n-SHAPE EQUIVALENCE AND TRIADS

Takahisa Miyata
Shizuoka Institute of Science and Technology, Japan

Abstract

This paper concerns the shape theory for triads of spaces which was introduced by the author. More precisely, in the first part, the shape dimension for triads of spaces $\left(X ; X_{0}, X_{1}\right)$ is introduced, and its upper and lower bounds are given in terms of the shape dimensions of X_{0}, $X_{1}, X_{0} \cap X_{1}$ and X. In the second part, a Whitehead type theorem for triads of spaces and a Mayer-Vietoris type theorem concerning n-shape equivalence are obtained.

1. Introduction

Throughout the paper, spaces and maps mean topological spaces and continuous maps, respectively. A triad of spaces $\left(X ; X_{0}, X_{1}\right)$ means a space X and subspaces X_{0} and X_{1} of X such that $X=X_{0} \cup X_{1}$. A map of triads $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ means a map $f: X \rightarrow Y$ such that $f\left(X_{0}\right) \subseteq Y_{0}$ and $f\left(X_{1}\right) \subseteq Y_{1}$. A homotopy of triads means a map of triads $h:\left(X \times I ; X_{0} \times I, X_{1} \times I\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$. Pointed versions of a triad, map and homotopy are also defined in the obvious way. Using this homotopy, the auther defined the shape theory for triads [9] and reproved the Blakers-Massey homotopy excision theorem for shape theory (see also [11]). The purpose of this paper is to investigate properties that concern the shape dimension for triads and n-shape equivalence between triads.

First recall that Günther gave an upper bound of the shape dimension $\operatorname{Sd} X$ of a single space X :

Theorem 1.1 (Günther [2]). Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that X_{0} and X_{1} are closed and $X_{0} \cap X_{1}$ is normally embedded in X. Then we

[^0]have
$$
\operatorname{Sd} X \leq \max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, 1+\operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}
$$

For each triad of spaces $\left(X ; X_{0}, X_{1}\right)$ and $n \geq 0$, the shape dimension $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right)$ is said to be at most n, denoted $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq n$, provided each map $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ into a polyhedral triad factors up to homotopy of triads through a polyhedral triad $\left(Q ; Q_{0}, Q_{1}\right)$ such that $\operatorname{dim} Q \leq$ n. Let $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right)=\min \left\{n \geq 0: \operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq n\right\}$.

As the first result we show that this shape dimension of a triad is close to the upper bound given by Günther:

Theorem A. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of metric spaces such that X_{0} and X_{1} are closed. Then we have

$$
\begin{aligned}
\max \left\{\operatorname{Sd} X, \operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}\right. & \left., \operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\} \leq \operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \\
\leq & \max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, 1+\operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}
\end{aligned}
$$

Let $\left(X ; X_{0}, X_{1}, *\right)$ and $\left(Y ; Y_{0}, Y_{1}, *\right)$ be pointed triads of spaces such that X is normal, X_{0}, X_{1} and Y_{0}, Y_{1} are connected closed subsets of X and Y, respectively, and that $X_{0} \cap X_{1}$ and $Y_{0} \cap Y_{1}$ are connected and normally embedded in X and Y, respectively. Let $\varphi:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ be a shape morphism. Then φ induces the restricted shape morphisms $\left.\varphi\right|_{X}$: $(X, *) \rightarrow(Y, *),\left.\varphi\right|_{X_{0} \cap X_{1}}:\left(X_{0} \cap X_{1}, *\right) \rightarrow\left(Y_{0} \cap Y_{1}, *\right),\left.\varphi\right|_{X_{0}}:\left(X_{0}, *\right) \rightarrow\left(Y_{0}, *\right)$ and $\left.\varphi\right|_{X_{1}}:\left(X_{1}, *\right) \rightarrow\left(Y_{1}, *\right)$. The second result is the following Whitehead type theorem:

Theorem B. Suppose that $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq n-1$ and $\operatorname{Sd}\left(Y ; Y_{0}, Y_{1}\right) \leq n$, where $1 \leq n<\infty$. If a shape morphism $\varphi:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ induces n-shape equivalences $\left.\varphi\right|_{X_{0} \cap X_{1}}:\left(X_{0} \cap X_{1}, *\right) \rightarrow\left(Y_{0} \cap Y_{1}, *\right),\left.\varphi\right|_{X_{0}}:$ $\left(X_{0}, *\right) \rightarrow\left(Y_{0}, *\right)$ and $\left.\varphi\right|_{X_{1}}:\left(X_{1}, *\right) \rightarrow\left(Y_{1}, *\right)$, then φ is an equivalence.

The Whitehead theorem for ordinary shape is well-known, and the most general form can be found in [8, Theorem 7, p. 152].

As the third result we show the following statements of Mayer-Vietoris type concerning n-shape equivalence:

Theorem C. Let $\varphi:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ be a shape morphism, and suppose it induces n-shape equivalences $\left.\varphi\right|_{X_{0} \cap X_{1}}:\left(X_{0} \cap X_{1}, *\right) \rightarrow$ $\left(Y_{0} \cap Y_{1}, *\right),\left.\varphi\right|_{X_{0}}:\left(X_{0}, *\right) \rightarrow\left(Y_{0}, *\right)$ and $\left.\varphi\right|_{X_{1}}:\left(X_{1}, *\right) \rightarrow\left(Y_{1}, *\right)$, where $0 \leq n<\infty$. Then

1. if $n \geq 2$, the induced map
$\varphi_{*}:$ pro $-\pi_{q}\left(X ; X_{0}, X_{1}, *\right) \rightarrow \operatorname{pro}-\pi_{q}\left(Y ; Y_{0}, Y_{1}, *\right)$ is an isomorphism for $2 \leq q \leq n-1$ and an epimorphism for $q=n$; and
2. $\left.\varphi\right|_{X}:(X, *) \rightarrow(Y, *)$ is an n-shape equivalence.

For any functions $f, g: X \rightarrow Y$ between sets and for any covering \mathcal{V} of Y, $(f, g)<\mathcal{V}$ means that f and g are \mathcal{V}-near. For any covering \mathcal{U} of a set X and
for any subset A of X, let $\mathcal{U} \mid A=\{U \cap A: U \in \mathcal{U}\}$ and $\operatorname{St}(A, \mathcal{U})=\cup\{U \in \mathcal{U}$: $U \cap A \neq \emptyset\}$.

The author would like to thank Professor Watanabe at Yamaguchi University for the valuable discussion during his visit to the University in Summer of 1999 .

2. Preliminaries

Shape of triads. Let Top ${ }^{T}$ denote the category of triads of spaces and maps of triads. Recall that a resolution of a triad $\left(X ; X_{0}, X_{1}\right)$ is a morphism

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

in pro- $\mathbf{T o p}^{T}$ with the following two properties [7]:
(R1) Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad, and let \mathcal{V} be an open covering of P. Then every map of triads $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ admits $\lambda \in \Lambda$ and a map of triads $g:\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\left(g p_{\lambda}, f\right)<\mathcal{V}$; and
(R2) Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad. Then for each open covering \mathcal{V} of P there exists an open covering \mathcal{V}^{\prime} of P such that whenever $\lambda \in \Lambda$ and $g, g^{\prime}:\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ are maps of triads such that $\left(g p_{\lambda}, g^{\prime} p_{\lambda}\right)<\mathcal{V}^{\prime}$, then $\left(g p_{\lambda \lambda^{\prime}}, g^{\prime} p_{\lambda \lambda^{\prime}}\right)<\mathcal{V}$ for some $\lambda^{\prime} \geq \lambda$.
\boldsymbol{p} is an $A N R$-resolution (resp., polyhedral resolution) if ($X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}$) are all ANR triads (resp., polyhedral triads). Then we have

Theorem $2.1([7,9])$. Every triad $\left(X ; X_{0}, X_{1}\right)$ of spaces admits

1. an ANR-resolution

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

such that Λ is cofinite and $X_{\lambda}=\operatorname{Int}\left(X_{0 \lambda}\right) \cup \operatorname{Int}\left(X_{1 \lambda}\right)$ for each $\lambda \in \Lambda$; and
2. a polyhedral resolution

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

such that Λ is cofinite.
Theorem 2.2 ([9]). Every resolution of a triad of spaces $\left(X ; X_{0}, X_{1}\right)$ induces an expansion of $\left(X ; X_{0}, X_{1}\right)$.

