
Liguo Yu, Alok Mishra

Risk Analysis of Global Software Development and Proposed
Solutions

UDK
IFAC

004.413.4
2.8.3 Review

Global software development is becoming a widely accepted practice in software industry. While benefits of
global software development have been identified and publicized, potential risks have not been fully investigated
and addressed. This paper analyzes the impacts of globalization on software development, especially its long
term impact on software product quality and software industry competitiveness. This issue is rather critical for
prominent software providers. Potential solutions are discussed to address these issues in order to reduce the risk
and take advantage of the benefits of global software development.

Key words: Global Software Development, Risk, Evolution, Global Software Process, Agent

Analiza rizika globalnog razvoja programske podrške i prijedlog rješenja. Globalni razvoj programske
podrške postaje naširoko prihvaćen način rada u industriji programske podrške. Dok su njegove dobre strane uočene
i obznanjene, mogući rizici nisu u potpunosti istraženi i odgovarajuće adresirani. Ovaj članak analizira učinke
globalnog razvoja programske podrške, posebice njegov dugoročni utjecaj na kvalitetu programa i konkurentnost
industrije programske podrške. Taj je moment razmjerno kritičan uglednim proizvo�ačima programa. Diskutirana
su moguća rješenja za adresiranje tih problema kako bi se rizik umanjio i iskoristile dobre strane globalnog razvoja
programske podrške.

Ključne riječi: globalni razvoj programske podrške, rizik, globalni procesi programske podrške, agenti

1 INTRODUCTION
Over the past decades, economy has converted national

markets into global markets, creating new forms of com-
petitions and collaborations [1]. One such effect of econ-
omy globalization takes place in software development,
where software products are developed by teams geograph-
ically distributed in a worldwide scale. This gave rise to
the formation of distributed teams and created opportuni-
ties for restructuring traditional working ways to benefit
from nations’ different competitive advantages [2]. This
is called global software development [3–5]. The major
driving force of global software development is the eas-
ily identified benefits: capacitated professionals around the
world could be hired or contracted with lower cost [6, 7]
and increased development speed. It is a fact that software
community appreciates an economy of merging diverse de-
velopment skills and domain expertise. As communica-
tion media become more sophisticated; more companies
are pushed towards a global software development as this
would be cost effective and competitive than developing
software product in one centralized building, company or
even country [8].

Currently, the research in global software development

focuses on resolving the issues of spatial distance, time
zone difference, and cultural differences, which constitute
the major challenges for distributed software development
[9–12]. Different communication methods and coordina-
tion methods are proposed and different project manage-
ment and configuration management software is developed
to facilitate global software development [13–17].

Because the short term benefits of global software de-
velopment are so appealing, more and more software com-
panies begin globalizing their software development team
and effort. Although the management of global software
development is an arduous task and may have the risk of
lowering overall productivity, its positive impact should
not be overlooked. A major positive effect is innovation
[18].

However, little attentions are given to the long term ben-
efits/risks. In other words, although a moderate research
has been performed [19, 20], the risk of globalization of
software development, especially its long term cost, has
not been fully identified in either research or practice. Ra-
lyte et al. [21] also observed the fact that there is not suf-
ficient research or reported practice in terms of identify-
ing potential problems in managing, distributed project en-

ISSN 0005-1144
ATKAFF 51(1), 89–98(2010)

AUTOMATIKA 51(2010) 1, 89–98 89



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

vironment and evaluating the project risks. They further
found that only very few solutions are proposed and most
of them are based on developer’s experience, interviews
and case studies. Recently Mishra and Mishra [22] found
that areas like quality and risk management issues could
get only scant attention in distributed information system
development. There is also need of further studies in non-
technical areas such as team dynamics and cross-cultural
risk management [23].

This paper analyzes the risk of global software devel-
opment, especially the potential long term cost. The cost
is related to both product quality and software companies’
competitiveness. The remainder of the paper is organized
as follows. Section 2 discusses the potential risks asso-
ciated with global software development. Section 3 ad-
dresses each potential cost and provides some suggestions.
The conclusions are in Section 4.

