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UNIVALENCE CRITERIA FOR INTEGRAL OPERATORS

Dorin Blezu and Radu N. Pascu

Lucian Blaga University and Transilvania University, Romania

Abstract. The aim of this paper is to obtain new univalence cri-
teria for integral operators which were introduced by N.N.Pascu [3, 4] and
S. Moldoveanu [3]. The improvement consist in the fact, that the new hy-
pothesis are more simple that is they do not contain |z|. Of this reason
these can be easily applicated.

1. Introduction

Let A the set of analytic functions defined in the unit disk U normalised
as:

A = {f | f ∈ H(u), f(0) = 0, f ′(0) = 1}
and

S = {f | f ∈ A, and f is univalent}
We hereby remind of two Theorems given by N.N.Pascu and S.Moldoveanu

and N.N.Pascu respectively:

Theorem A. [3] Let f ∈ S, α ∈ C. If |α − 1| ≤ 1
4 then the function

Fα(z) given by

Fα(z) =


α

z∫

0

fα−1(u)du




1/α

is analytic and univalent in U .

Theorem B. [4] Let f ∈ A, α ∈ C, Re α > 0. If
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(1.1)
1 − |z|2Re α

Re α

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (∀) z ∈ U

then for all complex numbers β, Re β ≥ Re α the function

Fβ(z) =


β

z∫

0

uβ−1f ′(u)du




1/β

is analytic and univalent in U .
In the following lemma we consider the Caratheodory inequality which is

based on the Schwarz’s lemma.
Thanks to this Lemma we can give a univalence criterion which does not

contain |z|.

Lemma C. (Caratheodory) Let be g(z) ∈ H(U), g(0) = 0, M > 0.
If Re g(z) < M , z ∈ U then

(1 − |z|)|g(z)| ≤ 2M |z| ∀ z ∈ U

Proof. Let be the function h

h(z) =
g(z)

2M − g(z)

that is h(0) = 0, h(z) ∈ H(u) and |h(z)| ≤ 1 because

|g(z)| ≤ |2M − g(z)|

According to the Schwarz’s lemma we can write

|h(z)| ≤ |z| (∀) z ∈ U

that is

|g(z)| ≤ |z| |2M − g(z)| ≤ |z|(2M + |g(z)|)

hence

(1 − |z|)|g(z)| ≤ 2M |z|

which completes the proof of the Lemma 1. �
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Main results

By means of Lemma C we obtain a set of simple univalence criteria de-
pending on parameter θ using also the well known Becker’s criterion, [1].

Theorem 1. [2] Let be f ∈ A, θ ∈ [0, 2π].
If

Re eiθ zf
′′(z)

f ′(z)
≤ 1

4

then f ∈ S.

Proof. In Lemma 1 we take g(z) = eiθ zf ′′(z)
f ′(z) , M = 1

4 it follows that

(1 − |z|)
∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 2
1

4
|z| =

|z|
2

and hence

(1−|z|2)
∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ = (1+ |z|)(1−|z|)
∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ (1+ |z|) |z|
2

≤ 1, (∀) z ∈ U

According to the Becker’s univalence criterions it follows that f ∈ S.
�

Theorem 2. Let f ∈ A, α ∈ C and |α− 1| ≤ 1
4 , θ ∈ [0, 2π] .

If

Re eiθ zf
′′(z)

f ′(z)
≤ 1

4

then the function

Fα(z) =


α

z∫

0

fα−1(u)du




1/α

is analytic and univalent in U .

Proof. According to Theorem 1, the hypothesis of Theorem 2 implies
the univalence of the function f and using Theorem A we obtain the conclusion
of Theorem 2.�

Theorem 3. Let f ∈ A, α ∈ C, Re α > 0, θ ∈ [0, 2π]
If

(1.2) Re eiθ zf
′′(z)

f ′(z)
≤





Re α

4
for 0 < Re α < 1

1

4
for Re α ≥ 1
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then for all complex numbers β, Re β ≥ Re α the function

Fβ(z) =


β

z∫

0

uβ−1f ′(u)du




1/β

is analytic and univalent in U .

Proof. In Lemma 1 we choose

g(z) = eiθ zf
′′(z)

f ′(z)
, and M =

Re α

4

for 0 < Re α < 1 respectively M = 1
4 for Re α ≥ 1 so that in the hypothesis

(1.2)
a) It is easy to observe that the function h : (0,∞) → R

h(x) =
1− a2x

x
with 0 < a < 1

is a decreasing function.
If Re α ≥ 1, z ∈ U , a = |z| then

1 − |z|2Re α

Re α
≤ 1 − |z|2. (∀) z ∈ U

Using the conclusion of Lemma 1 with M = 1
4 , and a similar calculus

as in Theorem 1 we obtain

(1 − |z|2Re α)

Re α

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ (1 − |z|2)
∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1

b) Now we consider the function q : (0,∞) → R, q(x) = 1−a2x, 0 < a < 1
which is a increasing function. Then for 0 < Re α ≤ 1 we have

1 − |z|2Re α ≤ 1 − |z|2, (∀) z ∈ U

Hence by using the conclusion of Lemma 1 with M = Re α
4 we obtain the

inegality

(1 − |z|2Re α)

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ (1 − |z|2)
∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ Re α

which is (1.1).
Because the condition (1.2) implies inequality (1.1) for all α ∈ C, Re α > 0

from Theorem B, it follows that the conclusion of Theorem 3 is true. �

Remark. The new forms of this hypothesis in the Theorems 1, 2, 3 are
more simple, than others which contain |z|, that implies an additional scale
of applications.
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