Let HTop ${ }^{T}$ be the category of triads of spaces and homotopy classes of maps of triads, and let $\mathbf{H P o l}{ }^{T}$ be the full subcategory of $\mathbf{H T o p}{ }^{T}$ whose objects are the triads of spaces which have the homotopy type of a polyhedral triad (equivalently, an ANR triad) (see [9, Theorem 4.5]). Combining Theorems 2.1 and 2.2, we define the shape category $\mathbf{S h}^{T}$ for triads of spaces as the abstract shape category for the pair $\left(\mathbf{H T o p}^{T}, \mathbf{H P o l}^{T}\right)([9, \S 5])$.

Theorem 2.3. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of spaces such that X is normal, X_{0} and X_{1} are closed and $X_{0} \cap X_{1}$ is normally embedded in X. Then for each resolution

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

such that X and $X_{\lambda}, \lambda \in \Lambda$, are normal, the following induced morphisms are resolutions:

$$
\left\{\begin{array}{l}
\left.\boldsymbol{p}\right|_{X}=\left(\left.p_{\lambda}\right|_{X}\right): X \rightarrow \boldsymbol{X} \\
\left.\boldsymbol{p}\right|_{X_{0}}=\left(\left.p_{\lambda}\right|_{X_{0}}\right): X_{0} \rightarrow \boldsymbol{X}_{0} \\
\left.\boldsymbol{p}\right|_{X_{1}}=\left(\left.p_{\lambda}\right|_{X_{1}}\right): X_{1} \rightarrow \boldsymbol{X}_{1} \\
\boldsymbol{p} X_{X_{0} \cap X_{1}}= \\
\quad\left(\left.p_{\lambda}\right|_{X_{0} \cap X_{1}}\right): X_{0} \cap X_{1} \rightarrow \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}=\left(X_{0 \lambda} \cap X_{1 \lambda},\left.p_{\lambda \lambda^{\prime}}\right|_{X_{0 \lambda^{\prime}} \cap X_{1 \lambda^{\prime}}}, \Lambda\right)
\end{array}\right.
$$

Proof. First note that our assumption implies that X_{0} and X_{1} are normally embedded (see [2, 2.7 a)]). By [7, Remark 1 and Theorem 4] the induced morphisms $\left.\boldsymbol{p}\right|_{\left(X, X_{0}\right)},\left.\boldsymbol{p}\right|_{\left(X, X_{1}\right)}$ and $\left.\boldsymbol{p}\right|_{\left(X, X_{0} \cap X_{1}\right)}$ are resolutions of pairs, which implies by [6, Theorem 2] that $\left.\boldsymbol{p}\right|_{X}$ is a resolution and by [6, Theorem 3] that $\left.\boldsymbol{p}\right|_{X_{0}},\left.\boldsymbol{p}\right|_{X_{1}}$ and $\left.\boldsymbol{p}\right|_{X_{0} \cap X_{1}}$ are resolutions.

Let $\mathbf{H T o p} \mathbf{p}_{*}^{T}$ and $\mathbf{H P o l}{ }_{*}^{T}$ denote the pointed versions of the categories $\mathbf{H T o p}^{T}$ and $\mathbf{H P o l}{ }^{T}$, respectively. Analogously, we can define the shape category $\mathbf{S h}_{*}^{T}$ for pointed triads of spaces as the abstract shape category for the pair $\left(\mathbf{H T o p}{ }_{*}^{T}, \mathbf{H} \mathbf{P o l}_{*}^{T}\right)$. The pointed version of Theorem 2.3 also holds, and we have

Lemma 2.4. Every pointed triad of spaces $\left(X ; X_{0}, X_{1}, *\right)$ admits an $\mathbf{H P o l}_{*}^{T}$-expansion $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}, *\right)$ such that $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$ is an $\mathbf{H P o l}{ }^{T}$-expansion.

Proof. This follows from the constructions in [9, Theorems 3.2, 3.6].

\square

ANR triads.

Lemma 2.5. Let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad, let $\left(X ; X_{0}, X_{1}\right)$ be a triad of metric spaces such that X_{0}, X_{1} are closed subsets of X, and let A be a closed subset of X. Then every map of triads $f:\left(A ; A \cap X_{0}, A \cap X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ admits an extension $\tilde{f}:\left(U ; U \cap X_{0}, U \cap X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ for some open neighborhood U of A in X.

Lemma 2.6. Let $\left(P ; P_{0}, P_{1}\right),\left(X ; X_{0}, X_{1}\right)$ and A be as in Lemma 2.5, and suppose that $f, g:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ are maps of triads. If $f|A \simeq g| A$ as maps of triads from $\left(A ; A \cap X_{0}, A \cap X_{1}\right)$ to $\left(P ; P_{0}, P_{1}\right)$, then there exists an open neighborhood V of A in X such that $f|V \simeq g| V$ as maps of triads from $\left(V ; V \cap X_{0}, V \cap X_{1}\right)$ to $\left(P ; P_{0}, P_{1}\right)$.

Lemma 2.7. (Homotopy extension lemma) Let $\left(P ; P_{0}, P_{1}\right),\left(X ; X_{0}, X_{1}\right)$ and $A \subseteq X$ be as in Lemma 2.5, and let $\left(P ; P_{0}, P_{1}\right)$ be an ANR triad. If $f, g:\left(A ; A \cap X_{0}, A \cap X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ are homotopic maps of triads, and if g extends to a map of triads $\tilde{g}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$, then there is an extension $\tilde{f}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ of f such that $\tilde{f} \simeq \tilde{g}$ as maps of triads.

Proof of Lemma 2.5-2.7. These are proved in [9]. But note that the condition that $X=\operatorname{Int}\left(X_{0}\right) \cup \operatorname{Int}\left(X_{1}\right)$ can be dropped from the hypothesis of [9, Lemma 2.3].

Polyhedral triads.

Lemma 2.8 (Homotopy extension lemma for polyhedral triads). Let $\left(P ; P_{0}, P_{1}\right)$ be a polyhedral triad, and let Q be a subpolyhedron of P. Then for any triad of spaces $\left(Y ; Y_{0}, Y_{1}\right)$ any map of triads
$H:\left((P \times 0) \cup(Q \times I) ;\left(P_{0} \times 0\right) \cup\left(\left(P_{0} \cap Q\right) \times I\right),\left(P_{1} \times 0\right) \cup\left(\left(P_{1} \cap Q\right) \times I\right)\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ extends to a map of triads

$$
\tilde{H}:\left(P \times I ; P_{0} \times I, P_{1} \times I\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)
$$

Proof. The same argument as for [8, Theorem 3, p. 291] works for polyhedral triads.

Lemma 2.9 (Cellular approximation theorem for polyhedral triads). For each map of triads $f:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Q ; Q_{0}, Q_{1}\right)$ between polyhedral triads, there exists a map of triads $g:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Q ; Q_{0}, Q_{1}\right)$ such that $g\left(P^{(n)}\right) \subseteq$ $Q^{(n)}$ and $f \simeq g$ as maps of triads. Here for any polyhedron $R, R^{(n)}$ denotes the n-skeleton of R.

Proof. By the cellular approximation theorem, the restricted map $\left.f\right|_{P_{0} \cap P_{1}}: P_{0} \cap P_{1} \rightarrow Q_{0} \cap Q_{1}$ admits a cellular map $g^{\prime}: P_{0} \cap P_{1} \rightarrow Q_{0} \cap Q_{1}$ such that $\left.f\right|_{P_{0} \cap P_{1}} \simeq g^{\prime}$. By Lemma 2.8 (with $Q=P_{0} \cap P_{1}$), g^{\prime} extends to a map of triads $g^{\prime}:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Q ; Q_{0}, Q_{1}\right)$ such that $f \simeq g^{\prime}$ as maps of triads. By the cellular approximation theorem ($[10$, Theorem 17, p. 404]), there exist cellular maps of pairs $g_{0}:\left(P_{0}, P_{0} \cap P_{1}\right) \rightarrow\left(Q_{0}, Q_{0} \cap Q_{1}\right)$ such that $\left.g_{0} \simeq g^{\prime}\right|_{P_{0}}$ rel $\left(P_{0} \cap P_{1}\right)$ and $g_{1}:\left(P_{1}, P_{0} \cap P_{1}\right) \rightarrow\left(Q_{1}, Q_{0} \cap Q_{1}\right)$ such that $\left.g_{1} \simeq g^{\prime}\right|_{P_{1}}$ rel $\left(P_{0} \cap P_{1}\right)$. Since $\left.g_{0}\right|_{P_{0} \cap P_{1}}=\left.g^{\prime}\right|_{P_{0} \cap P_{1}}=\left.g_{1}\right|_{P_{0} \cap P_{1}}, g_{0}$ and g_{1} define a map of triads $g:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Q ; Q_{0}, Q_{1}\right)$ such that $g \simeq g^{\prime}$ as maps of triads.