2 POTENTIAL RISKS IN GLOBAL SOFTWARE
DEVELOPMENT

Compared to localized software development, global
software development has various risks, such as those in-
duced by the spatial and temporal distance between devel-
opment teams. Prikladnicki et al. [8] identified the signifi-
cance of risk management in global software development
and suggested that managing global software development
entails the distributation of the risk management instead of
traditional risk management processes in order to be able
to assess the possible impacts of the dispersion, the diverse
cultures, time, attitudes and requirements elicitation. In
this paper, we have focused on the risks in product quality
and software company competitiveness.

• Product quality. Software quality is strongly depen-
dent on the quality of the process used in its prepa-
ration and software process can be defined, managed,
measured and improved [8]. Prikladnicki et al. [8]
further considered this as one of the most important
success factors for distributed projects. In localized
software development, each development phase is en-
forced with quality assurance. These quality assur-
ance principles and rules have been well established.
However, for global software development, develop-
ers are distributed around the world; they might fol-
low different software processes and use different
strategies. How could we guarantee that the glob-
ally developed product has the same quality as the lo-
cally developed? This issue can become even more
critical if several, temporarily-contracted distributed
teams are utilized for global software development. It
has been reported recently that the digital photo frame
made in China contains virus [24].

In a recent article Sangwan et al. [25] reported about
a global software development project in which the
technical team was forced to distribute the develop-
ment of parts of the system across geographically
distributed teams to achieve the compressed sched-
ule via parallel development efforts. When the com-
ponents developed by the teams were integrated to-
gether, they blew up the memory and performance
budget. While individual components were carefully
crafted, not enough attention had been given to the
overall system goal of achieving high performance
within the given resource constraints. The end result
was not the desired product and the discrepancy be-
tween the desired outcome and the actual outcome
cost the company hundreds of millions of dollars
spent developing the system and billions of dollars
in potential revenue. Pilatti and Audy [26] suggested
as lesson learned from their global software develop-
ment case study that quality certificates are important
because they define how the process will be structured
and applied to each other.

• Design quality. In general, the source code qual-
ity is easy to assess through measuring the fault den-
sity [27]. However, it is more difficult to evaluate the
design quality of a software product being developed
at various sites by adopting different software process
improvement methodologies and mechanisms. For
instance the modularization approach is a very useful
tool for dividing the development of a complex soft-
ware system into manageable units, still some tech-
nical dependencies will remain, creating task depen-
dencies that could be difficult to identify and man-
age [28]. Moreover, geographically distributed devel-
opment teams are at disadvantage because of the neg-
ative impact of distance on the engineers’ ability to
communicate and coordinate their work [11]. Hence
there is need to complement modularization with ap-
propriate mechanisms to identify relevant work de-
pendencies and, consequently, maintain suitable lev-
els of communication and coordination among teams
developing interdependent modules [28]. Cataldo et
al. [28] further observed that global software develop-
ment organizations would benefit from mechanisms
that allow the identification of the changes in depen-
dencies such that manager and developers are notified
of those changes and can react accordingly. Ram-
nath [29] also observed that early establishment of ar-
chitecture, design and a process standard was critical.
Bass and Paulish [30] mention that technological fac-
tors can limit design choices to hardware, software,
architecture, platform and standards that are currently
available. Further, due to the shortage of standard-
ized tools and metrics on design quality, it makes the

90 AUTOMATIKA 51(2010) 1, 89–98



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

monitoring of the design quality of globally devel-
oped software even more challenging.

