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n-SHAPE EQUIVALENCE AND TRIADS

Takahisa Miyata

Shizuoka Institute of Science and Technology, Japan

Abstract. This paper concerns the shape theory for triads of spaces
which was introduced by the author. More precisely, in the first part, the
shape dimension for triads of spaces (X; X0,X1) is introduced, and its
upper and lower bounds are given in terms of the shape dimensions of X0,
X1, X0 ∩ X1 and X. In the second part, a Whitehead type theorem for
triads of spaces and a Mayer-Vietoris type theorem concerning n-shape
equivalence are obtained.

1. Introduction

Throughout the paper, spaces and maps mean topological spaces and
continuous maps, respectively. A triad of spaces (X ;X0, X1) means a space
X and subspaces X0 and X1 of X such that X = X0 ∪ X1. A map of
triads f : (X ;X0, X1) → (Y ;Y0, Y1) means a map f : X → Y such that
f(X0) ⊆ Y0 and f(X1) ⊆ Y1. A homotopy of triads means a map of triads
h : (X × I ;X0 × I,X1 × I) → (Y ;Y0, Y1). Pointed versions of a triad, map
and homotopy are also defined in the obvious way. Using this homotopy, the
auther defined the shape theory for triads [9] and reproved the Blakers-Massey
homotopy excision theorem for shape theory (see also [11]). The purpose of
this paper is to investigate properties that concern the shape dimension for
triads and n-shape equivalence between triads.

First recall that Günther gave an upper bound of the shape dimension
SdX of a single space X :

Theorem 1.1 (Günther [2]). Let (X ;X0, X1) be a triad of spaces such
that X0 and X1 are closed and X0 ∩X1 is normally embedded in X. Then we
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have
SdX ≤ max{SdX0, SdX1, 1 + Sd(X0 ∩X1)}.

For each triad of spaces (X ;X0, X1) and n ≥ 0, the shape dimension
Sd(X ;X0, X1) is said to be at most n, denoted Sd(X ;X0, X1) ≤ n, provided
each map f : (X ;X0, X1) → (P ;P0, P1) into a polyhedral triad factors up to
homotopy of triads through a polyhedral triad (Q;Q0, Q1) such that dimQ ≤
n. Let Sd(X ;X0, X1) = min{n ≥ 0 : Sd(X ;X0, X1) ≤ n}.

As the first result we show that this shape dimension of a triad is close
to the upper bound given by Günther:

Theorem A. Let (X ;X0, X1) be a triad of metric spaces such that X0

and X1 are closed. Then we have

max{SdX, SdX0, SdX1, Sd(X0 ∩X1)} ≤ Sd(X ;X0, X1)

≤max{SdX0, SdX1, 1 + Sd(X0 ∩X1)}.
Let (X ;X0, X1, ∗) and (Y ;Y0, Y1, ∗) be pointed triads of spaces such that

X is normal, X0, X1 and Y0, Y1 are connected closed subsets of X and Y ,
respectively, and that X0 ∩X1 and Y0 ∩ Y1 are connected and normally em-
bedded in X and Y , respectively. Let ϕ : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗)
be a shape morphism. Then ϕ induces the restricted shape morphisms ϕ|X :
(X, ∗) → (Y, ∗), ϕ|X0∩X1 : (X0∩X1, ∗) → (Y0∩Y1, ∗), ϕ|X0 : (X0, ∗) → (Y0, ∗)
and ϕ|X1 : (X1, ∗) → (Y1, ∗). The second result is the following Whitehead
type theorem:

Theorem B. Suppose that Sd(X ;X0, X1) ≤ n−1 and Sd(Y ;Y0, Y1) ≤ n,
where 1 ≤ n < ∞. If a shape morphism ϕ : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗)
induces n-shape equivalences ϕ|X0∩X1 : (X0 ∩ X1, ∗) → (Y0 ∩ Y1, ∗), ϕ|X0 :
(X0, ∗) → (Y0, ∗) and ϕ|X1 : (X1, ∗) → (Y1, ∗), then ϕ is an equivalence.

The Whitehead theorem for ordinary shape is well-known, and the most
general form can be found in [8, Theorem 7, p. 152].

As the third result we show the following statements of Mayer-Vietoris
type concerning n-shape equivalence:

Theorem C. Let ϕ : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗) be a shape mor-
phism, and suppose it induces n-shape equivalences ϕ|X0∩X1 : (X0 ∩X1, ∗) →
(Y0 ∩ Y1, ∗), ϕ|X0 : (X0, ∗) → (Y0, ∗) and ϕ|X1 : (X1, ∗) → (Y1, ∗), where
0 ≤ n <∞. Then

1. if n ≥ 2, the induced map
ϕ∗ : pro -πq(X ;X0, X1, ∗) → pro -πq(Y ;Y0, Y1, ∗) is an isomorphism for
2 ≤ q ≤ n− 1 and an epimorphism for q = n; and

2. ϕ|X : (X, ∗) → (Y, ∗) is an n-shape equivalence.

For any functions f, g : X → Y between sets and for any covering V of Y ,
(f, g) < V means that f and g are V-near. For any covering U of a set X and
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for any subset A of X , let U|A = {U ∩A : U ∈ U} and St(A,U) = ∪{U ∈ U :
U ∩ A 6= ∅}.

The author would like to thank Professor Watanabe at Yamaguchi Uni-
versity for the valuable discussion during his visit to the University in Summer
of 1999.

