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Abstract. Using the notion of k-proper family we prove general
results on the almost approximate stability of the polynomial functional
equation. As one of the corollaries we obtain the generalization of the
Theorem of R. Ger (cf. [4]):
Theorem Let G be a uniquely n! divisible commutative semigroup and let

I be a translation invariant proper ideal in G such that 1
i
U ∈ I for every

U ∈ I, i = 1, . . . , n. Let E be a Banach space.

Then there for every ε > 0 and every f : G → E satisfying

‖∆nf(x, h)‖ ≤ ε for Ω(I)-a.a. (x, h) ∈ G × G

there exists a unique up to a constant function polynomial p : G → E of

order n − 1 such that

‖f(x) − p(x)‖ ≤ 2(2n − 1)ε for I-a.a. x ∈ G.

1. Introduction

Due to their importance polynomials have for a long time attracted math-
ematical attention. When one considers the stability of polynomials, which
is the aim of the present paper, one has to mention the results of M. Albert
and J. Baker who proved in [1] that the polynomial equation is stable in the
Hyers-Ulam sense and that of R. Ger from [4] who proved that if a given
function satisfies a polynomial equation almost everywhere then it is equal to
a certain polynomial almost everywhere.

Using the notion of a k-proper family which we have introduced in [9]
in Section 2 we join and generalize the just mentioned results of R. Ger and
M. Albert, J. Baker and obtain the so called almost approximate stability
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of the polynomial functional equation. In other words it means that if a
given function almost everywhere satisfies with certain small bounded from
above error the polynomial functional equation then there exists a polynomial
function which approximates the given one almost everywhere.

In Section 3 we obtain an analogue of results from [10] for polynomials.
We prove that if the n-th difference of a given function is integrable then it
is in fact near to a polynomial.

2. Basic definitions

Throughout this paper G will denote commutative semigroup and H will
denote abelian group. For functions f : G → H we define the zero difference
of f by the formula

∆0f(x, h) := f(x) for x, h ∈ G.

For n ∈ N we define inductively the n-th difference of f

∆nf(x, h) := ∆n−1f(x+ h, h) − ∆n−1f(x, h).

One can easily check by induction that for n ∈ N

(2.1) ∆nf(x, h) =

n∑

j=0

(−1)n−j
(

n
j

)
f(x+ jh) for x, h ∈ G.

or equivalently that

(2.2) f(x) = (−1)n∆nf(x, h) −
n∑

j=1

(−1)j
(

n
j

)
f(x+ jh) for x, h ∈ G.

Definition 1. We say that f is a polynomial function of order n− 1 if

∆nf(x, h) = 0 for x, h ∈ G.

It is well-known that if f : R → R is a continuous polynomial function
(in the above sense) of degree n then it is a common polynomial, that is there
exist a0, . . . an such that f(x) =

∑n
i=0 anx

n. Thus we see that the above
definition generalizes the idea of polynomials for commutative groups.

Let I be a family of subsets of G. I is a translation invariant family iff
I is proper and

−a+A := {x ∈ G | a+ x ∈ A} ∈ I for a ∈ G,A ∈ I.
We say that family I is proper if G 6∈ I.

Now we explain what we mean by small sets.

Definition 2. For a family I of subsets of G and k ∈ N we define

Ik := {A1 ∪ . . . ∪Ak | A1, . . . , Ak ∈ I}.
We say that I is k-proper iff Ik is proper.
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If I is a k-proper translation invariant family then for the shortness of
notation we write that I is a k-p.t.i. family.

Clearly a family I in G is proper if it is 1-proper. We write that a given
condition is satisfied for I-almost all (shortly I-a.a.) x ∈ G if there exists
U ∈ I such that this condition holds for x ∈ G \ U . For Q ∈ G ×G, x ∈ G
we put Q[x] := {y ∈ G | (x, y) ∈ Q}. For U ∈ I we define

Ω(U, I) := {Q ⊂ G×G | Q[x] ∈ I for x ∈ G \ U},

Ω(I) :=
⋃

U∈I
Ω(U, I).

Ω(I) is a product of the family I on G×G. One can easily observe that if I
is k-proper then also Ω(I) is a k-proper family in G×G.