• Maintenance and evolution. Maintenance and evo-
lution are important phases in software life cycle.
Software products must be continually updated to sat-
isfy new requirements and new environments. Pilatti
and Audy [26] supported this as lesson learned from
their global software development case study that
software maintenance was main concern for global
software development projects. On the one hand,
to make a software product easy to maintain, local-
ized software development requires a consistent and
complete documentation in the development process.
How could this in principle be easily enforced on
global software development? Prikladnicki et al. [8]
also observed the importance of analyzing the level
of documentation available for the offshore team.
Cataldo et al. [28] mentioned the importance of doc-
umentation in global software developments as “the
central team used the architectural documentation to
identify dependencies among components early in the
development process and represented these as a de-
sign structure matrix (DSM) which was used to iden-
tify the set of tasks to be assigned to each remote team
that would minimize the dependencies and conse-
quently, minimize the need for coordination between
remote teams”. On the other hand, software mainte-
nance and evolution process is so different from de-
velopment processes, that, different strategies should
be used to manage the global software development
and global software maintenance. For instance, when
a problem appears on a customer’s location it is some-
times difficult to send the right developer or consul-
tant to resolve it because this person is located on a
geographically remote site and thus it is difficult for
the customer and the development team to maintain
a good level of support [21]. Yan [31] found main-
tenance a very important step in global software de-
velopment and insists on the necessity to establish
agreements with the customer in order to find a sup-
port solution in case of problems requiring a quick
answer and proposes the formation and employment
of technical liaison engineers who should be quali-
fied enough to handle most of the urgent maintenance
problems and to reassure the customers. Ralyte et
al. [21] concluded that development and maintenance
of distributed software development projects should
be taken into account during distributed software de-
velopment project management.

• Continuous evolution and restructuring. There are
basically two kinds of software evolution: continu-
ous evolution and restructuring. Continuous evolu-

tion refers to small changes that are continually made
to a software product, which results in multi versions
of the product. Restructuring refers to major changes
made to a software product to improve its quality
and/or performance. In other words, continuous evo-
lution involves fewer maintenance activities and less
effort while restructuring involves more maintenance
activities and more effort. Architectural definition or
high-level design activities could take place in various
points in time in the lifecycle of the project and anal-
yses showed a significant amount of the communica-
tion in discussion forum had to do with design and ar-
chitecture [28]. Cataldo et al. [28] further suggested
the need for mechanisms to identify communications
that involve architectural definitions or high-level re-
design and facilitate organizational awareness of such
situations in order to appropriately address the impli-
cations and impact of such changes.

Meadows [32] highlighted some progresses in software
engineering field that makes global software development
viable. These progresses include (i) increased application
of component-based software development, (ii) increased
standardization of modeling languages and programming
languages, and (iii) increased use of standardized project
management tools. These advances in software engineer-
ing could partially help to avoid the risks identified above.
However, they cannot fully resolve these risks. For exam-
ple, component-based software development and standard-
ized programming language can only be helpful in soft-
ware implementation, they are little helpful in analysis and
design. In fact, a lot of time can be lost during for exam-
ple the phases of implementation and test in global soft-
ware development [33]. Figure 1 illustrates the develop-
ment and maintenance of a software product in localized
software development.

Figure 2 shows two icons we use to represent localized
development and global development. Usually, with re-
spect to leading US software companies, localized devel-
opment has high cost but low potential risks, while glob-
alized development has low cost but high potential risks.
Trust, which is a significant factor that glues all success
factors in such projects, decreases when there is a high
number of contractors in a project [26] and this may also
trigger potential risks [34].

Figure 3 is a simple conversion of localized software de-
velopment to global software development. Because every
phase is under global environment, we refer to schemes in
Fig. 3 as fully global software development and mainte-
nance process. In the next section, we will discuss whether
the fully global software development and maintenance
process can avoid the risks identified above.

AUTOMATIKA 51(2010) 1, 89–98 91



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

Fig. 1. The general (localized) software development and maintenance process

Fig. 2. (a) Localized software development; and (b) global

software development

3 PROPOSED SOLUTIONS

In this paper, we identify three stakeholders in global
software development. They are client, primary agent, and
secondary agent. Client is the individual who wants the
product to be developed or evolved. Primary agent is the
software company that the client directly contracts with.
Primary agent delivers the final product to the client. Sec-
ondary agent is the software company that the primary
agent subcontracts with. The secondary agent develops
parts or whole of the product as required by the primary
agent. Figure 4 shows the relations between client, primary
agent, and secondary agent, in which we assume that both
the client and primary agent are located nationally while
secondary agents are globally distributed.

3.1 Software development

Figure 3 shows the fully global software development
process. This process has the largest potential risk: from

analysis to testing, every artifact of software product, such
as Software Requirement Specification (SRS), Software
Design Specification (SDS), is produced globally, which
increase the risks of software quality degradation and
project failure. Ramnath [29] observed that understanding
domain requirements as well as the complete architecture
of the product lines being developed needed to be a con-
stant focus for both on-shore product group and as well as
the off shore one.

