A NOTE ON BLECHER'S CHARACTERIZATION OF HILBERT C*-MODULES

Franka Miriam Brückler
Department of Mathematics, University of Zagreb, Croatia

Abstract

By a theorem of D. P. Blecher, a Hilbert C*-module V over a C^{*}-algebra \mathcal{A} (faithfully and nondegenerately represented on a Hilbert space $\mathcal{H})$ is characterized by a certain Hilbert space \mathcal{H}_{V}, such that V can be embedded in the algebra $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ of bounded operators between \mathcal{H} and \mathcal{H}_{V}. In this paper it is shown: 1. For a Hilbert C^{*}-module over a C^{*}-algebra of compact operators the Hilbert space \mathcal{H}_{V} coincides with a Hilbert subspace of the module, which characterizes all adjointable operators on the module. 2. For any Hilbert C^{*}-module V, its strict completion can be realized in the algebra $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$.

1. Introduction

The aim of this paper is to show two uses of the Hilbert space \mathcal{H}_{V} from the following characterization of Hilbert C^{*}-modules:

Theorem 1.1 (D. P. Blecher, [3]). Let $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ be a nondegenerate C^{*}-algebra and let V be a right Banach \mathcal{A}-module (and an operator space). V is a Hilbert \mathcal{A}-module (with the same norm-, resp. operator space structure) if and only if the following three conditions are satisfied:
(i) $\mathcal{H}_{V}=V \otimes_{h \mathcal{A}} \mathcal{H}^{c}$ is a (column) Hilbert space;
(ii) $\phi: V \rightarrow \mathbf{B}\left(\mathcal{H}, \mathcal{H}_{V}\right)$, defined by $\phi(x)(\xi)=x \otimes_{\mathcal{A}} \xi$, is a (complete) isometry; (iii) $\phi(x)^{*} \phi(x) \in \mathcal{A}$ for all $x \in V$.

If this is the case, the (unique ${ }^{1}$) inner product on V turning it into a Hilbert \mathcal{A}-module is given by

$$
<x \mid y>=\phi(x)^{*} \phi(y) .
$$

[^0]In this paper it is shown that Blecher's Hilbert space \mathcal{H}_{V} for Hilbert C*-modules over C*-algebras of compact operators coincides with a Hilbert subspace V_{e} of such a module V, known for several good properties. Further, it is shown that the V-strict completion $\mathcal{M}(V)$ of V, which is a generalization of the notion of a multiplier algebra from C^{*}-algebra theory to Hilbert C^{*} modules, can be realized in $\mathbf{B}\left(\mathcal{H}, \mathcal{H}_{V}\right)$ for any Hilbert C^{*}-module V.

Let us first shortly explain the objects in Blecher's theorem (for more details, see [3]). The Hilbert space $V \otimes_{h \mathcal{A}} \mathcal{H}^{c}$ is the module tensor product $V \otimes_{\mathcal{A}} \mathcal{H}^{c}$ of V and the Hilbert column space \mathcal{H}^{c}, treated as a left \mathcal{A}-module, completed with respect to the Haagerup norm. Elementary tensors in $V \otimes_{\mathcal{A}} \mathcal{H}^{c}$ are denoted by $x \otimes_{\mathcal{A}} \xi(x \in V, \xi \in \mathcal{H}) . \mathcal{H}^{c}$ is isometric to the Hilbert space \mathcal{H} (that's why their elements are identified) equipped with an additional operator space ${ }^{2}$ structure, setting $\mathcal{H}^{c}=B(\mathbf{C}, \mathcal{H})$.

The inner product of the Hilbert space \mathcal{H}_{V} from Blecher's theorem is given on elementary tensors by

$$
\left(x \otimes_{\mathcal{A}} \xi \mid y \otimes_{\mathcal{A}} \eta\right)_{\mathcal{H}_{V}}=\left(<y\left|x>_{V} \xi\right| \eta\right)_{\mathcal{H}}
$$

Let us now recall the definitions and properties used in this paper. The notion of a Hilbert C^{*}-module is a generalization of the notion of a Hilbert space. The first use of such objects was made by I. Kaplansky in 1953 ([6]). The research on Hilbert C*-modules began in the seventies (W.L.Paschke, [9]; M.A.Rieffel, [10]). A complex vector space V which is a (right) algebraic module over a C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module if there is a map (inner product) $<. \mid .>: V \times V \rightarrow \mathcal{A}$ with the properties (for all $x, y, z \in V, a \in \mathcal{A}$)

$$
\begin{aligned}
<x+y \mid z> & =<x|z>+<y| z> \\
<x \mid y a> & =<x \mid y>a \\
<x \mid y>^{*} & =<y \mid x> \\
<x \mid x> & \geq 0 \\
<x \mid x> & =0 \Leftrightarrow x=0
\end{aligned}
$$

and such that V is complete with respect to the norm defined by $\|x\|=$ $\sqrt{\|<x|x\rangle \|_{\mathcal{A}}}$. For example, any C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module, setting $\langle a \mid b\rangle=a^{*} b$.