2. Preliminaries

Shape of triads. Let TopT denote the category of triads of spaces and
maps of triads. Recall that a resolution of a triad (X ;X0, X1) is a morphism

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

in pro-TopT with the following two properties [7]:
(R1) Let (P ;P0, P1) be an ANR triad, and let V be an open covering of
P . Then every map of triads f : (X ;X0, X1) → (P ;P0, P1) admits
λ ∈ Λ and a map of triads g : (Xλ;X0λ, X1λ) → (P ;P0, P1) such that
(gpλ, f) < V ; and

(R2) Let (P ;P0, P1) be an ANR triad. Then for each open covering V
of P there exists an open covering V ′ of P such that whenever λ ∈ Λ
and g, g′ : (Xλ;X0λ, X1λ) → (P ;P0, P1) are maps of triads such that
(gpλ, g

′pλ) < V ′, then (gpλλ′ , g′pλλ′ ) < V for some λ′ ≥ λ.
p is an ANR-resolution (resp., polyhedral resolution) if (Xλ;X0λ, X1λ) are all
ANR triads (resp., polyhedral triads). Then we have

Theorem 2.1 ([7, 9]). Every triad (X ;X0, X1) of spaces admits
1. an ANR-resolution

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

such that Λ is cofinite and Xλ = Int(X0λ) ∪ Int(X1λ) for each λ ∈ Λ;
and

2. a polyhedral resolution

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

such that Λ is cofinite.

Theorem 2.2 ([9]). Every resolution of a triad of spaces (X ;X0, X1)
induces an expansion of (X ;X0, X1).

Let HTopT be the category of triads of spaces and homotopy classes of
maps of triads, and let HPolT be the full subcategory of HTopT whose ob-
jects are the triads of spaces which have the homotopy type of a polyhedral
triad (equivalently, an ANR triad) (see [9, Theorem 4.5]). Combining Theo-

rems 2.1 and 2.2, we define the shape category ShT for triads of spaces as the
abstract shape category for the pair (HTopT ,HPolT ) ([9, §5]).
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Theorem 2.3. Let (X ;X0, X1) be a triad of spaces such that X is normal,
X0 and X1 are closed and X0∩X1 is normally embedded in X. Then for each
resolution

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

such that X and Xλ, λ ∈ Λ, are normal, the following induced morphisms are
resolutions:



p|X = (pλ|X) : X → X

p|X0 = (pλ|X0) : X0 → X0

p|X1 = (pλ|X1) : X1 → X1

p|X0∩X1 =
(pλ|X0∩X1) : X0 ∩X1 → X0 ∩ X1 = (X0λ ∩X1λ, pλλ′ |X0λ′∩X1λ′

,Λ).

Proof. First note that our assumption implies that X0 and X1 are nor-
mally embedded (see [2, 2.7 a)]). By [7, Remark 1 and Theorem 4] the induced
morphisms p|(X,X0), p|(X,X1) and p|(X,X0∩X1) are resolutions of pairs, which
implies by [6, Theorem 2] that p|X is a resolution and by [6, Theorem 3] that
p|X0 , p|X1 and p|X0∩X1 are resolutions.

Let HTopT
∗ and HPolT∗ denote the pointed versions of the categories

HTopT and HPolT , respectively. Analogously, we can define the shape cat-
egory ShT

∗ for pointed triads of spaces as the abstract shape category for the

pair (HTopT
∗ ,HPolT∗ ). The pointed version of Theorem 2.3 also holds, and

we have

Lemma 2.4. Every pointed triad of spaces (X ;X0, X1, ∗) admits an

HPolT∗ -expansion p = (pλ) : (X ;X0, X1, ∗) → (X ; X0,X1, ∗) such that

p = (pλ) : (X ;X0, X1) → (X; X0,X1) is an HPolT -expansion.

Proof. This follows from the constructions in [9, Theorems 3.2, 3.6].

ANR triads.

Lemma 2.5. Let (P ;P0, P1) be an ANR triad, let (X ;X0, X1) be a triad of
metric spaces such that X0, X1 are closed subsets of X, and let A be a closed
subset of X. Then every map of triads f : (A;A ∩X0, A ∩X1) → (P ;P0, P1)

admits an extension f̃ : (U ;U ∩ X0, U ∩ X1) → (P ;P0, P1) for some open
neighborhood U of A in X.

Lemma 2.6. Let (P ;P0, P1), (X ;X0, X1) and A be as in Lemma 2.5, and
suppose that f, g : (X ;X0, X1) → (P ;P0, P1) are maps of triads. If f |A ' g|A
as maps of triads from (A;A∩X0, A∩X1) to (P ;P0, P1), then there exists an
open neighborhood V of A in X such that f |V ' g|V as maps of triads from
(V ;V ∩X0, V ∩X1) to (P ;P0, P1).
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Lemma 2.7. (Homotopy extension lemma) Let (P ;P0, P1), (X ;X0, X1)
and A ⊆ X be as in Lemma 2.5, and let (P ;P0, P1) be an ANR triad. If
f, g : (A;A ∩ X0, A ∩ X1) → (P ;P0, P1) are homotopic maps of triads, and
if g extends to a map of triads g̃ : (X ;X0, X1) → (P ;P0, P1), then there is

an extension f̃ : (X ;X0, X1) → (P ;P0, P1) of f such that f̃ ' g̃ as maps of
triads.

Proof of Lemma 2.5-2.7. These are proved in [9]. But note that the
condition that X = Int(X0)∪ Int(X1) can be dropped from the hypothesis of
[9, Lemma 2.3].

Polyhedral triads.

Lemma 2.8 (Homotopy extension lemma for polyhedral triads). Let
(P ;P0, P1) be a polyhedral triad, and let Q be a subpolyhedron of P . Then
for any triad of spaces (Y ;Y0, Y1) any map of triads

H : ((P×0)∪(Q×I); (P0×0)∪((P0∩Q)×I), (P1×0)∪((P1∩Q)×I)) → (Y ;Y0, Y1)

extends to a map of triads

H̃ : (P × I ;P0 × I, P1 × I) → (Y ;Y0, Y1).

Proof. The same argument as for [8, Theorem 3, p. 291] works for
polyhedral triads.