As analysis and design processes are less standardized
and their qualities are difficult to monitor, we propose that
these phases should be developed locally. In contrast, im-
plementation and unit testing are recommended to be per-
formed globally to take the advantages of the standardiza-
tion in programming language and integrated development
environment. The corresponding process is illustrated in
Fig. 5, in which, each distributed team works on one com-
ponent. The integration and testing activities are central-
ized. Note in Fig. 5, Quality Assurance (QA) and Stan-
dardization such as Capability Maturity Model Integration
– (CMMI) must be enforced in distributed sites.

We restate here that, first the development process pro-
posed in Fig. 5 should support the component-based soft-
ware development. Because each software component has
clearly defined interface, it is easy to test the correctness
and performance of software components, which allows
the primary agent (the company that contracts with the
client and outsources that project) to directly monitor its
quality. Second, the global development activities must be
standardized. Here, it is important to note the observations
of Ralyte et al. [33] that during the test phase, a number of
problems emerged because of the lack of standardization,

92 AUTOMATIKA 51(2010) 1, 89–98



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

Fig. 3. Fully global software development and maintenance process

Fig. 4. The relationship between client, primary agent, and secondary agent

Fig. 5. Partially globalized software development process

AUTOMATIKA 51(2010) 1, 89–98 93



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

Fig. 6. Different scenarios of maintenance: continuous evolution process

different test platforms and databases and difficulty to re-
produce errors. The primary client company should pro-
mote its standard of product and process to the secondary
agent companies globally. This means that all distributed
sites should follow the same standard. This standardiza-
tion will not only make the quality control easier, but also
reduce the complexity of integration.

3.2 Continuous evolution process

Similar to the development process, fully global contin-
uous evolution process illustrated in Figure 3 might not be
the best strategy. To evaluate this strategy, Fig. 6 shows
the different scenarios of maintenance: continuous evolu-
tion process.

In the following, we discuss each scenario in Fig. 6 in
detail.

• Scenario a is known as the fully globalized mainte-
nance and evolution. This scenario has two draw-
backs: (i) all activities are performed by the sec-
ondary agent, the primary agent has less information
about the maintenance objective, cost, etc.; (ii) the
quality control is difficult to achieve due to fact that
the primary agent does not control this process di-
rectly.

• Scenario b separates the issue/problem identification
and resolution process. Issue identification and is-
sue resolution are clearly correlated. This separation
might increase unnecessary maintenance efforts.

• Scenario c separates the issue/problem resolution pro-
cess through updating process. Same as Scenario b,
this separation might increase unnecessary mainte-
nance efforts.

• Scenario d is the worst choice. The regression testing
should always be performed locally by the primary
agent. An offshore testing without the participation
of the primary agent could be a nightmare for product
quality.

• Although Scenario e does not take the advantage of
the benefits of global software development, it could
avoid the risks brought by global development.

Summarizing the discussions, for continuous evolution
process, we propose to use fully localized process. The
fundamental idea is that the gains of globalization could
be much smaller than the risks of global process with re-
spect to small maintenance/evolution activities.

3.3 Reengineering evolution process
As shown in Fig. 1, reengineering process is more sim-

ilar to development process than to continuous evolution
process. Figure 7 shows the different scenarios of reengi-
neering a software product globally.

1. Scenario a could take the advantage of the benefits
of globalization. However, the primary agent has no
information about the cost of the project, because
he/she gives full control of the project to the sec-
ondary agent.

94 AUTOMATIKA 51(2010) 1, 89–98



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

Fig. 7. Different scenarios of maintenance: reengineering process

Fig. 8. Revised partially globalized software development process

Fig. 9. Revised partially globalized maintenance: continuous evolution process

AUTOMATIKA 51(2010) 1, 89–98 95



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

Fig. 10. Revised partially globalized maintenance: reengineering process

2. Scenario b separates the analysis and design. The pri-
mary agent could have more information about the
project and its cost. However, the design activity is
performed globally, which makes it difficult for the
primary agent to control.

