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Induction motor speed sensorless torque control, which allows operation at low and zero speed, optimizing both
torque response and efficiency, is proposed. The control is quite different than the conventional field-oriented or
direct torque controls. A new discontinuous stator current FPGA based controller and rotor flux observer based
on sliding mode and Lyapunov theory are developed, analyzed and experimentally verified. A smooth transition
into the field weakening region and the full utilization of the inverter current and voltage capability are possible.
The reference tracking performance of speed and rotor flux is demonstrated in terms of transient characteristics by
experimental results.
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Strukturno promjenjivo upravljanje momentom asinkronog motora bez mjernog člana brzine vrtnje.
Predloženo je upravljanje momentom asinkronog motora bez mjernog člana brzine vrtnje, koje omogućuje rad na
malim brzinama i u stajanju te pritom optimira i odziv momenta i učinkovitost. Predloženo je upravljanje prilično
drugačije od konvencionalnog upravljanja poljem i neposrednog upravljanja momentom. Razvijeni su, analizirani i
eksperimentalno potvr�eni novi diskontinuirani regulator struje statora implementiran u FPGA i estimator rotorskog
magnetskog toka zasnovan na kliznim režimima i Ljapunovljevoj teoriji. Omogućeni su glatki prijelaz u područje
slabljenja polja i puna iskoristivost strujno-naponskih mogućnosti napojnog pretvarača. Performanse slije�enja
referentne veličine brzine vrtnje i rotorskog magnetskog toka pokazane su eksperimentalno dobivenim prijelaznim
pojavama.

Ključne riječi: sustav vo�en diskretnim doga�ajima, FPGA, asinkroni motori, upravljanje zasnovano na kliznom
režimu, upravljanje momentom

1 INTRODUCTION

Recent theoretical advances in the field of hybrid and
discrete event-systems, and significant increase of the com-
putational power available for the control of the power
electronic systems, invite both control and power electron-
ics communities to adapt traditional control schemes asso-
ciated with power electronics applications. In order to raise
the performance and efficiency of the drive applications,
faster and more sophisticated current control schemes are
required. The conventional current control scheme con-
sists of discrete-time PI current controller and pulse-width
modulator. It is replaced with the new sequential switching
current control strategy [1]. Hysteresis controllers can be a
good alternative for such applications. They are robust to
system parameter variations, exhibit very good dynamics,
require simple implementation and enable direct control of
the bridge transistors without special modulators. Their
main drawback is a limited control of transistor switching
frequency [2, 3].

In this paper, a novel switching sliding mode con-
troller for a voltage-source inverter is presented, which
is suitable for very simple and inexpensive FPGA (Field-
Programmable Gate Array) hardware implementation. Its
main properties are robustness and fast dynamic response.
When joined they reduce inverter switching frequency re-
quired to keep the current error within a tolerance region
of given length. Moreover, a very simple and low cost im-
plementation is possible owing to the use of FPGA finite
state automation implementation.

In this paper, by combining the variable structure sys-
tem and Lyapunov design [4], a novel sliding mode algo-
rithm of controller/observer for induction motor is devel-
oped. This control method is based on estimation of the
rotor flux and speed of induction motor (IM). Due to use of
sliding mode principle it is robust against variation of load
torque, machine parameters and external disturbances. The
sliding mode principles, based on state variable errors, are
used as feedback control to guarantee stability of control
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system. The proposed method is investigated and verified
experimentally using hardware in the loop simulation.

The paper is organized as follows. In Sect. 2 dynamic
model of IM, together with control system design is pre-
sented. Sect. 3 presents proposed variable structure control
(VSC) current and flux control schemes with developed
new decision logic-based event-driven controller. Sect. 4
describes the new rotor flux observer based on continuous
sliding mode control. Acquired models are experimentally
confirmed using in house developed DSP/FPGA board [5].
Mapping of the obtained models into FPGA executable
code is presented in Sect. 5. Experimental results are pre-
sented in Section 6. The findings and the comments of
presented approach are discussed in the conclusion.