3. Almost approximately polynomial functions

For B ⊂ H and k ∈ N we define

k •B := {x1 + . . .+ xk | x1, . . . , xk ∈ B}.
The following Theorem is a generalization of Theorems 1 and 2 from [4].
However, what shows the advantage of the notion of a k-proper family over
the ideal, is that although we use nearly exactly the same idea as that of R.
Ger in [4], making use of k-proper families we can obtain stability.

Theorem 1. Let n ∈ N, and let G be a uniquely n! divisible commutative
semigroup and let H be abelian group. We assume that I is a (n2 + n)-p.t.i.
family in G such that

1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

Let B ⊂ H, B = −B. Let U ∈ I and let f : G→ H be such that

(3.3) ∆nf(x, h) ∈ B for Ω(U, I)-a.a. (x, h) ∈ G×G.

Then there exists a function p : G → H such that

(3.4) f(x) = p(x) for x ∈ G \ U
and

(3.5) ∆np(x, y) ∈ (22n − 1) •B for x, y ∈ G.

Moreover, for every functions p0, p1 satisfying (3.4) and (3.5)

(3.6) p0(x) − p1(x) ∈ 2(22n − 1) •B for x ∈ G.

Proof. By Q ∈ Ω(U, I) we denote the set such that

(3.7) ∆nf(x, h) ∈ B for (x, h) ∈ (G×G) \Q.
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If a, b ∈ H , a − b ∈ k • B then we write a
k≈ b. As B = −B, a

k≈ b iff b
k≈ a.

One can easily notice that if a
k≈ b and b

l≈ c then a
k+l≈ c. Also if a

k≈ b and

c
l≈ d then a+ b

k+l≈ c+ d.
To each x ∈ G we assign a set Ax ∈ In by the formula

Ax :=

n⋃

i=1

1

i
(−x+ U).

If G does not contain neutral element then byG∪{0} we denote the semigroup
G with added neutral element. We fix a function φ : G → G ∪ {0} satisfying

(a) φ(x) = 0 for x ∈ G \ U ,
(b) φ(x) ∈ G \Ax for x ∈ U .

Then

x+ iφ(x) ∈ G \ U for i = 1, . . . , n.

We define

(3.8) p(x) :=

n∑

i=1

(−1)i−1
(

n
i

)
f(x+ iφ(x)).

It is obvious that f(x) = p(x) for x ∈ G \ U , so p satisfies (3.4).
In order to prove that p satisfies (3.5) we first show that

(3.9) p(x)
2n−1≈

n∑

k=1

(−1)k−1
(

n
k

)
f(x+ kh) for x ∈ G, h ∈ G \Ax.

In fact, let us fix arbitrarily an x ∈ G and h ∈ G \ Ax. Then one can easily
notice that the sets Q[x+iφ(x)] and Q[x+kh] are elements of I for i, k = 1, . . . , n.
Then there exists

ψh ∈ G \ (
n⋃

k=1

1

k
(−φ(x) +Q[x+kh]) ∪

n⋃

i=1

1

i
(−h+Q[x+iφ(x)])) ∈ I2n,

as I2n ⊂ In2+n which is proper by assumptions. Thus we have

(3.10) x+ kh ∈ G \ U, φ(x) + kψh ∈ G \Q[x+kh], h+ iψh ∈ G \Q[x+iφ(x)]

and so, in particular

(3.11) (x+ kh, φ(x) + kψh) ∈ (G×G) \Q for k = 1, . . . , n.

Now let us note that for an arbitrary i, 1 ≤ i ≤ n, and for every hi ∈
G \Q[x+iφ(x)] by (2.1) and (3.3)

f(x+ iφ(x))
1≈

n∑

k=1

(−1)k−1
(

n
k

)
f(x+ iφ(x) + khi).
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In particular, in virtue of (3.10), we may take hi = h+ iψh and thus we can
write

(3.12)

f(x+ iφ(x))
1≈

n∑

k=1

(−1)k−1
(

n
k

)
f(x+ iφ(x) + k(h+ iψh))

=

n∑

k=1

(−1)k−1
(

n
k

)
f(x+ kh+ i(φ(x) + kψh))