Lemma 2.9 (Cellular approximation theorem for polyhedral triads). For
each map of triads f : (P ;P0, P1) → (Q;Q0, Q1) between polyhedral triads,
there exists a map of triads g : (P ;P0, P1) → (Q;Q0, Q1) such that g(P (n)) ⊆
Q(n) and f ' g as maps of triads. Here for any polyhedron R, R(n) denotes
the n-skeleton of R.

Proof. By the cellular approximation theorem, the restricted map
f |P0∩P1 : P0 ∩ P1 → Q0 ∩ Q1 admits a cellular map g′ : P0 ∩ P1 → Q0 ∩ Q1

such that f |P0∩P1 ' g′. By Lemma 2.8 (with Q = P0 ∩ P1), g
′ extends to

a map of triads g′ : (P ;P0, P1) → (Q;Q0, Q1) such that f ' g′ as maps of
triads. By the cellular approximation theorem ([10, Theorem 17, p. 404]),
there exist cellular maps of pairs g0 : (P0, P0 ∩P1) → (Q0, Q0 ∩Q1) such that
g0 ' g′|P0 rel (P0 ∩ P1) and g1 : (P1, P0 ∩ P1) → (Q1, Q0 ∩ Q1) such that
g1 ' g′|P1 rel (P0 ∩ P1). Since g0|P0∩P1 = g′|P0∩P1 = g1|P0∩P1 , g0 and g1

define a map of triads g : (P ;P0, P1) → (Q;Q0, Q1) such that g ' g′ as maps
of triads.

Lemma 2.10. Let 0 ≤ n ≤ ∞, and let (X ;X0, X1, ∗) and (Y ;Y0, Y1, ∗)
be pointed polyhedral triads such that X0, X1, X0 ∩ X1, Y0, Y1, Y0 ∩ Y1 are
connected, and let f : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗) be a map of triads with
the following property:



252 T. MIYATA

(E)n The restricted maps f |X0∩X1 : (X0 ∩ X1, ∗) → (Y0 ∩ Y1, ∗), f |X0 :
(X0, ∗) → (Y0, ∗) and f |X1 : (X1, ∗) → (Y1, ∗) are n-equivalences.

and for each pointed polyhedral triad (P ;P0, P1, ∗) consider the map

f∗ : HPolT∗ ((P ;P0, P1, ∗), (X ;X0, X1, ∗)) −→
−→HPolT∗ ((P ;P0, P1, ∗), (Y ;Y0, Y1, ∗)).

Then if dimP ≤ n, f∗ is an epimorphism, and if dimP ≤ n − 1, f∗ is a
monomorphism.

Proof. This is proved similarly to [10, Theorem 23].

Lemma 2.11. Let 1 ≤ n ≤ ∞, let (X ;X0, X1, ∗) and (Y ;Y0, Y1, ∗) be
pointed polyhedral triads such that X0, X1, X0 ∩ X1, Y0, Y1, Y0 ∩ Y1 are
connected, and let f : (X ;X0, X1) → (Y ;Y0, Y1) be a map of triads with
property (E)n. Then if dimX ≤ n−1 and dimY ≤ n, then f : (X ;X0, X1) →
(Y ;Y0, Y1) is a homotopy equivalence.

Lemma 2.12. Let 0 ≤ n ≤ ∞, let (X ;X0, X1, ∗) and (Y ;Y0, Y1, ∗) be
pointed polyhedral triads such that X0, X1, X0 ∩X1, Y0, Y1, Y0 ∩ Y1 are con-
nected, and let f : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗) be a map of triads with prop-
erty (E)n. Then the restricted map f |X : (X, ∗) → (Y, ∗) is an n-equivalence.

Proof. This is essentially proved in [1, 16.24].

Lemma 2.13. Let 2 ≤ n ≤ ∞, let (X ;X0, X1, ∗) and (Y ;Y0, Y1, ∗) be
pointed polyhedral triads such that X0, X1, X0 ∩ X1, Y0, Y1, Y0 ∩ Y1 are
connected, and let f : (X ;X0, X1, ∗) → (Y ;Y0, Y1, ∗) be a map of triads with
property (E)n. Then the induced map f∗ : πq(X ;X0, X1, ∗) → πq(Y ;Y0, Y1, ∗)
is an isomorphism for 2 ≤ q ≤ n− 1 and an epimorphism for q = n.

Proof. This follows from the homotopy sequences for polyhedral pairs
and triads (see [3, p. 160]) and the Five Lemma (see [5, p.201]).

3. Shape dimension for triads of spaces

In this section we obtain fundamental properties of shape dimension and
prove Theorem A. First, let us note that the properties analogous to [8, The-
orem 2, p. 96] hold:

Proposition 3.1. For each triad of spaces (X ;X0, X1), the following
statements are equivalent:

1. Sd(X ;X0, X1) ≤ n;

2. There exists an HPolT -expansion

p = (pλ) : (X ;X0, X1) → (X ; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ)

such that each Xλ is a polyhedral triad with dimXλ ≤ n;
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3. For each HPolT -expansion

p = (pλ) : (X ;X0, X1) → (X; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ),

each λ admits λ′ ≥ λ such that pλλ′ factors in HPolT through a poly-
hedral triad (P ;P0, P1) such that dimP ≤ n; and

4. Each map f : (X ;X0, X1) → (P ;P0, P1) into a polyhedral triad

(P ;P0, P1) factors in HTopT through a map of triads g : (X ;X0, X1) →
(P (n);P

(n)
0 , P

(n)
1 ) and the inclusion map i : (P (n);P

(n)
0 , P

(n)
1 ) ↪→

(P ;P0, P1).

Proof. Note that Lemma 2.9 is used in 1) ⇒ 4), and the other cases are
similar to the ordinary case.