2 CONTROL SYSTEM DESIGN
2.1 Machine Dynamics

The dynamics of IM consist of mechanical motion, dy-
namics of stator electromagnetic system and the dynamics
of the rotor electromagnetic system with electromagnetic
torque developed by machine:

dωr

dt
=

1
J

(Te − TL) , (1)

d iss
dt

=
1
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m

/
Lr
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where ωr is mechanical rotor angular speed, the two di-
mensional complex space vectors Ψs

s = [Ψs
sa Ψs

sb]
�,

Ψs
r = [Ψs

ra Ψs
rb]

�, us
s = [us

sa us
sb]

�, iss = [issa issb]
�

are stator and rotor flux, stator voltage and current, re-
spectively, Te is electromagnetic motor torque, TL is load
torque, J is inertia of the rotor and p is the number of pole
pairs of the machine. R stands for resistance and L for in-
ductance. The meaning of the subscript and superscript are
as follows: s is stator, r is rotor, and m is mutual (Lm is
mutual inductance). The subscript denotes the location of
variable and superscript denotes the frame of references.

One of the most important issue in implementing con-
trol of induction machine, either direct torque control
(DTC) or field oriented control (FOC) strategies is to ob-
tain real-time instantaneous flux magnitude and its posi-
tion with sufficient accuracy for the entire speed range
[2, 6, 7]. The difficulty of flux estimation lies in the non-
linear induction machine dynamics, which is characterized
by speed dependent and time varying parameters [8].

2.2 Sliding Mode Control System Design

The design of sliding mode system can generally be pre-
sented as two-step procedure: design of the switching man-
ifold and design of the control that enforces sliding mode.
The switching manifold must be selected in such a manner
to guaranty desired system. The procedure may be pre-
sented as follows [9]:

1. From the system specification select the vector func-
tion σ = σ

(
xd, x

)
where xd represents desired val-

ues of the controlled vector variable x, so that design
specifications are met if the sliding mode is enforced
in manifold:

S =
{
x : σ = σ

(
xd, x

)
= 0
}

. (6)

2. Select the control input so that the attractiveness and
the stability of the solution σ = σ

(
xd, x

)
= 0 is

guaranteed.

Since fulfillment of the design requirements is reduced
to the stability of (6) natural selection of the Lyapunov
function candidate is presented in the following form:

V = −σT σ/2 and V̇ = σT σ̇. (7)

This selection guaranties that V |∀σ �=0 > 0 and
V |σ=0 = 0. The Lyapunov stability requirement is ful-

filled, if such a control can be selected that V̇
∣∣∣
∀σ �=0

< 0

and V̇
∣∣∣
σ=0

= 0. This objective can be achieved, if the
following is satisfied:

a) The derivative V̇ of the Lyapunov function is function
of control (derivative of function σ = σ

(
xd, x

)
= 0

must be function of control);

b) There is such a function Φ(σ) so that
σT Φ(σ)

∣∣
∀σ �=0

< 0; and

c) There is a unique solution for control for the follow-
ing equality:

V̇ = σT σ̇ (u) = σT Φ(σ) < 0. (8)

There are many different ways for selecting Φ(σ). For
the application in electrical drive control, two particular
forms as given in (8) may be of interest:

V̇ = σT Φ(σ) < 0 ⇒
{

Φ(σ) = −Γsign (σ),
Φ(σ) = −Dσ, D � 0,

(9)

where Γ is positive definite diagonal or ma-
trix with predominant diagonal, sign (σ) =
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Fig. 1. Block diagram of event-driven sliding mode control of IM

[sign (σ1) , . . . , sign (σm)]� and D is positive defi-
nite matrix. It should be stated here that the second choice
in (9) actually guaranties asymptotical stability and thus
does guarantee sliding mode motion. However for time
t > t0 the motion stays in the ε vicinity of the sliding
mode manifold.

For vector function Φ(σ) = −Γsign (σ) resulting con-
trol is discontinuous and manifold (6) is reached in finite
time.