3. Scenario c is similar to the partially globalized soft-
ware development process shown in Figure 5. Be-
cause the reengineering and unit testing process can
be standardized, it makes the primary agent easy to
monitor the implementation quality. Paasivaara and
Lassenius [35] claim that iterative and incremental
development process seems to be viable approach in
global software development.

Summarizing the previous discussions, we propose to use
scenario c in Fig. 7 as the global reengineering process.

3.4 Discussions

The proposed global software development, continuous
evolution, and reengineering processes could reduce vari-
ous risks in fully global software process. Some of these
benefits are discussed below.

• For a long-lived software product, documentation is
important for continuous maintenance, evolution, and
restructuring. However, a major issue in global soft-
ware development is the difficulty of enforcing docu-
mentation standard. In our proposed partially-global
software processes, this risk could be largely reduced,
because we only promote the globalization of imple-
mentation phase, which only involves the documen-
tation of source code. Nowadays, the integrated de-
velopment environment supports the automatic docu-
mentation, such as Javadoc [34] and VSdocman [35],
which make the standardization easier to enforce.

• Another threat to the primary agent is that global soft-
ware process (outsourcing) could result in the trans-
ferring of expertise to secondary agent companies,
which eliminates the first agent’s unique ability to de-
velop competitive products. In other words, global-
ization might be beneficial in the short term, but it
may be harmful in the long term [36]. Our proposed
partially-global software process can reduce this risk
through only outsourcing regular software compo-
nents while keeping the development of key compo-
nents, which involve proprietary data and algorithms,
locally by the primary agent.

• Fully globalized software process might cause the
primary agent’s loss of control over future programs
[19], if the major decisions about the software prod-
uct are completely made by the secondary agent. Our
partially globalized process can reduce this risk by al-
lowing the primary agent to maintain the control of
the management and design of the product.

4 NOT UNIQUE SOLUTIONS
In Section 3, we have proposed partially globalized

processes for software development, continuous evolution,
and restructuring. We restate here that the proposals are
not unique solutions to global software development. In
practice, the risks and benefits should be balanced in ap-
plying these processes. It is absolutely acceptable to alter
these processes. For example, if the design could be com-
ponentized and the quality could be controlled, it makes
sense to outsource these activities. Figure 8 through Fig.
10 illustrate flexible versions of partially global software
processes, in which a dashed rectangle represents an op-
tional composition. For example, in Fig. 8, a localized
implementation and testing of a component is optional; it
is only compulsory for key components or core assets.

96 AUTOMATIKA 51(2010) 1, 89–98



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

5 CONCLUSIONS

To be successful in the global market, a company should
manage the risks of global software development, and use
the positive aspects as input to shape the development pro-
cess in detail and the culture in general [18]. This pa-
per observed and discussed the risks/benefits of global
software development. We proposed partially globalized
processes for software development, continuous evolution,
and reengineering. These processes can be followed to bal-
ance the risks and benefits of global software development.
Our principles of partially globalized software process are
summarized below.

• We encourage outsourcing of implementation and
discourage outsourcing of design;

• We encourage outsourcing of software components
and discourage outsourcing of the entire product;

• We encourage global software development and dis-
courage global software contract;

• We encourage long-term employment relation and
discourage short-term contract;

• We encourage standardization of global software de-
velopment process and discourage using different
standards;

• We encourage maintaining control and visibility to
the whole project and discourage giving full control
to the secondary agent.

ACKNOWLEDGEMENT

We would like to thank Editor-in-Chief and referees for
their valuable comments to improve the quality of this pa-
per. We would also like to thank Dr. Ceylan Ertung of
Academic Writing and Advisory Center (AWAC) – Atilim
University for nicely editing the manuscript.

REFERENCES
[1] P. Abrahamsson, J. Warsta, M. T. Siponen, and

J. Ronkainen, “New directions on agile methods: a com-
parative analysis,” in Proceedings of the 25th International

Conference on Software Engineering, pp. 244–254, 2003.

[2] A. Barcus and G. Montibeller, “Supporting the allocation of
software development work in distributed teams with multi-
criteria decision analysis,” Omega, vol. 36, pp. 464–475,
2008.