Shape dimension for pointed triads is similarly defined, and we have

Theorem 3.2. For each triad of spaces (X ;X0, X1) with a base point ∗,
Sd(X ;X0, X1, ∗) = Sd(X ;X0, X1).

Proof. The same argument as in the proof of [8, Theorem 7, p.104]
applies to our case, using Lemma 2.8 and the following lemma in appropriate
places.

Lemma 3.3. Let f, g : (P ;P0, P1, ∗) → (Q;Q0, Q1, ∗) be maps of pointed
polyhedral triads such that f ' g as maps of unpointed triads and g(P ) ⊆ Q(n)

for some n ≥ 0. Then there exists a map of pointed triads h : (P ;P0, P1, ∗) →
(Q;Q0, Q1, ∗) such that f ' h as maps of pointed triads and h(P ) ⊆ Q(n).

Proof. The same argument as in the proof of [8, Lemma 4, p. 104]
applies to our case, using Lemmas 2.8 and 2.9.

Before proving Theorem A, we prove

Lemma 3.4. Let (X ;X0, X1) be a triad of metric spaces such that X0 and
X1 are closed, and let





X ′ = (X0 × 0) ∪ ((X0 ∩X1) × I) ∪ (X1 × 1)
X ′

0 = X ′ ∩ (X0 × [0, 2/3])
X ′

1 = X ′ ∩ (X1 × [1/3, 1])

and 



X ′′ = (X0 × [0, 2/3]) ∪ (X1 × [1/3, 1])
X ′′

0 = X0 × [0, 2/3]
X ′′

1 = X1 × [1/3, 1]
.

Then the inclusion map i : (X ′;X ′
0, X

′
1) ↪→ (X ′′;X ′′

0 , X
′′
1 ) is an equivalence in

ShT .
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Proof. The proof follows the technique used in [2, Lemma 2.6]. It suf-
fices to show that for each ANR triad (P ;P0, P1) the inclusion induced map

i∗ : HTopT ((X ′′;X ′′
0 , X

′′
1 ), (P ;P0, P1)) → HTopT ((X ′;X ′

0, X
′
1), (P ;P0, P1))

is a bijection. By Lemma 2.5, each map f : (X ′;X ′
0, X

′
1) → (P ;P0, P1)

extends to a map f : (U ;U ∩ X ′′
0 , U ∩ X ′′

1 ) → (P ;P0, P1) for some open
neighborhood U of X ′ in X ′′. By the compactness of I , there exists an open
neighborhood V of X0∩X1 in X such that (V ×I)∩X ′′ ⊆ U . By the Urysohn
lemma, there exists a map φ : X → I such that

{
φ|X0∩X1 = 1;
φ|X\V = 0.

Define a map g : X × I → P by

g(x, t) =

{
f(x, tφ(x)) if x ∈ X0;

f(x, 1 − (1 − t)φ(x)) if x ∈ X1.

Then g|X′ = f , and g(X ′′
0 ) ⊆ P0 and g(X ′′

1 ) ⊆ P1, so g defines a map of triads
g : (X ′′;X ′′

0 , X
′′
1 ) → (P ;P0, P1) such that g|(X′;X′

0,X′

1) = f , showing that i∗ is
surjective. To see that i∗ is injective, suppose that g1, g2 : (X ′′;X ′′

0 , X
′′
1 ) →

(P ;P0, P1) are maps of triads such that g1|X′ ' g2|X′ as maps of triads
from (X ′;X ′

0, X
′
1) to (P ;P0, P1). Then by Lemma 2.6 there exists an open

neighborhood W of X ′ in X ′′ such that g1|W ' g2|W as maps of triads from
(W ;W ∩ X ′′

0 ,W ∩ X ′′
1 ) to (P ;P0, P1). By the same argument as above, this

homotopy of triads extends to a homotopy of triads g1 ' g2 as required.

Proof of Theorem A. The first inequality follows from Theorem 2.3.
To show the second inequality, let n = max{SdX0, SdX1, 1 + Sd(X0 ∩X1)},
and let f : (X ;X0, X1) → (P ;P0, P1) be a map of triads. It suffices to
verify the second inequality for each triad (X ;X0, X1) of spaces such that
the inclusion maps X0 ∩ X1 ↪→ X0 and X0 ∩ X1 ↪→ X1 are cofibrations.
Indeed, embed (X ;X0, X1) into (X ′′;X ′′

0 , X
′′
1 ) by i(x) = (x, 1/2) for x ∈ X ,

and let r : (X ′′;X ′′
0 , X

′′
1 ) → (X ;X0, X1) be the projection. Then ri = 1X ,

in particular, (X ;X0, X1) is dominated by (X ′′;X ′′
0 , X

′′
1 ) in ShT , so that

Sd(X ;X0, X1) ≤ Sd(X ′′;X ′′
0 , X

′′
1 ). Since by Lemma 3.4 Sd(X ′′;X ′′

0 , X
′′
1 ) =

Sd(X ′;X ′
0, X

′
1), then Sd(X ;X0, X1) ≤ Sd(X ′;X ′

0, X
′
1). On the other hand, by

[2, Theorem 2.6], X0 and X1 are shape equivalent to X ′
0 and X ′

1, respectively,
and clearly X0 ∩ X1 is shape equivalent to X ′

0 ∩ X ′
1. Hence we can replace

(X ;X0, X1) by (X ′;X ′
0, X

′
1) if necessary.