Many systems, for example estimators and observers,
do not support switching operation well. For this ap-
plication the choice for Φ(σ) is selected as Φ(σ) =
−Dσ, D � 0 which results in the continuous control with
asymptotic stability of the solution σ = σ

(
xd, x

)
= 0.

The continuous control function is then:

u(t) = uequ + (GB)−1
σ (10)

where uequ is so-called equivalent control and is continu-
ous function [9]. Since the control presented in this paper
is switching by its nature, Φ (σ) = −Γsign (σ) was used.

3 PROPOSED VSC CURRENT AND FLUX CON-
TROL SCHEME

The aim of this paper is to present an application of
switching control in switching power converters, which
use the finite state machine principle embedded in FPGA
environment. With the use of logic event driven approach
we intend to present the operation of switching convert-
ers, which are represented as the set of energy storage ele-
ments with their interconnections dynamically changed by

the operation of the switching matrix [10]. The switch-
ing matrix explains the role of switching elements that de-
termine the power exchange between energy storage ele-
ments. By the introduction of switching into the structure
of the system the design in the framework of switching
control is made a natural choice.

Considering the operation of an IM together with the in-
verter, a discrete event-driven approach can be introduced
[3, 10] (Fig. 1). The inverter is connected to the DC-link
voltage and its operation is based on the transistor switch-
ing pattern. Instantaneous dynamics of the control are de-
termined. Different transistor switch pattern results in dif-
ferent plant dynamics. Applying proper switching among
these plant dynamics, the system can track the desired ref-
erence trajectory. Switching pattern of each transistor is
considered as a discrete state of the system and the chang-
ing of the transistor switching pattern is considered as a
transition of the system among discrete states. The transi-
tion of the discrete system between discrete states can be
considered as occurrence of an event. To control transitions
of the system among the discrete states, some additional
conditions are introduced.

Considering the vector current errors as conditions for
the transitions, a discontinuous current control Φ(σ) =
−Γsign (σ) (9) is achieved, which is fast, robust and sim-
ple for implementation.

To achieve safe and manageable drive operation, mon-
itoring and protection functions should be included. They
are event-driven inherently, as they react on the change of
logic conditions. If they are combined with the proposed
discontinuous current control and rotor flux observer, over-
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all functionality of the drive can be systematically de-
scribed by Fig. 1.

To control the stator current, the sector of momentary
inverter voltage us is recognized first. The new output
voltage vector (the transistor switching pattern) for the sta-
tor current control is selected respecting the current con-
trol error and Lyapunov stability condition. Considering
space vector representation of the inverter stator voltageus,
it is represented as vector rotating around the origin (Fig.
2). Six active switching vectors of the three phase tran-
sistor bridge result in six output voltage vectors denoted
as V1, . . . , V6. According to the signs of the IM terminal
phase voltages us1, us2 and us3, the phase plane is divided
into six sectors denoted with Su1,...,Su6.

3���4�5

3���4�53���4�5

3���4�5

3���4�5 3���4�5

��

����

���� ����

����

��������

Fig. 2. Stator voltage us sector allocation spaces

The situation presented in Fig. 2, where the stator volt-
age space vector us is in sector 1, is the following. In this
sector voltage vectors V0, V7, V1, V2 and V6 are selected for
the IM current control. V0, V7 are two zero vectors, while
V1, V2, V6 are nearest adjacent live output voltage vectors
to this sector. With the use of the discrete event system the-
ory, five output voltage vectors V0, V7, V1, V2 and V6 are
recognized as possible discrete states of the system. The
resulting events represent allowed transitions among the
discrete states i.e. allowed switching patterns. The struc-
ture of the proposed strategy is represented by Petri Net
graph (Fig. 3) [11].