[3] J. D. Herbsleb and D. Moitra, “Guest editors’ introduc-
tion: global software development,” IEEE Software, vol. 18,
no. 2, pp. 16–20, 2001.

[4] M. Bittner, “Global product development seen as a boon for
product lifecycle management vendors,” Technology Evalu-

ation, 2005.

[5] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “An em-
pirical study on global software development: offshore in-
sourcing of IT projects,” in Proceedings of the 3rd Interna-

tional Workshop on Global Software Development, (Edin-
burgh, Scotland), pp. 53–58, May 2004.

[6] B. Boehm and R. Turner, Balancing Agility and Discipline

– A Guide for the Perplexed. Addison-Wesley Professional,
2004.

[7] K. Braithwaite and T. Joyce, “XP expanded: distributed
extreme programming,” in Proceedings of the 6th Interna-

tional Conference on eXtreme programming and agile pro-

cesses in Software Engineering, pp. 180–188, 2005.

[8] R. Prikladnicki, J. L. N. Audy, and R. Evaristo, “A reference
model for global software development: Findings from a
case study,” in Proceedings of the 2006 IEEE International

Conference on Global Software Engineering, 2006.

[9] S. Cherry and P. N. Robillard, “Communication problems in
global software development: spotlight on a new field of in-
vestigation,” in Proceedings of the 3rd International Work-

shop on Global Software Development, (Edinburgh, Scot-
land), pp. 48–52, May 2004.

[10] D. Damian, “Global software development: growing oppor-
tunities, ongoing challenges,” Software Process: Improve-

ment and Practice, vol. 8, no. 4, pp. 179–182, 2003.

[11] J. D. Herbsleb and A. Mockus, “An empirical study of
speed and communication in globally-distributed software
development,” IEEE Transactions on Software Engineer-

ing, vol. 29, no. 6, pp. 481–494, 2003.

[12] F. Lanubile, D. Damian, and H. L. Oppenheimer, “Global
software development: technical, organizational, and social
challenges,” ACM SIGSOFT Software Engineering Notes,
vol. 28, no. 6, pp. 2–2, 2003.

[13] K. R. Al-asmari and L. Yu, “Experiences in distributed soft-
ware development with Wiki,” in Proceedings of 2006 In-

ternational Conference on Software Engineering Research

and Practice, (Las Vegas, Nevada), pp. 389–393, June
2006.

[14] K. R. Al-asmari, R. P. Batzinger, and L. Yu, “Experience
distributed and centralized software development in ipdns
project,” in Proceedings of 2007 International Conference

on Software Engineering Research and Practice, (Las Ve-
gas, Nevada), pp. 46–51, June 2007.

[15] E. Carmel and R. Agarwal, “Tactical approaches for allevi-
ating distance in global software development,” IEEE Soft-

ware, vol. 18, no. 2, pp. 22–29, 2001.

[16] P. Karecki, “Managing global software development,” CSC

World, pp. 18–21, July–September 2007.

[17] J. Lipnack and J. Stamps, Virtual Teams: Reaching Across

Space, Time, and Organizations with Technology. John Wi-
ley & Sons, 2000.

[18] C. Ebert and P. D. Neve, “Surviving global software devel-
opment,” IEEE Software, pp. 62–69, March–April 2001.

AUTOMATIKA 51(2010) 1, 89–98 97



Risk Analysis of Global Software Development and Proposed Solutions L. Yu, A. Mishra

[19] B. A. Aubert, S. Dussault, M. Patry, and S. Rivard, “Man-
aging the risk of IT outsourcing,” in Proceedings of the

32nd Annual Hawaii International Conference on System

Sciences, vol. 7, 1999.

[20] R. Prikladnicki and M. H. Yamaguti, “Risk management in
global software development,” in Proceedings of the 3rd

International Workshop on Global Software Development,
(Edinburgh, Scotland), pp. 18–20, 2004.

[21] J. Ralyte, X. Lamielle, N. Arni-Bloch, and M. Leonard, “A
framework for supporting management in distributed infor-
mation systems development,” in Proceedings of the 2008

IEEE Conference on Research Challenges in Information

Science, 2008.