Lemma 2.10. Let $0 \leq n \leq \infty$, and let $\left(X ; X_{0}, X_{1}, *\right)$ and $\left(Y ; Y_{0}, Y_{1}, *\right)$ be pointed polyhedral triads such that $X_{0}, X_{1}, X_{0} \cap X_{1}, Y_{0}, Y_{1}, Y_{0} \cap Y_{1}$ are connected, and let $f:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ be a map of triads with the following property:
(E) n_{n} The restricted maps $\left.f\right|_{X_{0} \cap X_{1}}:\left(X_{0} \cap X_{1}, *\right) \rightarrow\left(Y_{0} \cap Y_{1}, *\right),\left.f\right|_{X_{0}}:$ $\left(X_{0}, *\right) \rightarrow\left(Y_{0}, *\right)$ and $\left.f\right|_{X_{1}}:\left(X_{1}, *\right) \rightarrow\left(Y_{1}, *\right)$ are n-equivalences.
and for each pointed polyhedral triad $\left(P ; P_{0}, P_{1}, *\right)$ consider the map

$$
\begin{aligned}
f_{*}: \operatorname{HPol}_{*}^{T}\left(\left(P ; P_{0}, P_{1}, *\right),\left(X ; X_{0}, X_{1}, *\right)\right) & \longrightarrow \\
& \longrightarrow \mathbf{H P o l}_{*}^{T}\left(\left(P ; P_{0}, P_{1}, *\right),\left(Y ; Y_{0}, Y_{1}, *\right)\right) .
\end{aligned}
$$

Then if $\operatorname{dim} P \leq n, f_{*}$ is an epimorphism, and if $\operatorname{dim} P \leq n-1, f_{*}$ is a monomorphism.

Proof. This is proved similarly to [10, Theorem 23].
Lemma 2.11. Let $1 \leq n \leq \infty$, let $\left(X ; X_{0}, X_{1}, *\right)$ and $\left(Y ; Y_{0}, Y_{1}, *\right)$ be pointed polyhedral triads such that $X_{0}, X_{1}, X_{0} \cap X_{1}, Y_{0}, Y_{1}, Y_{0} \cap Y_{1}$ are connected, and let $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ be a map of triads with property $(E)_{n}$. Then if $\operatorname{dim} X \leq n-1$ and $\operatorname{dim} Y \leq n$, then $f:\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(Y ; Y_{0}, Y_{1}\right)$ is a homotopy equivalence.

Lemma 2.12. Let $0 \leq n \leq \infty$, let $\left(X ; X_{0}, X_{1}, *\right)$ and $\left(Y ; Y_{0}, Y_{1}, *\right)$ be pointed polyhedral triads such that $X_{0}, X_{1}, X_{0} \cap X_{1}, Y_{0}, Y_{1}, Y_{0} \cap Y_{1}$ are connected, and let $f:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ be a map of triads with property $(E)_{n}$. Then the restricted map $\left.f\right|_{X}:(X, *) \rightarrow(Y, *)$ is an n-equivalence.

Proof. This is essentially proved in [1, 16.24].
Lemma 2.13. Let $2 \leq n \leq \infty$, let $\left(X ; X_{0}, X_{1}, *\right)$ and $\left(Y ; Y_{0}, Y_{1}, *\right)$ be pointed polyhedral triads such that $X_{0}, X_{1}, X_{0} \cap X_{1}, Y_{0}, Y_{1}, Y_{0} \cap Y_{1}$ are connected, and let $f:\left(X ; X_{0}, X_{1}, *\right) \rightarrow\left(Y ; Y_{0}, Y_{1}, *\right)$ be a map of triads with property $(E)_{n}$. Then the induced map $f_{*}: \pi_{q}\left(X ; X_{0}, X_{1}, *\right) \rightarrow \pi_{q}\left(Y ; Y_{0}, Y_{1}, *\right)$ is an isomorphism for $2 \leq q \leq n-1$ and an epimorphism for $q=n$.

Proof. This follows from the homotopy sequences for polyhedral pairs and triads (see [3, p. 160]) and the Five Lemma (see [5, p.201]).

3. Shape dimension for triads of spaces

In this section we obtain fundamental properties of shape dimension and prove Theorem A. First, let us note that the properties analogous to [8, Theorem 2, p. 96] hold:

Proposition 3.1. For each triad of spaces $\left(X ; X_{0}, X_{1}\right)$, the following statements are equivalent:

1. $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq n$;
2. There exists an $\mathbf{H} \mathbf{P o l}^{T}$-expansion

$$
\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)
$$

such that each X_{λ} is a polyhedral triad with $\operatorname{dim} X_{\lambda} \leq n$;
3. For each $\mathbf{H P o l}{ }^{T}$-expansion
$\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$,
each λ admits $\lambda^{\prime} \geq \lambda$ such that $p_{\lambda \lambda^{\prime}}$ factors in $\mathbf{H P o l}^{T}$ through a polyhedral triad $\left(P ; P_{0}, P_{1}\right)$ such that $\operatorname{dim} P \leq n$; and
4. Each map $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ into a polyhedral triad $\left(P ; P_{0}, P_{1}\right)$ factors in $\mathbf{H T o p}^{T}$ through a map of triads $g:\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(P^{(n)} ; P_{0}^{(n)}, P_{1}^{(n)}\right)$ and the inclusion map $i:\left(P^{(n)} ; P_{0}^{(n)}, P_{1}^{(n)}\right) \hookrightarrow$ $\left(P ; P_{0}, P_{1}\right)$.

Proof. Note that Lemma 2.9 is used in 1) $\Rightarrow 4$), and the other cases are similar to the ordinary case.

Shape dimension for pointed triads is similarly defined, and we have
Theorem 3.2. For each triad of spaces $\left(X ; X_{0}, X_{1}\right)$ with a base point *, $\operatorname{Sd}\left(X ; X_{0}, X_{1}, *\right)=\operatorname{Sd}\left(X ; X_{0}, X_{1}\right)$.

Proof. The same argument as in the proof of [8, Theorem 7, p.104] applies to our case, using Lemma 2.8 and the following lemma in appropriate places.

Lemma 3.3. Let $f, g:\left(P ; P_{0}, P_{1}, *\right) \rightarrow\left(Q ; Q_{0}, Q_{1}, *\right)$ be maps of pointed polyhedral triads such that $f \simeq g$ as maps of unpointed triads and $g(P) \subseteq Q^{(n)}$ for some $n \geq 0$. Then there exists a map of pointed triads $h:\left(P ; P_{0}, P_{1}, *\right) \rightarrow$ $\left(Q ; Q_{0}, Q_{1}, *\right)$ such that $f \simeq h$ as maps of pointed triads and $h(P) \subseteq Q^{(n)}$.

Proof. The same argument as in the proof of [8, Lemma 4, p. 104] applies to our case, using Lemmas 2.8 and 2.9.

Before proving Theorem A, we prove
Lemma 3.4. Let $\left(X ; X_{0}, X_{1}\right)$ be a triad of metric spaces such that X_{0} and X_{1} are closed, and let

$$
\left\{\begin{array}{l}
X^{\prime}=\left(X_{0} \times 0\right) \cup\left(\left(X_{0} \cap X_{1}\right) \times I\right) \cup\left(X_{1} \times 1\right) \\
X_{0}^{\prime}=X^{\prime} \cap\left(X_{0} \times[0,2 / 3]\right) \\
X_{1}^{\prime}=X^{\prime} \cap\left(X_{1} \times[1 / 3,1]\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
X^{\prime \prime}=\left(X_{0} \times[0,2 / 3]\right) \cup\left(X_{1} \times[1 / 3,1]\right) \\
X_{0}^{\prime \prime}=X_{0} \times[0,2 / 3] \\
X_{1}^{\prime \prime}=X_{1} \times[1 / 3,1]
\end{array}\right.
$$

Then the inclusion map $i:\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right) \hookrightarrow\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right)$ is an equivalence in $\mathbf{S h}^{T}$.