Switching among the available output voltage vectors in
each sector is determined by conditions that originate from
the derivative of the Lyapunov function. For the Lyapunov
function candidate

V =
1
2
σT σ =

1
2
(
ids − is

)T (
ids − is

)
, (11)

the stability requirement is fulfilled if such a control can be
selected, that the derivative of the Lyapunov function can-
didate is negative V̇ = σT σ̇ ≤ 0× Derivatives of current
control error may be expressed with the voltage equation:

d

dt

(
ids − is

)
=

d

dt
ids − 1

Ls − L2
m

/
Lr

(us − Rsis − er) ,

(12)

1V

2V

7V

6V

1T

2T

3T

4T

5T
6T

7T
8T

9T
10T

0V

Fig. 3. PN-graph of the switching sequence in Sector 1

where ids , is are desired and actual stator current of motor,
us is voltage control input, Rsis is resistive voltage drop
and er is electromotive force (EMF) of the motor.

The conditions for the sequential switching of the power
inverter are selected as:

SR = 1
2 (1 − sign(A)) ,

SS = 1
2 (1 − sign(B)) ,

ST = 1
2 (1 − sign(C)) ,

(13)

where

A =
(
idsa − isa

)
,

B = − (idsa − isa

)
/2 −√

3
(
idsb − isb

)
/2,

C = − (idsa − isa

)
/2 +

√
3
(
idsb − isb

)
/2,

(14)

which is evolved from the Lyapunov function derivative.
When UDC has enough magnitude that V̇ ≤ 0, than V →
0 and is → ids . Notice that if SR, SS , ST equal to zero
simultaneously, no current is delivered to the motor.

The main disadvantage of the sliding mode control is
in the significant transistors switching frequency variations
due to the changing operating point or load variations, as
well as in the difficulties to fold back or even limit the
short circuit output current with sliding mode output volt-
age control [3].

The proposed logic event-driven stator current control
is similar to DTC and can be realized in the form de-
scribed in Table 1, where states of stator current con-
trol error are presented by sign(Di) (Di = SR, SS , ST )
and currently active voltage sector is presented by signU
(U = uS1, uS2, uS3). Formulas for SR, SS and ST are
presented in (13), whereas allocation of voltage sector is
presented in Fig. 2. To further improve the presentation,
active voltage vectors are marked in Table 1 by gray back-
ground. Because the transition between inverter switch
states is performed by switching only one inverter leg si-
multaneously, the chattering in stator current caused by in-
verter switching (and consequently torque chattering) is re-
duced.
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Table 1. Look-up Table

signU Su1 Su2 Su3 Su4 Su5 Su6
signDi 100 110 010 011 001 101
Sdi0 000 V7 V0 V7 V0 V7 V0
Sdi1 100 V1 V1 V7 V0 V7 V1
Sdi2 110 V2 V2 V2 V0 V7 V0
Sdi3 010 V7 V3 V3 V3 V7 V0
Sdi4 011 V7 V0 V4 V4 V4 V0
Sdi5 001 V7 V0 V7 V5 V5 V5
Sdi6 101 V6 V0 V7 V0 V6 V6
Sdi7 111 V7 V0 V7 V0 V7 V0

The reference current can now be calculated simply as:

ids =

∣∣∣Ψ̂r

∣∣∣
Lm

+ j
2
3p

Lr

Lm

T d
e∣∣∣Ψ̂r

∣∣∣ . (15)

The orientation value required for the dq-ab transforma-
tion used in conventional current control is performed ap-
plying the components of the rotor flux, which are directly
employed:

ejΘ = cosΘ+j sin Θ =
Ψ̂ra∣∣∣Ψ̂r

∣∣∣+j
Ψ̂rb∣∣∣Ψ̂r

∣∣∣ =
1∣∣∣Ψ̂r

∣∣∣ Ψ̂r. (16)

The advantage of proposed transformation is that the sin
and cos function are replaced with multiplication in the ap-
plied FPGA algorithm.

