation of discretely and weakly discretely generated spaces.
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Problem 5.1. Let X be a discretely generated compact space. Is it true
that X ×X is discretely generated?

Problem 5.2. Let X be a discretely generated compact space. Is it true
that any continuous image of X is discretely generated?

Problem 5.3. Let X be a (weakly) discretely generated space. Is it true
that any perfect image of X is (weakly) discretely generated?

Problem 5.4. Let X be a weakly discretely generated space. Is it true
that X ×X is weakly discretely generated?

Problem 5.5. Is there in ZFC a countably compact Tychonoff (or regular)
space which is not weakly discretely generated?

Since scattered compact spaces as well as compact spaces of countable
tightness have a point-countable π-base, it is natural to ask whether the same
is true for discretely generated compact spaces.

Problem 5.6. Let X be a discretely generated compact space. Must it
have a point-countable π-base?

The final problem must be very difficult, because it is answered positively
in all known models of ZFC, while a negative answer would imply the existence
of a model of ZFC without L-spaces.

Problem 5.7. Let X be a discretely generated dyadic space. Is X metriz-
able in ZFC?
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