[22] D. Mishra and A. Mishra, “Distributed information system
development: review of some management issues,” Lecture

Notes in Computer Science, vol. 5872, pp. 282–291, 2009.

[23] D. Mishra and A.Mishra, “A review of non-technical issues
in global software development,” International Journal of

Computer Applications in Technology, 2010. In press.

[24] H. Mungenast, “How viruses get on digital photo frames.”
www.digital-photo-framemarket.info/articles/
virus_on_digital_photo_frame_china_a_security_threat.htm,
accessed on the 12th January, 2010.

[25] R. Sangwan, C. Neill, M. Bass, and Z. Houda, “Integrating
a software architecture-centric method into object-oriented
analysis and design,” The Journal of Systems and Software,
vol. 81, pp. 727–746, 2008.

[26] L. Pilatti and J. Audy, “Global software development
offshore insourcing organization characteristics: Lesson
learned from a case study,” in Proceedings of the 2006 IEEE

International Conference on Global Software Engineering,
2006.

[27] P. Kulik, “A practical approach to software metrics,” IT Pro-

fessional, vol. 2, no. 1, pp. 38–42, 2000.

[28] M. Cataldo, M. Bass, J. Herbsleb, and L. Bass, “On coor-
dination mechanisms in global software development,” in
Proceedings of the 2007 IEEE International Conference on

Global Software Engineering, 2007.

[29] R. Ramnath, “Global software development for the enter-
prise,” in Proceedings of the 30th Annual International

Computer Software and Applications Conference, 2006.

[30] M. Bass and D. Paulish, “Global software development pro-
cess research at siemens,” in Proceeedings of the 3rd Inter-

national Workshop on Global Software Development, (Ed-
inburgh, Scotland), May 2004.

[31] Z. Yan, “Efficient maintenance support in offshore soft-
ware development: a case study on a global ecommerce
project,” in Proceeedings of the 3rd International Workshop

on Global Software Development, (Edinburgh, Scotland),
May 2004.

[32] C. J. Meadows, “Globalizing software development,” Jour-

nal of Global Information Management, vol. 4, no. 1, pp. 5–
14, 1996.

[33] J. Ralyte, X. Lamielle, N. Arni-Bloch, and M. Leonard,
“Distributed information system development: A frame-
work for understanding and managing,” International Jour-

nal of Computer Science and Applications, vol. 5, no. 3b,
pp. 1–24, 2008.

[34] http://java.sun.com/j2se/javadoc/.

[35] http://www.helixoft.com/vsdocman/overview.html.

[36] S. McConnell, Rapid Development: Taming Wild Software

Schedules. Redmond, WA: Microsoft Press, 1996.

Liguo Yu received the Ph.D. degree in Com-
puter Science from Vanderbilt University. He
is an assistant professor of Computer and Infor-
mation Sciences Department at Indiana Univer-
sity South Bend. Before joining IUSB, he was a
visiting assistant professor at Tennessee Techno-
logical University. His research concentrates on
software coupling, software maintenance, soft-
ware reuse, software testing, software manage-

ment, and open-source software development.

Alok Mishra is an Associate Professor of Com-
puter and Software Engineering at Atilim Uni-
versity, Ankara, Turkey. His areas of interest
and research are software engineering, informa-
tion system, information and knowledge manage-
ment and object oriented analysis and design. He
has published articles, book chapters and book-
reviews related to software engineering and in-
formation system in refereed journals, books and
conferences. He has received excellence in on-
line education award by U21Global Singapore.

He had also served as chief examiner computer science of the Interna-
tional Baccalaureate (IB) organisation. He is recipient of various scholar-
ships including national merit scholarship and department of information
technology scholarship of Government of India.

AUTHORS’ ADDRESSES
Asst. Prof. Liguo Yu, Ph.D.
Computer Science and Informatics,
Indiana University South Bend,
South Bend, IN, USA,
email: ligyu@iusb.edu
Assoc. Prof. Alok Mishra, Ph.D.
Department of Computer and Software Engineering,
Atilim University,
Incek, 06836, Ankara, Turkey,
email: alok@atilim.edu.tr

Received: 2009-08-25
Accepted: 2010-01-06

98 AUTOMATIKA 51(2010) 1, 89–98