4 ROTOR FLUX OBSERVER

The rotor flux observer, presented in this work, is based
on the stator equation, where the derivative of the estimated
stator flux is calculated from measured stator voltage and
current [7, 12]. The observer equation (17) represents the
first order vectorial differential equation. The stator volt-
age us and current is serve as control input to the estimated
stator flux Ψ̂s. In order to avoid voltage error influence due
to inverter non-linear behavior, the measured value of the
stator voltage is used instead of the commonly used refer-
ence voltage:

d

dt
Ψ̂s = ûs − R̂sis + ûk, (17)

Non-modeled dynamic is set as a remaining signal
ûk, calculated from the magnitude error of the rotor flux
|ΔΨr|.

The stator parameters of the IM appear in the ro-
tor flux observer; i.e. stator resistance R̂s and stator
inductanceσL̂s. The influence of the stator inductance

variation is small, but stator resistance changes signifi-
cantly during the operation.

The stator resistance parameter mismatch influences
both, the amplitude and the orientation error of the esti-
mated rotor flux. It has the highest influence in the low-
speed region, combined with the applied load torque. This
effect is used to obtain stator resistance error from the ro-
tor flux magnitude error. It is directly employed in the pro-
posed observer structure, providing low sensitivity of the
observer to the stator resistance variation. The influence of
the stator resistance variation is compensated by introduc-
ing a non-linear magnitude and orientation feedback com-
pensator in the observer.

ûk = um + jup. (18)

The switching function of the VSC flux magnitude con-
troller Cm is set to the error between the reference and
estimated rotor flux magnitude:

dσm

dt
= −Dmσm = 0, σm = Ψd

r −
∣∣∣Ψ̂r

∣∣∣ . (19)

The discrete part of the resulting unknown offset voltage
um is:

Cm : um(k) =
Km ((1 + TsDm) σm(k) − σm(k − 1))

Ts
.

(20)
The variation of the stator resistance ΔR̂s impacts the

torque variation of the IM, expressed by the variation of
the rotor flux error and torque:

ΔTe = σmT d
e /
∣∣Ψd

r

∣∣ , (21)

σp = ΔTe sign
(
ω̂ T d

e

)
. (22)

The switching function of the VSC orientation con-
troller Cp takes into account the torque variation:

dσp

dt
= −Dpσp = 0. (23)

When the torque is applied, the source of the connec-
tion between the torque error and the rotor flux error is the
influence of the stator resistance error. The discrete form
of the orientation correction signal becomes:

Cp : up(k) = up(k − 1)+

+Kp ((1 + TsDp) σp(k) − σp(k − 1))
Ts

(24)

Correction input signals influence the magnitude and
orientation of the magnetic flux error, and thus make the
proposed observer robust to the parameter variations. The
resulting block diagram, which is suitable for providing the
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Fig. 4. Block diagram of the rotor flux observer

estimated stator and rotor fluxes of the IM, is shown in Fig.
4.

The estimated synchronous speed is now expressed with
the following cross product:

ω̂s =
1∣∣∣Ψ̂s

∣∣∣2
dΨ̂s

dt
⊗ Ψ̂s. (25)

The estimated speed is computed entirely from the esti-
mated rotor flux and its time derivative:

ω̂r =
1
p

Ψ̂r ⊗ d
dt Ψ̂r∣∣∣Ψ̂r

∣∣∣2 . (26)

The resulting estimated speed is subjected to high noise
levels due to the derivative term that can be reduced by
employing low pass filters.

The stability is computed only for magnitude rotor flux
error, which is a common input for both, the magnitude and
orientation errors of rotor flux observer. A Lyapunov sta-
bility criteria is used to verify the stability of the observer.
The squared magnitude of the rotor flux error is set as a
Lyapunov candidate function. In the selected case, a Lya-
punov candidate function is, as required, always positive.
The notation is adopted for complex numbers.