Now since Sd(X0∩X1) ≤ n−1, f |X0∩X1 ' f ′ for some map f ′ : X0∩X1 →
P0 ∩ P1 such that f ′(X0 ∩ X1) ⊆ (P0 ∩ P1)

(n−1). Considering f ′ as a map
of triads f ′ : (A;A ∩ X0, A ∩ X1) → (P ;P0, P1) where A = X0 ∩ X1, by
Lemma 2.7, f ′ extends to a map of triads f ′ : (X ;X0, X1) → (P ;P0, P1) such
that f ′ ' f as maps of triads. Now by [2, Lemma 2.8 b)], there exists a

map g0 : X0 → P0 such that g0(X0) ⊆ P
(n)
0 and g0 ' f ′|X0 rel (X0 ∩ X1),
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and similarly there exists a map g1 : X1 → P1 such that g1(X1) ⊆ P
(n)
1 and

g1 ' f ′|X1 rel (X0 ∩X1). So the map of triads g : (X ;X0, X1) → (P ;P0, P1)
defined by g|X0 = g0 and g|X1 = g1 satisfies g(X) ⊆ P (n) and g ' f as maps
of triads. By Proposition 3.1, we conclude Sd(X ;X0, X1) ≤ n.

Remark. Note that the difference between the upper and lower bounds in
Theorem A is at most 1, i.e.,

max{SdX0, SdX1, Sd(X0 ∩X1) + 1} ≤
≤ max{SdX, SdX0, SdX1, Sd(X0 ∩X1)} + 1.

Moreover, there is an example with each one of the inequalities being strict.
Indeed, there exists a polyhedral triad (X ;X0, X1) such that

max{SdX, SdX0, SdX1, Sd(X0 ∩X1)} < Sd(X ;X0, X1)

= max{SdX0, SdX1, Sd(X0 ∩X1) + 1}

(e.g., take X = X0 = D2, X1 = ∂D2), and also there exists a polyhedral triad
(X ;X0, X1) such that

max{SdX, SdX0, SdX1, Sd(X0 ∩X1)} = Sd(X ;X0, X1)

< max{SdX0, SdX1, Sd(X0 ∩X1) + 1}

(e.g., take X = X0 = X1 = S1).

4. n-Shape equivalence

Throughout the rest of the paper, all triads are pointed, and maps and
homotopies preserve the base point, so that the indication of the base point
is omitted.

In this section we wish to prove Theorems B and C. First we prove the
following lemmas.

Lemma 4.1. Suppose that we are given a commutative diagram:

(Zλ0 ;Z0λ0 , Z1λ0)
p0−−−−→ (Zλ1 ;Z0λ1 , Z1λ1)

p1−−−−→ · · ·
⊆
x ⊆

x

(Xλ0 ;X0λ0 , X1λ0) −−−−→ (Xλ1 ;X0λ1 , X1λ1) −−−−→ · · ·
· · · pn−1−−−−→ (Zλn

;Z0λn
, Z1λn

)

⊆
x

· · · −−−−→ (Xλn
;X0λn

, X1λn
)
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where (Zλi
;Z0λi

, Z1λi
) and (Xλi

;X0λi
, X1λi

), i = 0, 1, . . . , n, are polyhedral
triads such that Z0λ0 , Z1λ0 and Z0λ0 ∩ Z1λ0 are connected, and suppose that
the induced maps





(pi|(Z0λi
,X0λi

))∗ : πi(Z0λi
, X0λi

) → πi(Z0λi+1 , X0λi+1)

(pi|(Z1λi
,X1λi

))∗ : πi(Z1λi
, X1λi

) → πi(Z1λi+1 , X1λi+1)

(pi|(Z0λi
∩Z1λi

,X0λi
∩X1λi

))∗ :

πi(Z0λi
∩ Z1λi

, X0λi
∩X1λi

) → πi(Z0λi+1 ∩ Z1λi+1 , X0λi+1 ∩X1λi+1)

are trivial for i = 0, 1, . . . , n−1. Then there exist polyhedral triads (P ;P0, P1)
and (Q;Q0, Q1) and a map of triads g : (P ;P0, P1) → (Zλn

, Z0λn
, Z1λn

) with
the following properties:

1. P0, P1, P0 ∩ P1, Q0, Q1, Q0 ∩Q1 are connected;
2. (Q;Q0, Q1) ⊆ (P ;P0, P1), and the inclusion map k : (Q;Q0, Q1) ↪→

(P ;P0, P1) satisfies condition (E)n−1;
3. (Zλ0 ;Z0λ0 , Z1λ0) ⊆ (P ;P0, P1) and (Xλ0 ;X0λ0 , X1λ0) ⊆ (Q;Q0, Q1);
4. g|(Zλ0

;Z0λ0
,Z1λ0

) = pn−1 · · · p1p0; and

5. The restriction of g to (Q;Q0, Q1) defines a map of triads

g|(Q;Q0,Q1) : (Q;Q0, Q1) → (Xλn
;X0λn

, X1λn
).

Proof. Let

{
(K;K0,K1)
(L;L0, L1)

}
be triangulations of

{
(Zλ0 ;Z0λ0 , Z1λ0)
(Xλ0 ;X0λ0 , X1λ0)

}

such that (L;L0, L1) is a subcomplex of (K;K0,K1) and that L is a full
subcomplex of K. For each i = 0, 1, . . . , n− 1, let





Qi = (Xλ0 × I) ∪ (|Ki| × I)
Q0i = (X0λ0 × I) ∪ (|Ki

0| × I)
Q1i = (X1λ0 × I) ∪ (|Ki

1| × I)

and 



Pi = Qi ∪ (Zλ0 × 0)
P0i = Q0i ∪ (Z0λ0 × 0)
P1i = Q1i ∪ (Z1λ0 × 0)

.