Finally, (3.8) and (3.12) give

p(x)
2n−1≈

n∑

i=1

(−1)i−1
(

n
i

) n∑

k=1

(−1)k−1
(

n
k

)
f(x+ kh+ i(φ(x) + kψh))

=

n∑

k=1

(−1)k−1
(

n
k

) n∑

i=1

(−1)i−1
(

n
i

)
f(x+ kh+ i(φ(x) + kψh)),

whence (3.9) results by (2.1), (3.11) and (3.3).
Now we will prove that p satisfies (3.5). Let us fix arbitrary u, v ∈ G. By

(3.9) we can write

(3.13) p(u+ jv)
2n−1≈

n∑

k=1

(−1)k−1
(

n
k

)
f(u+ jv + hj),

for hj ∈ G \Au+jv , j = 0, 1, . . . , n.

Let us take a h ∈ G \Au = G \
n⋃

k=1

1
k (−u+U) ∈ In, and choose ξ(h) ∈ G

such that

(3.14)
h+ jξ(h) ∈ G \Au+jv for j = 0, 1, . . . , n,

v + kξ(h) ∈ G \Q[u+kh] for k = 1, 2, . . . , n.

Such a choice is always possible, because

n⋃

j=1

1

j
(−h+Au+jv) ∪

n⋃

k=1

1

k
(Q−v+[u+kh]) ∈ In2+n,

and by the assunptions I is (n2 + n)-proper, so In2+n is a proper family.
Since h+ jξ(h) ∈ G \Au+jv , we obtain from (3.13) that

(3.15)

p(u+ jv)
2n−1≈

n∑

k=1

(−1)k−1
(

n
k

)
f(u+ jv + k(h+ jξ(h)))

=
n∑

k=1

(−1)k−1
(

n
k

)
f(u+ kh+ j(v + kξ(h)))

for j = 0, 1, . . . , n.
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Finally, from (2.1) and (3.15) we have

∆np(u, v)

=
n∑

j=0

(−1)n−j
(

n
j

)
p(u+ jv)

2n·(2n−1)≈
n∑

j=0

(−1)j−1
(

n
j

) n∑

k=1

(−1)k−1
(

n
k

)
f(u+ kh+ j(v + kξ(h)))

=

n∑

k=1

(−1)k−1
(

n
k

) n∑

j=0

(−1)j−1
(

n
j

)
f(u+ kh+ j(v + kξ(h)))

2n−1≈ 0

in view of the fact that (u+ kh, v+ kξ(h)) ∈ (G×G) \Q for k = 1, . . . , n, by
(3.14). Thus p satisfies (3.5).

In order to prove (3.6) let p0, p1 : G→ H be two functions satisfying (3.4)
and (3.5). Let x ∈ G be arbitrary. We have, by (2.2), for every h

p0(x)
22n−1≈

n∑

i=1

(−1)i−1
(

n
i

)
p0(x+ ih),

p1(x)
22n−1≈

n∑

i=1

(−1)i−1
(

n
i

)
p1(x+ ih).

Let h ∈ Ax be arbitrary. Then p0(x+ ih) = p1(x+ ih) for i = 1, 2, . . . , n, and

consequently p0(x)
2(22n−1)≈ p1(x), which makes the proof complete.

Now we show a generalization of Theorem 1 from [4] by stating B = {0}
in Theorem 1.

Corollary 1. Let n ∈ N, and let G be a uniquely n! divisible commuta-
tive semigroup and let H be abelian group. We assume that I is a (n2 + n)-
p.t.i. family in G such that

1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

Let U ∈ I and let f : G → H be such that

(3.16) ∆nf(x, h) = 0 for Ω(U, I)-a.a. (x, h) ∈ G×G.

Then there exists a unique polynomial p : G→ H of degree n− 1 such that

(3.17) f(x) = p(x) for x ∈ G \ U
Now we formulate a generalization of Theorem 3 from [4] (similair results

for the Cauchy equation were earlier obtained by S. Hartman in [6] and N. G.
de Bruijn in [2]). We skip the proof as it is an exact repetition of the proof
of Theorem 3 from [4].
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However, we were not able to obtain the same generality as in Theorem 1
– we assume also that G is a group and I is invariant with respect to invarsion.
It seems interesting whether this “additional” assumptions are essential (to
our opinion it is really the case).