Proof. The proof follows the technique used in [2, Lemma 2.6]. It suffices to show that for each ANR triad $\left(P ; P_{0}, P_{1}\right)$ the inclusion induced map

$$
i^{*}: \operatorname{HTop}^{T}\left(\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right),\left(P ; P_{0}, P_{1}\right)\right) \rightarrow \mathbf{H T o p}^{T}\left(\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right),\left(P ; P_{0}, P_{1}\right)\right)
$$

is a bijection. By Lemma 2.5, each map $f:\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ extends to a map $\bar{f}:\left(U ; U \cap X_{0}^{\prime \prime}, U \cap X_{1}^{\prime \prime}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ for some open neighborhood U of X^{\prime} in $X^{\prime \prime}$. By the compactness of I, there exists an open neighborhood V of $X_{0} \cap X_{1}$ in X such that $(V \times I) \cap X^{\prime \prime} \subseteq U$. By the Urysohn lemma, there exists a map $\phi: X \rightarrow I$ such that

$$
\left\{\begin{array}{l}
\left.\phi\right|_{X_{0} \cap X_{1}}=1 ; \\
\left.\phi\right|_{X \backslash V}=0
\end{array}\right.
$$

Define a map $g: X \times I \rightarrow P$ by

$$
g(x, t)= \begin{cases}\bar{f}(x, t \phi(x)) & \text { if } x \in X_{0} \\ \bar{f}(x, 1-(1-t) \phi(x)) & \text { if } x \in X_{1}\end{cases}
$$

Then $\left.g\right|_{X^{\prime}}=f$, and $g\left(X_{0}^{\prime \prime}\right) \subseteq P_{0}$ and $g\left(X_{1}^{\prime \prime}\right) \subseteq P_{1}$, so g defines a map of triads $g:\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $\left.g\right|_{\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right)}=f$, showing that i^{*} is surjective. To see that i^{*} is injective, suppose that $g_{1}, g_{2}:\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right) \rightarrow$ $\left(P ; P_{0}, P_{1}\right)$ are maps of triads such that $\left.\left.g_{1}\right|_{X^{\prime}} \simeq g_{2}\right|_{X^{\prime}}$ as maps of triads from ($X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}$) to ($P ; P_{0}, P_{1}$). Then by Lemma 2.6 there exists an open neighborhood W of X^{\prime} in $X^{\prime \prime}$ such that $\left.\left.g_{1}\right|_{W} \simeq g_{2}\right|_{W}$ as maps of triads from $\left(W ; W \cap X_{0}^{\prime \prime}, W \cap X_{1}^{\prime \prime}\right)$ to $\left(P ; P_{0}, P_{1}\right)$. By the same argument as above, this homotopy of triads extends to a homotopy of triads $g_{1} \simeq g_{2}$ as required.

Proof of Theorem A. The first inequality follows from Theorem 2.3. To show the second inequality, let $n=\max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, 1+\operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}$, and let $f:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ be a map of triads. It suffices to verify the second inequality for each triad $\left(X ; X_{0}, X_{1}\right)$ of spaces such that the inclusion maps $X_{0} \cap X_{1} \hookrightarrow X_{0}$ and $X_{0} \cap X_{1} \hookrightarrow X_{1}$ are cofibrations. Indeed, embed $\left(X ; X_{0}, X_{1}\right)$ into ($\left.X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right)$ by $i(x)=(x, 1 / 2)$ for $x \in X$, and let $r:\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right) \rightarrow\left(X ; X_{0}, X_{1}\right)$ be the projection. Then $r i=1_{X}$, in particular, $\left(X ; X_{0}, X_{1}\right)$ is dominated by $\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right)$ in $\mathbf{S h}^{T}$, so that $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq \operatorname{Sd}\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right)$. Since by Lemma $3.4 \operatorname{Sd}\left(X^{\prime \prime} ; X_{0}^{\prime \prime}, X_{1}^{\prime \prime}\right)=$ $\operatorname{Sd}\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right)$, then $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq \operatorname{Sd}\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right)$. On the other hand, by [2, Theorem 2.6], X_{0} and X_{1} are shape equivalent to X_{0}^{\prime} and X_{1}^{\prime}, respectively, and clearly $X_{0} \cap X_{1}$ is shape equivalent to $X_{0}^{\prime} \cap X_{1}^{\prime}$. Hence we can replace ($X ; X_{0}, X_{1}$) by $\left(X^{\prime} ; X_{0}^{\prime}, X_{1}^{\prime}\right)$ if necessary.

Now since $\operatorname{Sd}\left(X_{0} \cap X_{1}\right) \leq n-1,\left.f\right|_{X_{0} \cap X_{1}} \simeq f^{\prime}$ for some map $f^{\prime}: X_{0} \cap X_{1} \rightarrow$ $P_{0} \cap P_{1}$ such that $f^{\prime}\left(X_{0} \cap X_{1}\right) \subseteq\left(P_{0} \cap P_{1}\right)^{(n-1)}$. Considering f^{\prime} as a map of triads $f^{\prime}:\left(A ; A \cap X_{0}, A \cap X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ where $A=X_{0} \cap X_{1}$, by Lemma 2.7, f^{\prime} extends to a map of triads $f^{\prime}:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ such that $f^{\prime} \simeq f$ as maps of triads. Now by [2, Lemma 2.8 b$)$], there exists a map $g_{0}: X_{0} \rightarrow P_{0}$ such that $g_{0}\left(X_{0}\right) \subseteq P_{0}^{(n)}$ and $\left.g_{0} \simeq f^{\prime}\right|_{X_{0}}$ rel $\left(X_{0} \cap X_{1}\right)$,
and similarly there exists a map $g_{1}: X_{1} \rightarrow P_{1}$ such that $g_{1}\left(X_{1}\right) \subseteq P_{1}^{(n)}$ and $\left.g_{1} \simeq f^{\prime}\right|_{X_{1}}$ rel $\left(X_{0} \cap X_{1}\right)$. So the map of triads $g:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ defined by $\left.g\right|_{X_{0}}=g_{0}$ and $\left.g\right|_{X_{1}}=g_{1}$ satisfies $g(X) \subseteq P^{(n)}$ and $g \simeq f$ as maps of triads. By Proposition 3.1, we conclude $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq n$.

Remark. Note that the difference between the upper and lower bounds in Theorem A is at most 1, i.e.,

$$
\begin{aligned}
& \max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, \operatorname{Sd}\left(X_{0} \cap X_{1}\right)+1\right\} \leq \\
& \quad \leq \max \left\{\operatorname{Sd} X, \operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, \operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}+1
\end{aligned}
$$

Moreover, there is an example with each one of the inequalities being strict. Indeed, there exists a polyhedral triad $\left(X ; X_{0}, X_{1}\right)$ such that

$$
\begin{aligned}
\max \left\{\operatorname{Sd} X, \operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}\right. & \left., \operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}<\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \\
& =\max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, \operatorname{Sd}\left(X_{0} \cap X_{1}\right)+1\right\}
\end{aligned}
$$

(e.g., take $X=X_{0}=D^{2}, X_{1}=\partial D^{2}$), and also there exists a polyhedral triad ($X ; X_{0}, X_{1}$) such that

$$
\begin{aligned}
& \max \left\{\operatorname{Sd} X, \operatorname{Sd} X_{0}, \operatorname{Sd} X_{1},\right.\left.\operatorname{Sd}\left(X_{0} \cap X_{1}\right)\right\}=\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \\
&<\max \left\{\operatorname{Sd} X_{0}, \operatorname{Sd} X_{1}, \operatorname{Sd}\left(X_{0} \cap X_{1}\right)+1\right\}
\end{aligned}
$$

(e.g., take $X=X_{0}=X_{1}=S^{1}$).

4. n-Shape equivalence

Throughout the rest of the paper, all triads are pointed, and maps and homotopies preserve the base point, so that the indication of the base point is omitted.

In this section we wish to prove Theorems B and C. First we prove the following lemmas.