Then for each i = 0, 1, . . . , n − 1, the inclusion map ki : (Qi;Q0i, Q1i) ↪→
(Pi;P0i, P1i) satisfies condition (E)i. We wish to define a map of triads

gi : (Pi;P0i, P1i) → (Zλi+1 ;Z0λi+1 , Z1λi+1) (i = 0, 1, . . . , n− 1)

with the following properties:
1. The restriction of gi to (Qi;Q0i, Q1i) defines a map of triads

gi|(Qi;Q0i,Q1i) : (Qi;Q0i, Q1i) → (Xλi+1 ;X0λi+1 , X1λi+1);

and
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2. The following diagram commutes:

(Zλ0 ;Z0λ0 , Z1λ0)
⊆−−−−→ (P0;P00, P10)

⊆−−−−→ · · ·
∥∥∥ g0

y

(Zλ0 ;Z0λ0 , Z1λ0)
p0−−−−→ (Zλ1 ;Z0λ1 , Z1λ1)

p1−−−−→ · · ·
· · · ⊆−−−−→ (Pn−1;P0n−1, P1n−1)

gn−1

y

· · · pn−1−−−−→ (Zλn
;Z0λn

, Z1λn
).

For i = 0, first let
{
g0|Zλ0 × 0 = p0;
g0(x× I) = p0(x) for x ∈ Xλ0 ,

and for each vertex v of K \ L, let g0|v × I be a path from p0(v) to the base
point ∗ in 




Z0λ1 if v ∈ K0 \K1

Z1λ1 if v ∈ K1 \K0

Z0λ1 ∩ Z1λ1 if v ∈ K0 ∩K1



 .

Such a path exists since Z0λ0 , Z1λ0 , Z0λ0 ∩ Z1λ0 are path-connected. Then
g0(P00) ⊆ Z0λ1 , g0(P10) ⊆ Z1λ1 , g0(Q00) ⊆ X0λ1 , g0(Q10) ⊆ X1λ1 , and thus
g0 defines a map of triads

g0 : (P0;P00, P10) → (Zλ1 ;Z0λ1 , Z1λ1)

so that the restriction to (Q0;Q00, Q01) defines a map of triads

g0|(Q0;Q00,Q01) : (Q0;Q00, Q10) → (Xλ1 ;X0λ1 , X1λ1).

Suppose gi−1 has beed defined for some i such that 1 ≤ i ≤ n − 2. To
define gi, first let pi|Pi−1 = pigi−1. Let σ be an i-simplex of K \ L, and
let v ∈ K \ L be a vertex of σ. Then either one of the following occurs:
σ ∈ K0 \K1, σ ∈ K1 \K0, σ ∈ K0 ∩K1. So ((∂σ× I)∪ (σ× 0), ∂σ× 1, v× 1)

forms a cell in





P0i−1

P1i−1

P0i−1 ∩ P1i−1



 with its boundary in





Q0i−1

Q1i−1

Q0i−1 ∩Q1i−1





if





σ ∈ K0 \K1

σ ∈ K1 \K0

σ ∈ K0 ∩K1



, and the map gi−1|((∂σ×I)∪(σ×0),∂σ×1,v×1) defines an

element of





πi(Z0λi
, X0λi

)
πi(Z1λi

, X1λi
)

πi(Z0λi
∩ Z1λi

, X0λi
∩X1λi

)



.
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By assumption, pigi−1|((∂σ×I)∪(σ×0),∂σ×1,v×1) extends to a map

gi|(σ×I,σ×1,v×1) : (σ×I, σ×1, v×1) →





(Z0λi+1 , X0λi+1)
(Z1λi+1 , X1λi+1)

(Z0λi+1 ∩ Z1λi+1 , X0λi+1 ∩X1λi+1)



 .

Repeating the same process for each i-simplex of K \ L, we obtain a
map gi with the desired property. Now it suffices to set (P ;P0, P1) =
(Pn−1;P0n−1, P1n−1), (Q;Q0, Q1) = (Qn−1;Q0n−1, Q1n−1) and g = gn−1.

Lemma 4.2. Let (Z; Z0,Z1) = ((Zλ;Z0λ, Z1λ), rλλ′ ,Λ) and (X ; X0,X1)
= ((Xλ;X0λ, X1λ), pλλ′ ,Λ) be inverse systems of polyhedral triads such that
for each λ ∈ Λ, (Xλ;X0λ, X1λ) ⊆ (Zλ;Z0λ, Z1λ) and Z0λ, Z1λ and Z0λ ∩
Z1λ are connected. Suppose that the inclusion induced morphism j = (jλ) :
(X; X0,X1) → (Z ; Z0,Z1) satisfies the following condition:

(EE)n The induced morphisms j|X0∩X1 : X0 ∩ X1 → Z0 ∩ Z1, j|X0
:

X0 → Z0 and j|X1 : X1 → Z1 are n-equivalences.
Then for each λ ∈ Λ there exist λ′ ≥ λ, polyhedral triads (P ;P0, P1) and
(Q;Q0, Q1) and a map of triads g : (P ;P0, P1) → (Zλ;Z0λ, Z1λ) with the
following properties:

1. P0, P1, P0 ∩ P1, Q0, Q1, Q0 ∩Q1 are connected;
2. (Q;Q0, Q1) ⊆ (P ;P0, P1), and the inclusion map k : (Q;Q0, Q1) ↪→

(P ;P0, P1) satisfies condition (E)n;
3. (Zλ′ ;Z0λ′ , Z1λ′) ⊆ (P ;P0, P1) and (Xλ′ ;X0λ′ , X1λ′) ⊆ (Q;Q0, Q1);
4. g|(Zλ′ ;Z0λ′ ,Z1λ′ ) = rλλ′ ; and
5. The restriction of g to (Q;Q0, Q1) defines a map of triads

g|(Q;Q0,Q1) : (Q;Q0, Q1) → (Xλ;X0λ, X1λ).

Proof. By assumption, the inverse systems of pairs (Z0,X0), (Z1,X1)
and (Z0∩Z1,X0∩X1) are n-connected. This implies that each λ ∈ Λ admits
λ = λn+1 ≤ λn ≤ · · · ≤ λ1 ≤ λ0 = λ′ in Λ so that the hypothesis of Lemma
4.1 is satisfied with pi = pλi+1λi

. Our assertion follows from Lemma 4.1.