Corollary 2. Let I be a (n2 + n)-p.t.i. family in a group G, such that

(3.18)
1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

We assume additionally that −I ∈ I for I ∈ I.
Let f : G→ H and let S ∈ I be such that

∆nf(x, y) = 0 for x, h ∈ G \ S.
Then f is a polynomial function of order n− 1.

Let B ⊂ H be such that B = −B. We say that the polynomial equation
of order n− 1 is B-stable for functions from G into H if there exists KB ∈ N
such that for every function F : G→ H satisfying

∆nF (x, y) ∈ B for (x, y) ∈ G×G

there exists a polynomial function p : G→ E of order n− 1 with

F (x) − p(x) ∈ KB •B for x ∈ G.

Proposition 1. Let n ∈ N, let G be a uniquely n! divisible commutative
semigroup, let H be abelian group and let B ⊂ H. We assume that B = −B
and that the polynomial equation is (22n − 1) •B-stable with constant K.

Let I be a (n2 + n)-p.t.i. family in G, and let U ∈ I. Then for every
function f : G→ H satisfying

∆nf(x, y) ∈ B for Ω(U, I)-a.a. (x, y) ∈ G×G.

there exists a polynomial function p : G→ H such that

(3.19) f(x) − p(x) ∈ (22n − 1)K •B for x ∈ G \ U.
Moreover, for every polynomial functions p0, p1 satisfying (3.19)

(3.20) p0(x) − p1(x) ∈ 2(2n − 1)(22n − 1)K •B for x ∈ G

Proof. By Theorem 1 we obtain that there exists a function P : G → H
satisfying (3.4), (3.5). As the polynomial equation is (22n−1)•B-stable (3.5)
implies that there exists a polynomial p of order n− 1 such that

P (x) − p(x) ∈ (22n − 1)K •B for x ∈ G.

By (3.4) we obtain that

P (x) = f(x) for x ∈ G \ U.
By joining the two above inequalities we obtain (3.19).
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We show (3.20). Let p0, p1 be two polynomials satisfying (3.19). Take an
x ∈ G and an h such that x + ih 6∈ U for i = 1, 2, . . . , n, which is possible,
since

n⋃

i=1

1

i
(−x+ U) ∈ In.

Then

p0(x+ ih)
K(22n−1)≈ f(x+ ih)

K(22n−1)≈ p1(x+ ih) for i = 1, . . . , n,

so by (2.2)

p0(x) =

n∑

i=1

(−1)i−1
(

n
i

)
p0(x+ ih)

(2n−1)·2K(22n−1)≈
n∑

i=1

(−1)i−1
(

n
i

)
p1(x+ ih) = p1(x).

The following result is a corollary of Theorem 4 from [1].

Theorem A-B Let G be uniquely n! divisible commutative semigroup, let E
be a Banach space, let ε ≥ 0 and let f : G→ E be such that

‖∆nf(x, y)‖ ≤ ε for x, y ∈ G.

Then there exists a unique up to a constant function polynomial p : G → E
of order n− 1 such that

‖f(x) − p(x)‖ ≤ 2ε for x ∈ G.

Now we are able to prove the almost approximate stability of polynomial
functional equation.

Theorem 2. Let G be uniquely n! divisible commutative semigroup, let
I be a (n2 + n)-p.t.i. family in G such that

1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

Let E be a Banach space.
Then for every ε > 0, U ∈ I and every f : G→ E satisfying

‖∆nf(x, y)‖ ≤ ε for Ω(U, I)-a.a. (x, y) ∈ G×G

there exists a unique up to a constant function polynomial p : G→ E of order
(n− 1) such that

‖f(x) − a(x)‖ ≤ 2(22n − 1)ε for x ∈ G \ U.
Proof. We put B = B(0, ε), a ball with the center at zero and radius ε

in E. Then the assertion of the Theorem follows immediately from Theorem
A-B and Proposition 1.
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4. Generalized Stability

If L is a set of functions from G→ H then by k•L we denote

k︷ ︸︸ ︷
L + . . .+ L.

We define the translation by a ∈ G by the formula

Ta(x) := a+ x for x ∈ G.