Lemma 4.1. Suppose that we are given a commutative diagram:

$$
\begin{aligned}
&\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right) \xrightarrow{p_{0}}\left(Z_{\lambda_{1}} ; Z_{0 \lambda_{1}}, Z_{1 \lambda_{1}}\right) \\
& \quad \subseteq \uparrow \\
& \subseteq \uparrow \\
&\left(X_{\lambda_{0}} ; X_{0 \lambda_{0}}, X_{1 \lambda_{0}}\right) \xrightarrow{p_{1}} \cdots \\
& \cdots \\
& \cdots \xrightarrow{\left.p_{\lambda_{1}} ; X_{0 \lambda_{1}}, X_{1 \lambda_{1}}\right)} \xrightarrow{ } \cdots \\
& \cdots\left(Z_{\lambda_{n}} ; Z_{0 \lambda_{n}}, Z_{1 \lambda_{n}}\right) \\
& \subseteq \uparrow \\
& \cdots\left(X_{\lambda_{n}} ; X_{0 \lambda_{n}}, X_{1 \lambda_{n}}\right)
\end{aligned}
$$

where $\left(Z_{\lambda_{i}} ; Z_{0 \lambda_{i}}, Z_{1 \lambda_{i}}\right)$ and $\left(X_{\lambda_{i}} ; X_{0 \lambda_{i}}, X_{1 \lambda_{i}}\right), i=0,1, \ldots, n$, are polyhedral triads such that $Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}$ and $Z_{0 \lambda_{0}} \cap Z_{1 \lambda_{0}}$ are connected, and suppose that the induced maps

$$
\left\{\begin{array}{l}
\left(\left.p_{i}\right|_{\left(Z_{0 \lambda_{i}}, X_{0 \lambda_{i}}\right)}\right)_{*}: \pi_{i}\left(Z_{0 \lambda_{i}}, X_{0 \lambda_{i}}\right) \rightarrow \pi_{i}\left(Z_{0 \lambda_{i+1}}, X_{0 \lambda_{i+1}}\right) \\
\left(\left.p_{i}\right|_{\left(Z_{1 \lambda_{i}}, X_{1 \lambda_{i}}\right)}\right)_{*}: \pi_{i}\left(Z_{1 \lambda_{i}}, X_{1 \lambda_{i}}\right) \rightarrow \pi_{i}\left(Z_{1 \lambda_{i+1}}, X_{1 \lambda_{i+1}}\right) \\
\left(\left.p_{i}\right|_{\left(Z_{0 \lambda_{i}} \cap Z_{1 \lambda_{i}}, X_{0 \lambda_{i}} \cap X_{1 \lambda_{i}}\right)}\right)_{*}: \\
\pi_{i}\left(Z_{0 \lambda_{i}} \cap Z_{1 \lambda_{i}}, X_{0 \lambda_{i}} \cap X_{1 \lambda_{i}}\right) \rightarrow \pi_{i}\left(Z_{0 \lambda_{i+1}} \cap Z_{1 \lambda_{i+1}}, X_{0 \lambda_{i+1}} \cap X_{1 \lambda_{i+1}}\right)
\end{array}\right.
$$

are trivial for $i=0,1, \ldots, n-1$. Then there exist polyhedral triads $\left(P ; P_{0}, P_{1}\right)$ and $\left(Q ; Q_{0}, Q_{1}\right)$ and a map of triads $g:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Z_{\lambda_{n}}, Z_{0 \lambda_{n}}, Z_{1 \lambda_{n}}\right)$ with the following properties:

1. $P_{0}, P_{1}, P_{0} \cap P_{1}, Q_{0}, Q_{1}, Q_{0} \cap Q_{1}$ are connected;
2. $\left(Q ; Q_{0}, Q_{1}\right) \subseteq\left(P ; P_{0}, P_{1}\right)$, and the inclusion map $k:\left(Q ; Q_{0}, Q_{1}\right) \hookrightarrow$ $\left(P ; P_{0}, P_{1}\right)$ satisfies condition $(E)_{n-1}$;
3. $\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right) \subseteq\left(P ; P_{0}, P_{1}\right)$ and $\left(X_{\lambda_{0}} ; X_{0 \lambda_{0}}, X_{1 \lambda_{0}}\right) \subseteq\left(Q ; Q_{0}, Q_{1}\right)$;
4. $\left.g\right|_{\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right)}=p_{n-1} \cdots p_{1} p_{0}$; and
5. The restriction of g to $\left(Q ; Q_{0}, Q_{1}\right)$ defines a map of triads

$$
\left.g\right|_{\left(Q ; Q_{0}, Q_{1}\right)}:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(X_{\lambda_{n}} ; X_{0 \lambda_{n}}, X_{1 \lambda_{n}}\right)
$$

Proof. Let $\left\{\begin{array}{c}\left(K ; K_{0}, K_{1}\right) \\ \left(L ; L_{0}, L_{1}\right)\end{array}\right\}$ be triangulations of $\left\{\begin{array}{c}\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right) \\ \left(X_{\lambda_{0}} ; X_{0 \lambda_{0}}, X_{1 \lambda_{0}}\right)\end{array}\right\}$ such that $\left(L ; L_{0}, L_{1}\right)$ is a subcomplex of $\left(K ; K_{0}, K_{1}\right)$ and that L is a full subcomplex of K. For each $i=0,1, \ldots, n-1$, let

$$
\left\{\begin{array}{l}
Q_{i}=\left(X_{\lambda_{0}} \times I\right) \cup\left(\left|K^{i}\right| \times I\right) \\
Q_{0 i}=\left(X_{0 \lambda_{0}} \times I\right) \cup\left(\left|K_{0}^{i}\right| \times I\right) \\
Q_{1 i}=\left(X_{1 \lambda_{0}} \times I\right) \cup\left(\left|K_{1}^{i}\right| \times I\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
P_{i}=Q_{i} \cup\left(Z_{\lambda_{0}} \times 0\right) \\
P_{0 i}=Q_{0 i} \cup\left(Z_{0 \lambda_{0}} \times 0\right) \\
P_{1 i}=Q_{1 i} \cup\left(Z_{1 \lambda_{0}} \times 0\right)
\end{array} .\right.
$$

Then for each $i=0,1, \ldots, n-1$, the inclusion map $k_{i}:\left(Q_{i} ; Q_{0 i}, Q_{1 i}\right) \hookrightarrow$ $\left(P_{i} ; P_{0 i}, P_{1 i}\right)$ satisfies condition (E) ${ }_{i}$. We wish to define a map of triads

$$
g_{i}:\left(P_{i} ; P_{0 i}, P_{1 i}\right) \rightarrow\left(Z_{\lambda_{i+1}} ; Z_{0 \lambda_{i+1}}, Z_{1 \lambda_{i+1}}\right)(i=0,1, \ldots, n-1)
$$

with the following properties:

1. The restriction of g_{i} to $\left(Q_{i} ; Q_{0 i}, Q_{1 i}\right)$ defines a map of triads

$$
\left.g_{i}\right|_{\left(Q_{i} ; Q_{0 i}, Q_{1 i}\right)}:\left(Q_{i} ; Q_{0 i}, Q_{1 i}\right) \rightarrow\left(X_{\lambda_{i+1}} ; X_{0 \lambda_{i+1}}, X_{1 \lambda_{i+1}}\right) ;
$$

and
2. The following diagram commutes:

$$
\begin{aligned}
& \begin{array}{c}
\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right) \xrightarrow{\subseteq}\left(P_{0} ; P_{00}, P_{10}\right) \xrightarrow{\subseteq} \cdots \\
\left(Z_{\lambda_{0}} ; Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}\right) \xrightarrow{p_{0}}\left(Z_{\lambda_{1}} ; Z_{0 \lambda_{1}}, Z_{1 \lambda_{1}}\right) \xrightarrow{p_{1}} \cdots
\end{array} \\
& \cdots \xrightarrow{\subseteq}\left(P_{n-1} ; P_{0 n-1}, P_{1 n-1}\right) \\
& g_{n-1} \downarrow \\
& \cdots \xrightarrow{p_{n-1}}\left(Z_{\lambda_{n}} ; Z_{0 \lambda_{n}}, Z_{1 \lambda_{n}}\right) .
\end{aligned}
$$

For $i=0$, first let

$$
\left\{\begin{array}{l}
g_{0} \mid Z_{\lambda_{0}} \times 0=p_{0} \\
g_{0}(x \times I)=p_{0}(x) \quad \text { for } x \in X_{\lambda_{0}}
\end{array}\right.
$$

and for each vertex v of $K \backslash L$, let $g_{0} \mid v \times I$ be a path from $p_{0}(v)$ to the base point * in

$$
\left\{\begin{array}{cc}
Z_{0 \lambda_{1}} & \text { if } v \in K_{0} \backslash K_{1} \\
Z_{1 \lambda_{1}} & \text { if } v \in K_{1} \backslash K_{0} \\
Z_{0 \lambda_{1}} \cap Z_{1 \lambda_{1}} & \text { if } v \in K_{0} \cap K_{1}
\end{array}\right\} .
$$