V = Re
{(

Ψ̂r − Ψr

)(
Ψ̂r − Ψr

)∗}
/2. (27)

The derivative of the Lyapunov function candidate must
be negative:

V̇ = Re
{(

Ψ̂r − Ψr

)
d
(
Ψ̂r − Ψr

)∗
/dt
}

< 0. (28)

The derivative of rotor flux error is obtained using (2)
and (3)

d
(
Ψ̂r − Ψr

)
dt

= Δus−ΔLs
dis
dt

−ΔRsis+Ψ̂rum. (29)

By using trigonometric functions for rotor flux descrip-
tion, when the amplitude of the rotor flux is known, the
condition becomes:

−
∣∣∣Ψ̂r

∣∣∣ (∣∣∣Ψ̂r

∣∣∣− Ψd
r

)(∣∣∣Ψ̂r

∣∣∣− Ψd
r cos

(
Θ̂ − Θ

))
< 0.

(30)

If rotor flux angle error is sufficiently small than the
condition is negative; therefore the observer is stable
within given restrictions.

5 IMPLEMENTATION

The proposed approach is based on fast parallel pro-
cessing and suitable for a Field Programmable Gate Ar-
ray (FPGA) implementation. In such implementation it is
possible to reproduce an ideal sliding mode process. How-
ever, with FPGA implementation, designer has the diffi-
cult task to characterize and describe the hardware archi-
tecture that corresponds to the chosen control algorithm.
FPGA designers must follow an efficient design methodol-
ogy in order to benefit from the advantages of the FPGAs
and their powerful CAD (Computer Aided Design) tools.
From a software point of view, Hardware description lan-
guage (HDL) modeling system is based on using the vari-
ables that request logic values as well.

FPGA implementation of Table 1 is presented in Fig. 5,
where signDI1, signDI2 and signDI3 present SR, SS and
ST , respectively. Voltage sector states are presented by
signU1, signU2, signU3. Inverter leg switching outputs
are denoted as follows: TOP1 and BOT1 present states
of top and bottom transistor in inverter leg R, TOP2 and
BOT2 are presenting states of transistors in inverter leg S,
whereas TOP3 and BOT3 present states of transistors in
inverter leg T.

6 RESULTS

The sliding mode torque and flux algorithm is imple-
mented onto the in-house developed DSP/FPGA board.
The DSP/FPGA board contains Texas Instruments TMS
320C32 digital signal processor and Xilinx Spartan fam-
ily field programmable gate array. DSP serves for A/D
conversion and generating of the reference current. Re-
placing usual sequential calculation of algorithms on the
DSP by parallel executable FPGA hardware increases the
calculation speed. A/D conversion, which takes 5 μs is
the most critical operation regarding time. According to
the fact, that A/D conversion takes most of the calculation
time, switching frequencies up to 200 kHz are theoretically
possible.

Fig. 6 and Fig. 7 show transient response of estimated
motor speed ωr and torque Te. Fig. 8 shows transient
of motor phase currents is1, is2 and is3. Desired speed
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Fig. 5. FPGA schematic circuits

Fig. 6. Speed sensorless reference tracking

[
]

 
N

m
eT

Fig. 7. Estimated torque transient

in experiment varies following the ramp signal and addi-
tional load is introduced at the time of 0.3 s. Satisfac-
tory tracking of speed, even in the case of slow transient
through zero, is shown in Fig. 6. Estimated torque pro-
duced by the motor is shown in Fig. 7, presenting the im-
pact of torque, required for acceleration, deceleration and
load torque. Phase current, presented in Fig. 8 shows sinu-
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Fig. 8. IM phase currents

soidal signals, contaminated with satisfactory current rip-
ple cost by switching. Likewise, torque ripple is within
desired limits.

7 CONCLUSION

Overall functionality of the inverter and the perfor-
mance of the proposed event-driven current control was
checked by simulations first [10], and experimentally con-
firmed in this paper. Special attention is paid to the map-
ping of the proposed design approach into the schematic
form for the FPGA implementation. Sliding mode rotor
flux observer based on IM model is used to obtain ro-
tor position and speed. This observer is sensitive to sta-
tor parameter changes and is improved with stator resis-
tance adaptation. The proposed method shows good con-
vergence and closed loop stability of the observer over a
wide speed range, under model uncertainties, in particular
those caused by stator resistance error.

Solutions based on specific hardware, that allow high
concurrency, are suitable to be used in power electronics
and motion control applications.
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