We say that L is translation invariant if f ◦ Ta ∈ L for every a ∈ G, f ∈ L.
We also define

Mi(x) := ix for i = 1, . . . , n, x ∈ G.

Proposition 2. Let G be uniquely n! divisible commutative semigroup,
and let I be a p.t.i. family in G such that

1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

Let B ⊂ H be such that B = −B.
Let L be a translation invariant set of functions from G into H such that

L = −L. We assume additionaly that if a constant function c(x) = c belongs
to (2n+1 − 1) • L then c ∈ B, and that

f ◦Mi ∈ L for f ∈ L, i = 1, . . . , n.

Let I be a p.t.i. family in G and let U ∈ I. We assume that f : G → H
is a function such that there exists V ⊂ G, nV ∈ I with

(4.21)
∆nf(x, ·) ∈ L for x ∈ G \ U,
∆nf(·, h) ∈ L for h ∈ G \ V.

Then

∆nf(x, h) ∈ B for Ω(U, I2n−1)-a.a. (x, h) ∈ G×G.

Proof. The main part of the proof consists of some trivial but tedious
manipulations. For arbitrary a, x, h ∈ G we have

n∑

k=0

(
n
k

)
(−1)k∆nf(x+ knh, a+ (n− k)h)

=

n∑

k=0

(
n
k

)
(−1)k

n∑

i=0

(
n
i

)
(−1)if(x+ knh+ (n− i)(a+ (n− k)h))

=
n∑

k=0

n∑

i=0

(
n
i

)(
n
k

)
(−1)i(−1)kf(x+ knh+ (n− i)(a+ (n− k)h))

=

n∑

i=0

(
n
i

)
(−1)i

n∑

k=0

(
n
k

)
(−1)kf(x+ (n− i)(a+ nh) + k(ih))

=

n∑

i=0

(
n
i

)
(−1)i(−1)n∆nf(x+ (n− i)(a+ nh), ih).
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Thus we have obtained that for a, h, x ∈ G,

n∑

k=0

(
n
k

)
(−1)k∆nf(x+ knh, a+ (n− k)h)

=

n∑

i=0

(
n
i

)
(−1)n+i∆nf(x+ (n+ i)(a+ nh), ih),

or equivalently, replacing h by 1
nh, that for a, h, x ∈ G

n∑

k=0

(
n
k

)
(−1)k∆nf(x+ kh, a+ (1 − k

n
)h)

=

n∑

i=0

(
n
k

)
(−1)n+i∆nf(x+ (n− i)(a+ h),

i

n
h).

This means that for a, x, h ∈ G

(4.22)

∆nf(x, h) = (−1)n
n∑

k=0

(
n
k

)
(−1)k∆nf(x+ kh, a+ (1 − k

n
)h)

−
n−1∑

i=0

(
n
i

)
(−1)i∆nf(x+ (n− i)(a+ h),

i

n
h).

Now we are ready to prove the assertion of the Proposition. Suppose that
x, h ∈ G are such that

i

n
h 6∈ V, x+ kh 6∈ U for k = 1, . . . , n, i = 1, . . . , n− 1.

Then by (4.22)

∆nf(x, h) = (−1)n
n∑

k=0

(
n
k

)
(−1)k∆nf(x+ kh, a+ (1 − k

n
)h)

−
n−1∑

i=0

(
n
i

)
(−1)i∆nf(x+ (n− i)h+ (n− i)a, ih)

= (−1)n
n∑

k=0

(
n
k

)
(−1)k∆nf(x+ kh, ·) ◦ T(1− k

n
)h(a)

−
n−1∑

i=0

(
n
i

)
(−1)i∆nf(·, ih) ◦Mn−i ◦ Tx+(n−i)h(a).

Thus we have obtained that ∆nf(x, h) as a function of variable a is an element
of (2n+1 − 1) •L. Trivially ∆nf(x, h) as a function of a is constant, so by the
assumptions we obtain that ∆nf(x, h) ∈ B. This means that

∆nf(x, h) ∈ B for (x, h) ∈ G×G \Q,



ALMOST APPROXIMATELY POLYNOMIAL FUNCTIONS 187

where

Q := (U ×G) ∪
⋃

x∈G\U

(x,

n⋃

i=1

1

i
(nV ) ∪

n−1⋃

k=1

1

k
(−x+ U)).