Such a path exists since $Z_{0 \lambda_{0}}, Z_{1 \lambda_{0}}, Z_{0 \lambda_{0}} \cap Z_{1 \lambda_{0}}$ are path-connected. Then $g_{0}\left(P_{00}\right) \subseteq Z_{0 \lambda_{1}}, g_{0}\left(P_{10}\right) \subseteq Z_{1 \lambda_{1}}, g_{0}\left(Q_{00}\right) \subseteq X_{0 \lambda_{1}}, g_{0}\left(Q_{10}\right) \subseteq X_{1 \lambda_{1}}$, and thus g_{0} defines a map of triads

$$
g_{0}:\left(P_{0} ; P_{00}, P_{10}\right) \rightarrow\left(Z_{\lambda_{1}} ; Z_{0 \lambda_{1}}, Z_{1 \lambda_{1}}\right)
$$

so that the restriction to $\left(Q_{0} ; Q_{00}, Q_{01}\right)$ defines a map of triads

$$
\left.g_{0}\right|_{\left(Q_{0} ; Q_{00}, Q_{01}\right)}:\left(Q_{0} ; Q_{00}, Q_{10}\right) \rightarrow\left(X_{\lambda_{1}} ; X_{0 \lambda_{1}}, X_{1 \lambda_{1}}\right) .
$$

Suppose g_{i-1} has beed defined for some i such that $1 \leq i \leq n-2$. To define g_{i}, first let $p_{i} \mid P_{i-1}=p_{i} g_{i-1}$. Let σ be an i-simplex of $K \backslash L$, and let $v \in K \backslash L$ be a vertex of σ. Then either one of the following occurs: $\sigma \in K_{0} \backslash K_{1}, \sigma \in K_{1} \backslash K_{0}, \sigma \in K_{0} \cap K_{1}$. So $((\partial \sigma \times I) \cup(\sigma \times 0), \partial \sigma \times 1, v \times 1)$ forms a cell in $\left\{\begin{array}{c}P_{0 i-1} \\ P_{1 i-1} \\ P_{0 i-1} \cap P_{1 i-1}\end{array}\right\}$ with its boundary in $\left\{\begin{array}{c}Q_{0 i-1} \\ Q_{1 i-1} \\ Q_{0 i-1} \cap Q_{1 i-1}\end{array}\right\}$ if $\left\{\begin{array}{l}\sigma \in K_{0} \backslash K_{1} \\ \sigma \in K_{1} \backslash K_{0} \\ \sigma \in K_{0} \cap K_{1}\end{array}\right\}$, and the map $\left.g_{i-1}\right|_{((\partial \sigma \times I) \cup(\sigma \times 0), \partial \sigma \times 1, v \times 1)}$ defines an element of $\left\{\begin{array}{c}\pi_{i}\left(Z_{0 \lambda_{i}}, X_{0 \lambda_{i}}\right) \\ \pi_{i}\left(Z_{1 \lambda_{i}}, X_{1 \lambda_{i}}\right) \\ \pi_{i}\left(Z_{0 \lambda_{i}} \cap Z_{1 \lambda_{i}}, X_{0 \lambda_{i}} \cap X_{1 \lambda_{i}}\right)\end{array}\right\}$.

By assumption, $\left.p_{i} g_{i-1}\right|_{((\partial \sigma \times I) \cup(\sigma \times 0), \partial \sigma \times 1, v \times 1)}$ extends to a map
$\left.g_{i}\right|_{(\sigma \times I, \sigma \times 1, v \times 1)}:(\sigma \times I, \sigma \times 1, v \times 1) \rightarrow\left\{\begin{array}{c}\left(Z_{0 \lambda_{i+1}}, X_{0 \lambda_{i+1}}\right) \\ \left(Z_{1 \lambda_{i+1}}, X_{1 \lambda_{i+1}}\right) \\ \left(Z_{0 \lambda_{i+1}} \cap Z_{1 \lambda_{i+1}}, X_{0 \lambda_{i+1}} \cap X_{1 \lambda_{i+1}}\right)\end{array}\right\}$.
Repeating the same process for each i-simplex of $K \backslash L$, we obtain a map g_{i} with the desired property. Now it suffices to set $\left(P ; P_{0}, P_{1}\right)=$ $\left(P_{n-1} ; P_{0 n-1}, P_{1 n-1}\right),\left(Q ; Q_{0}, Q_{1}\right)=\left(Q_{n-1} ; Q_{0 n-1}, Q_{1 n-1}\right)$ and $g=g_{n-1}$.

-

Lemma 4.2. $\operatorname{Let}\left(\boldsymbol{Z} ; \boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}\right)=\left(\left(Z_{\lambda} ; Z_{0 \lambda}, Z_{1 \lambda}\right), r_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)$ $=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ be inverse systems of polyhedral triads such that for each $\lambda \in \Lambda,\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \subseteq\left(Z_{\lambda} ; Z_{0 \lambda}, Z_{1 \lambda}\right)$ and $Z_{0 \lambda}, Z_{1 \lambda}$ and $Z_{0 \lambda} \cap$ $Z_{1 \lambda}$ are connected. Suppose that the inclusion induced morphism $\boldsymbol{j}=\left(j_{\lambda}\right)$: $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Z} ; \boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}\right)$ satisfies the following condition:
$(\mathrm{EE})_{n}$ The induced morphisms $\left.\boldsymbol{j}\right|_{\boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}}: \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1} \rightarrow \boldsymbol{Z}_{0} \cap \boldsymbol{Z}_{1},\left.\boldsymbol{j}\right|_{\boldsymbol{X}_{0}}:$ $\boldsymbol{X}_{0} \rightarrow \boldsymbol{Z}_{0}$ and $\left.\boldsymbol{j}\right|_{\boldsymbol{X}_{1}}: \boldsymbol{X}_{1} \rightarrow \boldsymbol{Z}_{1}$ are n-equivalences.
Then for each $\lambda \in \Lambda$ there exist $\lambda^{\prime} \geq \lambda$, polyhedral triads $\left(P ; P_{0}, P_{1}\right)$ and $\left(Q ; Q_{0}, Q_{1}\right)$ and a map of triads $g:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(Z_{\lambda} ; Z_{0 \lambda}, Z_{1 \lambda}\right)$ with the following properties:

1. $P_{0}, P_{1}, P_{0} \cap P_{1}, Q_{0}, Q_{1}, Q_{0} \cap Q_{1}$ are connected;
2. $\left(Q ; Q_{0}, Q_{1}\right) \subseteq\left(P ; P_{0}, P_{1}\right)$, and the inclusion map $k:\left(Q ; Q_{0}, Q_{1}\right) \hookrightarrow$ $\left(P ; P_{0}, P_{1}\right)$ satisfies condition $(E)_{n}$;
3. $\left(Z_{\lambda^{\prime}} ; Z_{0 \lambda^{\prime}}, Z_{1 \lambda^{\prime}}\right) \subseteq\left(P ; P_{0}, P_{1}\right)$ and $\left(X_{\lambda^{\prime}} ; X_{0 \lambda^{\prime}}, X_{1 \lambda^{\prime}}\right) \subseteq\left(Q ; Q_{0}, Q_{1}\right)$;
4. $\left.g\right|_{\left(Z_{\lambda^{\prime}} ; Z_{0 \lambda^{\prime}}, Z_{1 \lambda^{\prime}}\right)}=r_{\lambda \lambda^{\prime}} ;$ and
5. The restriction of g to $\left(Q ; Q_{0}, Q_{1}\right)$ defines a map of triads

$$
\left.g\right|_{\left(Q ; Q_{0}, Q_{1}\right)}:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)
$$

Proof. By assumption, the inverse systems of pairs $\left(\boldsymbol{Z}_{0}, \boldsymbol{X}_{0}\right),\left(\boldsymbol{Z}_{1}, \boldsymbol{X}_{1}\right)$ and $\left(\boldsymbol{Z}_{0} \cap \boldsymbol{Z}_{1}, \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}\right)$ are n-connected. This implies that each $\lambda \in \Lambda$ admits $\lambda=\lambda_{n+1} \leq \lambda_{n} \leq \cdots \leq \lambda_{1} \leq \lambda_{0}=\lambda^{\prime}$ in Λ so that the hypothesis of Lemma 4.1 is satisfied with $p_{i}=p_{\lambda_{i+1} \lambda_{i}}$. Our assertion follows from Lemma 4.1.