Lemma 4.3. Let ϕ = (ϕλ) : (X; X0,X1) → (Y ; Y 0,Y 1) be a level
morphism of inverse systems of polyhedral triads such that for each λ ∈ Λ,
X0λ, X1λ, X0λ ∩X1λ, Y0λ, Y1λ, Y0λ ∩ Y1λ are all connected. If ϕ satisfies con-
dition (EE)n, then for each λ ∈ Λ there exist λ′ ≥ λ, polyhedral triads
(P ;P0, P1) and (Q;Q0, Q1) and a map of triads f : (Q;Q0, Q1) → (P ;P0, P1)
with the following properties:

1. P0, P1, P0 ∩ P1, Q0, Q1, Q0 ∩Q1 are connected;
2. f satisfies condition (E)n; and
3. The following diagram commutes for some maps of triads h, h′, g, g′:
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(Xλ;X0λ, X1λ) (Xλ′ ;X0λ′ , X1λ′)

(Yλ;Y0λ, Y1λ) (Yλ′ ;Y0λ′ , Y1λ′)

(Q;Q0, Q1)

(P ;P0, P1)

ϕλ f ϕλ′

pλλ′

rλλ′

g

h′

g′

h6
6

6

�

�

HHHY ����

HHHY ����

Proof. Let (Z; Z0,Z1) be the inverse system of polyhedral triads of
mapping cylinders ((M(ϕλ|Xλ

);M(ϕλ|X0λ
),M(ϕλ|X1λ

)), rλλ′ ,Λ). Then there
is a commutative diagram:

(Y ; Y 0,Y 1)

(X ; X0,X1)

(Z; Z0,Z1)

i

j

s

ϕ
? � -

@
@

@R

where i and j are the inclusion induced morphisms, and s is induced by the
retractions. Then that ϕ satisfies condition (EE)n is equivalent to that i

satisfies condition (EE)n. Lemma 4.2 implies that each λ ∈ Λ admits λ′ ≥ λ
and polyhedral triads (P ;P0, P1) and (Q;Q0, Q1) and a map f : (Q;Q0, Q1) →
(P ;P0, P1) with properties 1) - 5) of Lemma 4.2, so that there is the following
commutative diagram:

(Xλ;X0λ, X1λ) (Xλ′ ;X0λ′ , X1λ′)

(Zλ;Z0λ, Z1λ) (Zλ′ ;Z0λ′ , Z1λ′)

(Yλ;Y0λ, Y1λ) (Yλ′ ;Y0λ′ , Y1λ′)

(Q;Q0, Q1)

(P ;P0, P1)

iλ

jλ jλ′

f
iλ′

pλλ′

qλλ′

rλλ′

6
6

6

? ?

�

�

�

HHHY ����

HHHY ����

It is easy to see that such polyhedral triads (P ;P0, P1) and (Q;Q0, Q1) and
map of triads f : (Q;Q0, Q1) → (P ;P0, P1) have the desired properties.

Lemma 4.4. Let ϕ = (ϕλ) : (X; X0,X1) → (Y ; Y 0,Y 1) be a level
morphism of inverse systems of polyhedral triads such that for each λ ∈ Λ,
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X0λ, X1λ, X0λ ∩X1λ, Y0λ, Y1λ, Y0λ ∩ Y1λ are all connected. If ϕ satisfies con-
dition (EE)n, then each λ ∈ Λ admits λ′ ≥ λ with the following properties:

1. For each map of triads h : (R;R0, R1) → (Yλ′ ;Y0λ′ , Y1λ′) of a polyhedral
triad (R;R0, R1) such that R0, R1, R0 ∩R1 are connected and dimR ≤
n, there exists a map of triads k : (R;R0, R1) → (Xλ;X0λ, X1λ) such
that ϕλk ' qλλ′h as maps of triads; and

2. For each polyhedral triad (R;R0, R1) such that R0, R1, R0 ∩ R1 are
connected and dimR ≤ n − 1 and for each pair of maps of triads
k1, k2 : (R;R0, R1) → (Xλ′ ;X0λ′ , X1λ′) such that ϕλ′k1 ' ϕλ′k2 as
maps of triads, we have pλλ′k1 ' pλλ′k2 as maps of triads.

Proof. For each λ ∈ Λ, take λ′ ≥ λ as in Lemma 4.3. Then Lemmas 4.3
and 2.10 imply our assertion.

Proof of Theorem B. Let ϕ : (X ;X0, X1) → (Y ;Y0, Y1) be a shape
morphism as in the hypothesis. Let ϕ be represented by a level morphism
ϕ = (ϕλ) : (X ; X0,X1) → (Y ; Y 0,Y 1) where p = (pλ) : (X ;X0, X1) →
(X; X0,X1) = ((Xλ;X0λ, X1λ), pλλ′ ,Λ) and q = (qλ) : (Y ;Y0, Y1) →
(Y ; Y 0,Y 1) = ((Yλ;Y0λ, Y1λ), qλλ′ ,Λ) are HTopT -expansions of (X ;X0, X1)
and (Y ;Y0, Y1), respectively, such that Λ is cofinite, X0λ, X1λ, X0λ ∩ X1λ,
Y0λ, Y1λ, Y0λ ∩ Y1λ are connected, and the following induced morphisms are
expansions (see Theorem 2.3):





p|X0 : X0 → X0

p|X1 : X1 → X1

p|X0∩X1 : X0 ∩X1 → X0 ∩ X1

and




q|Y0 : Y0 → Y 0

q|Y1 : Y1 → Y 1

q|Y0∩Y1 : Y0 ∩ Y1 → Y 0 ∩ Y 1

.