One can easily notice that Q ∈ Ω(U, I2n−1).

Theorem 3. Let G be uniquely n! divisible commutative semigroup, let
I be a (2n− 1)(n2 + n)-p.t.i. family in G such that

1

i
I ∈ I for i ∈ I, i = 1, . . . , n.

Let H be abelian group and let B ⊂ H be such that B = −B. Let L be a
translation invariant set of functions from G into H such that L = −L and
that f ◦Mi ∈ L for i = 1, . . . , n. We assume additionaly that if a constant
function c(x) = c belongs to (2n+1 − 1) • L then c ∈ B.

Let U ∈ I. Suppose that f : G→ H is a function such that

(4.23)
∆nf(x, ·) ∈ L for x ∈ G \ U,
∆nf(·, h) ∈ L for I-a.a. x ∈ G.

Then there exists a function F : G→ H such that

∆nF (x, y) ∈ (22n − 1) •B for x, y ∈ G

and
f(x) = F (x) for x ∈ G \ U.

Proof. Making use of Proposition 2 with the family (nI) we obtain that

∆nf(x, h) ∈ B for Ω(U, (nI)2n−1)-a.a. (x, h) ∈ G×G.

As G is uniquely n divisible as I is a (2n − 1)(n2 + n)-p.t.i., so is nI, and
therefore (nI)2n−1 is a (n2 + n)-p.t.i. family. Theorem 1 makes the proof
complete.

Let p ∈ [1,∞). For the definition of the Banach space Lp(R
n, E) of p-

integrable functions on Rn with respect to Lebesgue measure λn and values
in a Banach space E we refer the reader to [5].

Corollary 3. Let E be a Banach space, let p ∈ [1,∞) and let f : Rn →
E be a function such that

∆nf ∈ Lp(R
n ×Rn, E).

Then there exists a unique polynomial p : Rn → E of degree n− 1 such that

f(x) = p(x) for λ-a.a. x ∈ Rn

Proof. We put B = {0} and I define as the family of all sets with
measure zero in Rn. The reader can now easily check that all the assumptions
of Theorem 3 are satisfied, so its assertion makes the proof complete.



188 JACEK TABOR

Theorem 4. Suppose that all the assumptions of Theorem 3 hold. We
assume additionally that H is a Banach space and that B = B(0, ε), where
B(0, ε) denotes the ball in H with the center at zero and radius ε.

Then there exists a unique up to a constant function polynomial p of order
n− 1 such that

(4.24) ‖f(x) − p(x)‖ ≤ 2(22n − 1)ε for x ∈ G \ U.

Proof. Making use of Theorem 3 we obtain that there exists a function
F : G→ H such that

‖∆nF (x, y)‖ ≤ (22n − 1)ε for x, y ∈ G.

and that

f(x) = F (x) for x ∈ G \ U.
Now making use of Theorem A-B we obtain the existence of a polynomial
p : G→ H such that

‖p(x) − F (x)‖ ≤ 2(22n − 1)ε for x ∈ G,

which implies that

‖p(x) − f(x)‖ ≤ 2(22n − 1)ε for x ∈ G \U.
Now suppose that there are two polynomials p0, p1 satisfying (4.24). Then

p0, p1 satisfy (3.19), so by (3.20) we obtain that

‖p0(x) − p1(x)‖ ≤ 2(2n − 1) · 2(22n − 1)ε for x ∈ G,

which clearly implies that p0 − p1 is a constant function.

The following result shows that Theorem 4 enables us to ”join” the clas-
sical almost approximate type of error with integral and still obtain almost
approximate stability. Roughly speaking the reason for this is that if the n-th
difference of a given function belongs to the space Lp then in fact it enforces
the function to be almost everywhere equal to some polynomial (see Corollary
3).

However, first we have to introduce some notation. Let E be a Banach
space and let K be a vector space of functions from G to E. Let U ∈ I. In
analogy to the definition Ω(I) we define

ΩI(K) := {F : G×G→ E | F (x, ·) ∈ K for I-a.a. x ∈ G},
For f : G→ E we put

‖f‖K,sup := inf{‖f − fK‖sup | fK ∈ K}.