Lemma 4.3. Let $\boldsymbol{\varphi}=\left(\varphi_{\lambda}\right):\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ be a level morphism of inverse systems of polyhedral triads such that for each $\lambda \in \Lambda$, $X_{0 \lambda}, X_{1 \lambda}, X_{0 \lambda} \cap X_{1 \lambda}, Y_{0 \lambda}, Y_{1 \lambda}, Y_{0 \lambda} \cap Y_{1 \lambda}$ are all connected. If φ satisfies condition $(E E)_{n}$, then for each $\lambda \in \Lambda$ there exist $\lambda^{\prime} \geq \lambda$, polyhedral triads $\left(P ; P_{0}, P_{1}\right)$ and $\left(Q ; Q_{0}, Q_{1}\right)$ and a map of triads $f:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ with the following properties:

1. $P_{0}, P_{1}, P_{0} \cap P_{1}, Q_{0}, Q_{1}, Q_{0} \cap Q_{1}$ are connected;
2. f satisfies condition $(E)_{n}$; and
3. The following diagram commutes for some maps of triads $h, h^{\prime}, g, g^{\prime}$:

Proof. Let $\left(\boldsymbol{Z} ; \boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}\right)$ be the inverse system of polyhedral triads of mapping cylinders $\left(\left(M\left(\left.\varphi_{\lambda}\right|_{X_{\lambda}}\right) ; M\left(\left.\varphi_{\lambda}\right|_{X_{0 \lambda}}\right), M\left(\left.\varphi_{\lambda}\right|_{X_{1 \lambda}}\right)\right), r_{\lambda \lambda^{\prime}}, \Lambda\right)$. Then there is a commutative diagram:

where \boldsymbol{i} and \boldsymbol{j} are the inclusion induced morphisms, and \boldsymbol{s} is induced by the retractions. Then that $\boldsymbol{\varphi}$ satisfies condition $(\mathrm{EE})_{n}$ is equivalent to that \boldsymbol{i} satisfies condition (EE) ${ }_{n}$. Lemma 4.2 implies that each $\lambda \in \Lambda$ admits $\lambda^{\prime} \geq \lambda$ and polyhedral triads $\left(P ; P_{0}, P_{1}\right)$ and $\left(Q ; Q_{0}, Q_{1}\right)$ and a map $f:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow$ $\left(P ; P_{0}, P_{1}\right)$ with properties 1)-5) of Lemma 4.2, so that there is the following commutative diagram:

It is easy to see that such polyhedral triads $\left(P ; P_{0}, P_{1}\right)$ and $\left(Q ; Q_{0}, Q_{1}\right)$ and map of triads $f:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$ have the desired properties.

Lemma 4.4. Let $\boldsymbol{\varphi}=\left(\varphi_{\lambda}\right):\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ be a level morphism of inverse systems of polyhedral triads such that for each $\lambda \in \Lambda$,
$X_{0 \lambda}, X_{1 \lambda}, X_{0 \lambda} \cap X_{1 \lambda}, Y_{0 \lambda}, Y_{1 \lambda}, Y_{0 \lambda} \cap Y_{1 \lambda}$ are all connected. If φ satisfies condition $(E E)_{n}$, then each $\lambda \in \Lambda$ admits $\lambda^{\prime} \geq \lambda$ with the following properties:

1. For each map of triads $h:\left(R ; R_{0}, R_{1}\right) \rightarrow\left(Y_{\lambda^{\prime}} ; Y_{0 \lambda^{\prime}}, Y_{1 \lambda^{\prime}}\right)$ of a polyhedral triad $\left(R ; R_{0}, R_{1}\right)$ such that $R_{0}, R_{1}, R_{0} \cap R_{1}$ are connected and $\operatorname{dim} R \leq$ n, there exists a map of triads $k:\left(R ; R_{0}, R_{1}\right) \rightarrow\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$ such that $\varphi_{\lambda} k \simeq q_{\lambda \lambda^{\prime}} h$ as maps of triads; and
2. For each polyhedral triad $\left(R ; R_{0}, R_{1}\right)$ such that $R_{0}, R_{1}, R_{0} \cap R_{1}$ are connected and $\operatorname{dim} R \leq n-1$ and for each pair of maps of triads $k_{1}, k_{2}:\left(R ; R_{0}, R_{1}\right) \rightarrow\left(X_{\lambda^{\prime}} ; X_{0 \lambda^{\prime}}, X_{1 \lambda^{\prime}}\right)$ such that $\varphi_{\lambda^{\prime}} k_{1} \simeq \varphi_{\lambda^{\prime}} k_{2}$ as maps of triads, we have $p_{\lambda \lambda^{\prime}} k_{1} \simeq p_{\lambda \lambda^{\prime}} k_{2}$ as maps of triads.

Proof. For each $\lambda \in \Lambda$, take $\lambda^{\prime} \geq \lambda$ as in Lemma 4.3. Then Lemmas 4.3 and 2.10 imply our assertion.

Proof of Theorem B. Let $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ be a shape morphism as in the hypothesis. Let φ be represented by a level morphism $\boldsymbol{\varphi}=\left(\varphi_{\lambda}\right):\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ where $\boldsymbol{p}=\left(p_{\lambda}\right):\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right)=\left(\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right), p_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\boldsymbol{q}=\left(q_{\lambda}\right):\left(Y ; Y_{0}, Y_{1}\right) \rightarrow$ $\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)=\left(\left(Y_{\lambda} ; Y_{0 \lambda}, Y_{1 \lambda}\right), q_{\lambda \lambda^{\prime}}, \Lambda\right)$ are $\mathbf{H T o p}^{T}$-expansions of $\left(X ; X_{0}, X_{1}\right)$ and $\left(Y ; Y_{0}, Y_{1}\right)$, respectively, such that Λ is cofinite, $X_{0 \lambda}, X_{1 \lambda}, X_{0 \lambda} \cap X_{1 \lambda}$, $Y_{0 \lambda}, Y_{1 \lambda}, Y_{0 \lambda} \cap Y_{1 \lambda}$ are connected, and the following induced morphisms are expansions (see Theorem 2.3):

$$
\left\{\begin{array}{l}
\left.\boldsymbol{p}\right|_{X_{0}}: X_{0} \rightarrow \boldsymbol{X}_{0} \\
\left.\boldsymbol{p}\right|_{X_{1}}: X_{1} \rightarrow \boldsymbol{X}_{1} \\
\left.\boldsymbol{p}\right|_{X_{0} \cap X_{1}}: X_{0} \cap X_{1} \rightarrow \boldsymbol{X}_{0} \cap \boldsymbol{X}_{1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\left.\boldsymbol{q}\right|_{Y_{0}}: Y_{0} \rightarrow \boldsymbol{Y}_{0} \\
\left.\boldsymbol{q}\right|_{Y_{1}}: Y_{1} \rightarrow \boldsymbol{Y}_{1} \\
\left.\boldsymbol{q}\right|_{Y_{0}} \cap Y_{1}: Y_{0} \cap Y_{1} \rightarrow \boldsymbol{Y}_{0} \cap \boldsymbol{Y}_{1}
\end{array}\right.
$$

Now let $\lambda \in \Lambda$. Then take $\lambda_{1} \geq \lambda$ as in Lemma 4.4, and for this λ_{1} repeatedly take $\lambda_{2} \geq \lambda_{1}$ as in Lemma 4.4. Since $\operatorname{Sd}\left(Y ; Y_{0}, Y_{1}\right) \leq n$, by Proposition 3.1, there exists $\lambda_{3} \geq \lambda_{2}$ so that $q_{\lambda_{2} \lambda_{3}}$ factors through a polyhedral triad $\left(Q ; Q_{0}, Q_{1}\right)$ with $\operatorname{dim} Q \leq n$. Similarly, by $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right) \leq$ $n-1$, there exists $\lambda^{\prime} \geq \lambda_{3}$ so that $p_{\lambda_{3} \lambda^{\prime}}$ factors through a polyhedral triad $\left(P ; P_{0}, P_{1}\right)$ with $\operatorname{dim} P \leq n-1$. Say $g_{1}:\left(X_{\lambda^{\prime}} ; X_{0 \lambda^{\prime}}, X_{1 \lambda^{\prime}}\right) \rightarrow\left(P ; P_{0}, P_{1}\right)$, $g_{2}:\left(P ; P_{0}, P_{1}\right) \rightarrow\left(X_{\lambda_{3}} ; X_{0 \lambda_{3}}, X_{1 \lambda_{3}}\right)$ and $h_{1}:\left(Y_{\lambda_{3}} ; Y_{0 \lambda_{3}}, Y_{1 \lambda_{3}}\right) \rightarrow\left(Q ; Q_{0}, Q_{1}\right)$, $h_{2}:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(Y_{\lambda_{2}} ; Y_{0 \lambda_{2}}, Y_{1 \lambda_{2}}\right)$ are homotopy classes such that $p_{\lambda_{3} \lambda^{\prime}}=$ $g_{2} g_{1}$ and $q_{\lambda_{2} \lambda_{3}}=h_{2} h_{1}$. By Lemma 4.4, there exists a homotopy class $k^{\prime}:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow\left(X_{\lambda_{1}} ; X_{0 \lambda_{1}}, X_{1 \lambda_{1}}\right)$ so that $\varphi_{\lambda_{1}} k^{\prime}=q_{\lambda_{1} \lambda_{2}} h_{2}$. Thus we have the following commutative diagram:

Now let $k=p_{\lambda \lambda_{1}} k^{\prime} h_{1} q_{\lambda_{3} \lambda^{\prime}}:\left(Y_{\lambda^{\prime}} ; Y_{0 \lambda^{\prime}}, Y_{1 \lambda^{\prime}}\right) \rightarrow\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right)$. By tracing around the diagram we get $k \varphi_{\lambda}=q_{\lambda^{\prime}}$. Also by the diagram $\varphi_{\lambda_{1}} k^{\prime} h_{1} \varphi_{\lambda_{3}} g_{2}=$ $\varphi_{\lambda_{1}} p_{\lambda_{1} \lambda_{3}} g_{2}$. Since $\operatorname{dim} P \leq n-1$, by the choice of $\lambda_{1}, p_{\lambda \lambda_{1}} k^{\prime} h_{1} \varphi_{\lambda_{3}} g_{2}=p_{\lambda_{\lambda_{3}}} g_{2}$, which implies $p_{\lambda \lambda^{\prime}}=k \varphi_{\lambda^{\prime}}$. Now by Morita's lemma ([8, Theorem 5, p. 113]) we conclude that φ is an isomorphism.
[8, Theorem 3, p. 109] partially holds for the case of pro-sets. More precisely, we have

Lemma 4.5. Let $\boldsymbol{A}=\left(A_{\lambda}, a_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\boldsymbol{B}=\left(B_{\lambda}, b_{\lambda \lambda^{\prime}}, \Lambda\right)$ be pro-sets over the same index set Λ, and let $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be a morphism of pro-sets given by a level morphism of systems $\left(f_{\lambda}\right): \boldsymbol{A} \rightarrow \boldsymbol{B}$. If the condition
(EP) For each $\lambda \in \Lambda$ there is $\lambda^{\prime} \geq \lambda$ such that $\operatorname{Im}\left(q_{\lambda \lambda^{\prime}}\right) \subseteq \operatorname{Im}\left(f_{\lambda}\right)$. holds, then the morphism \boldsymbol{f} is an epimorphism.

Proof. The same proof as for the corresponding part of [8, Theorem 3, p. 109] applies to this case.

Proof of Theorem C. Let $\boldsymbol{\varphi}=\left(\varphi_{\lambda}\right):\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ be a level morphism representing the shape morphism φ as in the proof of Theorem B. Let $\lambda \in \Lambda$. Then take $\lambda^{\prime} \geq \lambda$ and a map $f:\left(Q ; Q_{0}, Q_{1}\right) \rightarrow$ ($P ; P_{0}, P_{1}$) between polyhedral triads as in Lemma 4.3. By Lemma 2.13, $f_{*}: \pi_{q}\left(Q ; Q_{0}, Q_{1}\right) \rightarrow \pi_{q}\left(P ; P_{0}, P_{1}\right)$ is an isomorphism for $2 \leq q \leq n-1$ and an epimorphism for $q=n$. Thus by Morita's lemma $\boldsymbol{\varphi}_{*}: \pi_{q}\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow$ $\pi_{q}\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ is an isomorphism for $q \leq n-1$. For $q=n, \operatorname{Im}\left\{\left(q_{\lambda \lambda^{\prime}}\right)_{*}\right.$: $\left.\pi_{q}\left(Y_{\lambda^{\prime}} ; Y_{0 \lambda^{\prime}}, Y_{1 \lambda^{\prime}}\right) \rightarrow \pi_{q}\left(Y_{\lambda} ; Y_{0 \lambda}, Y_{1 \lambda}\right)\right\} \subseteq \operatorname{Im}\left\{\left(\varphi_{\lambda}\right)_{*}: \pi_{q}\left(X_{\lambda} ; X_{0 \lambda}, X_{1 \lambda}\right) \rightarrow\right.$ $\left.\pi_{q}\left(Y_{\lambda} ; Y_{0 \lambda}, Y_{1 \lambda}\right)\right\}$, and so by Lemma $4.5 \boldsymbol{\varphi}_{*}: \pi_{q}\left(\boldsymbol{X} ; \boldsymbol{X}_{0}, \boldsymbol{X}_{1}\right) \rightarrow \pi_{q}\left(\boldsymbol{Y} ; \boldsymbol{Y}_{0}, \boldsymbol{Y}_{1}\right)$ is an epimorphism. This proves the first assertion.

By Lemma 2.12, $\left.f\right|_{Q}: Q \rightarrow P$ is an n-equivalence. By an argument similar to the above, we see that $\left(\left.\boldsymbol{\varphi}\right|_{\boldsymbol{X}}\right)_{*}: \pi_{q}(\boldsymbol{X}) \rightarrow \pi_{q}(\boldsymbol{Y})$ is an isomorphism for $q \leq n-1$ and an epimorphism for $q=n$. This proves the second assertion.

As an easy corollary to Theorems B and C, we have

Corollary 4.6. Suppose that $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow\left(Y ; Y_{0}, Y_{1}\right)$ is a shape morphism whose restrictions $\left.\varphi\right|_{X_{0} \cap X_{1}}: X_{0} \cap X_{1} \rightarrow Y_{0} \cap Y_{1},\left.\varphi\right|_{X_{0}}: X_{0} \rightarrow Y_{0}$ and $\left.\varphi\right|_{X_{1}}: X_{1} \rightarrow Y_{1}$ are isomorphisms. Then

1. if $\operatorname{Sd}\left(X ; X_{0}, X_{1}\right)<\infty$ and $\operatorname{Sd}\left(Y ; Y_{0}, Y_{1}\right)<\infty$, then $\varphi:\left(X ; X_{0}, X_{1}\right) \rightarrow$ $\left(Y ; Y_{0}, Y_{1}\right)$ is an isomorphism; and
2. if $\operatorname{Sd} X<\infty$ and $\operatorname{Sd} Y<\infty$, then the restricted shape morphism $\left.\varphi\right|_{X}$: $X \rightarrow Y$ is an isomorphism.

References

[1] B. Gray, Homotopy Theory, Academic Press, New York, 1975.
[2] B. Günther, Properties of normal embeddings concerning strong shape theory, I, Tsukuba J. Math. 15 (1991), 261 - 274.
[3] S. Hu, Homotopy Theory, Academic Press, New York, 1959.
[4] Ju. T. Lisica and S. Mardešić, Strong homology of inverse systems III, Top. Appl. 20(1985), 29-37.
[5] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
[6] S. Mardešić, On resolutions for pairs of spaces, Tsukuba J. Math. 8 (1984), 81 - 93.
[7] S. Mardešić, ANR-resolutions of triads, Tsukuba J. Math. 8 (1984), 353 - 365.
[8] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[9] T. Miyata, Shape theory for triads, Glasnik Mat. 34 (1999), 267-281.
[10] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[11] Š. Ungar, n-Connectedness of inverse systems and applications to shape theory, Glasnik Mat. 13(33)(1978), 371-396.

Department of Computer Science,
Shizuoka Institute of Science and Technology,
2200-2 Toyosawa,
Fukuroi, 437-8555 JAPAN
Current address: Division of Mathemathics and Informatics
Faculty of Human Development
Kobe University
3-11 Tsurukabuto, Nada-Ku
Kobe, 657-8501 JAPAN
E-mail: tmiyata@kobe-u.ac.jp
Received: 24.05.2000.
Revised: 09.10.2000.

[^0]: 2000 Mathematics Subject Classification. 54C56, 55P55, 55Q07.
 Key words and phrases. Shape, triad, n-shape equivalence, Whitehead theorem, shape dimension.