Now let λ ∈ Λ. Then take λ1 ≥ λ as in Lemma 4.4, and for this λ1

repeatedly take λ2 ≥ λ1 as in Lemma 4.4. Since Sd(Y ;Y0, Y1) ≤ n, by
Proposition 3.1, there exists λ3 ≥ λ2 so that qλ2λ3 factors through a poly-
hedral triad (Q;Q0, Q1) with dimQ ≤ n. Similarly, by Sd(X ;X0, X1) ≤
n − 1, there exists λ′ ≥ λ3 so that pλ3λ′ factors through a polyhedral triad
(P ;P0, P1) with dimP ≤ n − 1. Say g1 : (Xλ′ ;X0λ′ , X1λ′) → (P ;P0, P1),
g2 : (P ;P0, P1) → (Xλ3 ;X0λ3 , X1λ3) and h1 : (Yλ3 ;Y0λ3 , Y1λ3) → (Q;Q0, Q1),
h2 : (Q;Q0, Q1) → (Yλ2 ;Y0λ2 , Y1λ2) are homotopy classes such that pλ3λ′ =
g2g1 and qλ2λ3 = h2h1. By Lemma 4.4, there exists a homotopy class
k′ : (Q;Q0, Q1) → (Xλ1 ;X0λ1 , X1λ1) so that ϕλ1k

′ = qλ1λ2h2. Thus we
have the following commutative diagram:
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(Xλ;X0λ, X1λ) (Yλ;Y0λ, Y1λ)

(Xλ1 ;X0λ1 , X1λ1) (Yλ1 ;Y0λ1 , Y1λ1)

(Xλ2 ;X0λ2 , X1λ2) (Yλ2 ;Y0λ2 , Y1λ2)

(Xλ3 ;X0λ3 , X1λ3) (Yλ3 ;Y0λ3 , Y1λ3)

(Xλ′ ;X0λ′ , X1λ′) (Yλ′ ;Y0λ′ , Y1λ′)

(P ;P0, P1)

(Q;Q0, Q1)

g2

g1

h1

h2

k′

pλ3λ′ qλ3λ′

pλ2λ3 qλ2λ3

pλ1λ2 qλ1λ2

pλλ1 qλλ1

ϕλ′

ϕλ3

ϕλ2

ϕλ1

ϕλ-

-

-

-

-
6

6

6

6

6

6

6

6

-

HHHHY

�

����*
hhhhhhhhhhhhhy

Now let k = pλλ1k
′h1qλ3λ′ : (Yλ′ ;Y0λ′ , Y1λ′) → (Xλ;X0λ, X1λ). By tracing

around the diagram we get kϕλ = qλλ′ . Also by the diagram ϕλ1k
′h1ϕλ3g2 =

ϕλ1pλ1λ3g2. Since dimP ≤ n−1, by the choice of λ1, pλλ1k
′h1ϕλ3g2 = pλλ3g2,

which implies pλλ′ = kϕλ′ . Now by Morita’s lemma ([8, Theorem 5, p. 113])
we conclude that ϕ is an isomorphism.

[8, Theorem 3, p. 109] partially holds for the case of pro-sets. More
precisely, we have

Lemma 4.5. Let A = (Aλ, aλλ′ ,Λ) and B = (Bλ, bλλ′ ,Λ) be pro-sets over
the same index set Λ, and let f : A → B be a morphism of pro-sets given by
a level morphism of systems (fλ) : A → B. If the condition

(EP) For each λ ∈ Λ there is λ′ ≥ λ such that Im(qλλ′ ) ⊆ Im(fλ).
holds, then the morphism f is an epimorphism.

Proof. The same proof as for the corresponding part of [8, Theorem 3,
p. 109] applies to this case.

Proof of Theorem C. Let ϕ = (ϕλ) : (X; X0,X1) → (Y ; Y 0,Y 1)
be a level morphism representing the shape morphism ϕ as in the proof of
Theorem B. Let λ ∈ Λ. Then take λ′ ≥ λ and a map f : (Q;Q0, Q1) →
(P ;P0, P1) between polyhedral triads as in Lemma 4.3. By Lemma 2.13,
f∗ : πq(Q;Q0, Q1) → πq(P ;P0, P1) is an isomorphism for 2 ≤ q ≤ n − 1 and
an epimorphism for q = n. Thus by Morita’s lemma ϕ∗ : πq(X; X0,X1) →
πq(Y ; Y 0,Y 1) is an isomorphism for q ≤ n − 1. For q = n, Im{(qλλ′)∗ :
πq(Yλ′ ;Y0λ′ , Y1λ′) → πq(Yλ;Y0λ, Y1λ)} ⊆ Im{(ϕλ)∗ : πq(Xλ;X0λ, X1λ) →
πq(Yλ;Y0λ, Y1λ)}, and so by Lemma 4.5 ϕ∗ : πq(X; X0,X1) → πq(Y ; Y 0,Y 1)
is an epimorphism. This proves the first assertion.

By Lemma 2.12, f |Q : Q → P is an n-equivalence. By an argument
similar to the above, we see that (ϕ|X)∗ : πq(X) → πq(Y ) is an isomorphism
for q ≤ n−1 and an epimorphism for q = n. This proves the second assertion.

As an easy corollary to Theorems B and C, we have
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Corollary 4.6. Suppose that ϕ : (X ;X0, X1) → (Y ;Y0, Y1) is a shape
morphism whose restrictions ϕ|X0∩X1 : X0 ∩X1 → Y0 ∩ Y1, ϕ|X0 : X0 → Y0

and ϕ|X1 : X1 → Y1 are isomorphisms. Then
1. if Sd(X ;X0, X1) < ∞ and Sd(Y ;Y0, Y1) < ∞, then ϕ : (X ;X0, X1) →

(Y ;Y0, Y1) is an isomorphism; and
2. if SdX <∞ and SdY <∞, then the restricted shape morphism ϕ|X :
X → Y is an isomorphism.
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