Theorem 5. Let G be uniquely n! divisible commutative semigroup. Let
E be a Banach space and let K be a translation invariant vector space of
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functions from G into E such that K = −K and that f ◦Mi ∈ K for f ∈ K,
i = 1, . . . , n. We additionally assume that

inf
x∈G

‖f(x)‖ = 0 for f ∈ K.

Let I be a family in G such that

1

i
I ∈ I for I ∈ I, i = 1, . . . , n.

We also assume that (nI) is a (2n− 1)(n2 + n)-p.t.i. family.
Let ε > 0 and f : G → E be such that

‖∆nf‖ΩU (K),sup ≤ ε

and that

‖∆nf(·, h)‖K,sup ≤ ε for h ∈ G \ U.
Then there exists a unique up to a constant function polynomial p : G → E
of order n− 1 such that

‖f(x) − p(x)‖ ≤ 2(22n − 1)(2n+1 − 1)ε for x ∈ G \ U.
Proof. We put

L := {f : G→ E | ‖f‖K,sup ≤ ε}.
One can easily notice that L is a translation invariant set such that L = −L.
We show that if a constant function c : G → E belongs to (2n+1 − 1) •L then
‖c‖ ≤ (2n+1 − 1)ε.

Suppose, for an indirect proof, that there exists a constant function c ∈
(2n+1 − 1) • L such that ‖c‖ > (2n+1 − 1)ε. By the definition of ‖ ‖K,sup and
the fact that c ∈ (2n+1 − 1) • L, ‖c‖K,sup ≤ (2n+1 − 1)ε there exists cK ∈ K
such that

‖c− cK‖sup ≤ ‖c‖ + (2n+1 − 1)ε

2
.

As cK ∈ K, there exists x ∈ G such that

‖cK(x)‖ < ‖c‖ − (2n+1 − 1)ε

2
.

Joining the two above inequalities and making use of the fact that c = (c −
cK) + cK we obtain

‖c‖ = ‖c(x)‖ = ‖c0(x) + c1(x)‖ ≤ ‖c0(x)‖ + ‖c1(x)‖
< ‖c‖+(2n+1−1)ε

2 + ‖c‖−(2n+1−1)ε
2 = ‖c‖,

which yields a contradiction.
Theorem 4 completes the proof.
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Corollary 4. Let E be a Banach space and let p ∈ [1,∞). Then for
every f : Rn → E satisfying

ε := ‖∆nf‖Lp(Rn×Rn,E),sup <∞
there exists a unique up to a constant function polynomial p : Rn → E of
degree n− 1 such that

‖f(x) − p(x)‖ ≤ 2(22n − 1)(2n+1 − 1)ε for λn-a.a. x ∈ G.

Proof. We put

I := {A ⊂ Rn | λ(A) = 0},
K := Lp(R

n, E).

By the Fubini Theorem we obtain that

Lp(R
n ×Rn, E) ⊂ ΩI(Lp(R

n, E).

This explains why

‖∆nf‖ΩI(Lp(Rn,E)),sup ≤ ‖∆nf‖Lp(Rn×Rn,E),sup = ε.

Analogously we obtain that

‖∆nf(·, h)‖Lp(Rn,E),sup ≤ ε for I-a.a. h ∈ G.

Theorem 5 makes the proof complete.

Corollary 5. Let E,F be Banach spaces, let U be a bounded subset of
E.

Let ε ≥ 0. We assume that f : E → F is such that there exists a bounded
V ⊂ E with

lim sup
‖y‖→∞

‖∆nf(x, y)‖ ≤ ε for x ∈ E \ U.

lim sup
‖y‖→∞

‖∆nf(y, h)‖ ≤ ε for h ∈ E \ V.

Then there exists a unique up to a constant function polynomial p : E → F
such that

‖f(x) − p(x)‖ ≤ 2(22n − 1)(2n+1 − 1)ε for x ∈ E \ U.

Proof. We define

I := {W ⊂ E |W is bounded }
K := {g : E → F | lim

‖x‖→∞
‖g(x)‖ = 0}.

Theorem 5 makes the proof complete.
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