Two classes of (\mathcal{A})-linear operators on V shall be considered in this paper: the C^{*}-algebra $\mathbf{B}_{\mathcal{A}}(V)$ of adjointable (with respect to the Hilbert C^{*}-module inner product) maps and the C^{*}-algebra $\mathbf{K}_{\mathcal{A}}(V)$ of generalized compact operators (the norm-closure of the linear span of all operators $F_{x, y}, x, y \in V$, where $\left.F_{x, y}(z)=x<y \mid z>\right) . \mathbf{K}_{\mathcal{A}}(V)$ is a closed twosided ideal in $\mathbf{B}_{\mathcal{A}}(V)$.

For more details on Hilbert C^{*}-modules see [8].

[^1]Although Hilbert C^{*}-modules are analogues of Hilbert spaces, many Hilbert space properties cannot, in general, be transferred to Hilbert C*modules, see e.g. [8] or [11]. A special class of Hilbert C*-modules for which most difficulties can be resolved is the class of Hilbert C*-modules over a C^{*}-algebra of (all) compact operators on a Hilbert space, see [1]. Every such module V contains a Hilbert subspace V_{e} which defines all adjointable operators on V, in the sense that the C^{*}-algebras $\mathbf{B}_{\mathcal{A}}(V)$ and $\mathbf{B}\left(V_{e}\right)$ are isomorphic, as are $\mathbf{K}_{\mathcal{A}}(V)$ and $\mathbf{K}\left(V_{e}\right)$, via the restriction map $\left.T \mapsto T\right|_{V_{e}}$. If $\mathcal{A}=\oplus_{i} \mathbf{K}\left(\mathcal{H}_{i}\right)$ is a general C^{*}-algebra of compact operators and V a Hilbert \mathcal{A}-module, then V can be decomposed as $V=\oplus_{i} V_{i}$, where $V_{i}=V \mathbf{K}\left(\mathcal{H}_{i}\right)$. Then $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\prod_{i} \mathbf{B}\left(\left(V_{i}\right)_{e_{i}}\right)$ and $\mathbf{K}_{\mathcal{A}}(V)$ is isomorphic to $\oplus_{i} \mathbf{K}\left(\left(V_{i}\right)_{e_{i}}\right)$, where e_{i} are minimal projections in $\mathbf{K}\left(\mathcal{H}_{i}\right)$.

A known concept in the C^{*}-algebra theory is the multiplier algebra $\mathcal{M}(\mathcal{A})$ of a C^{*}-algebra \mathcal{A}, which can be realized as a completion of \mathcal{A} under a certain topology (called strict topology), for details see e.g. [11]. There is also a generalization of this concept for Hilbert C^{*}-modules (for details, see [2]). For a Hilbert \mathcal{A}-module V the V-strict topology is defined on any Hilbert \mathcal{B}-module W which contains V in such a way that \mathcal{A} is an essential ideal in \mathcal{B} and $V=W \mathcal{A}$ (the set of all products of elements from W and \mathcal{A}). A strict completion of a $\left(\right.$ full $\left.^{3}\right)$ Hilbert \mathcal{A}-module V is such a module W which is V-strictly complete. It is proven in [2] that the strict completion of a Hilbert \mathcal{A}-module V is the Hilbert $\mathcal{M}(\mathcal{A})$-module $\mathbf{B}_{\mathcal{A}}(\mathcal{A}, V)$ (consisting of all adjointable maps from \mathcal{A} to V).

Throughout this paper, \mathcal{A} shall denote a C^{*}-algebra, $\mathcal{M}(\mathcal{A})$ its multiplier algebra, \mathcal{H} a Hilbert space, V a Hilbert C^{*}-module and $\mathcal{M}(V)$ its strict completion. If \mathcal{A} is represented on \mathcal{H} (resp. if $\left.V \subseteq B\left(\mathcal{H}, \mathcal{H}_{V}\right)\right) \mathcal{A H}$ (resp. $\left.\phi(V) \mathcal{H}\right)$ denotes the linear span of elements of the form $a \xi, a \in \mathcal{A}, \xi \in \mathcal{H}$ (resp. of the form $\left.\phi(x)(\xi)=x \otimes_{\mathcal{A}} \xi, x \in V, \xi \in \mathcal{H}\right)$. The inner product of a Hilbert C*module shall be denoted by $<. \mid .>$ and of a Hilbert space by (.|.). $\mathbf{B}(\mathcal{H})$ shall denote the C^{*}-algebra of all bounded linear operators on \mathcal{H}. $\mathbf{B}_{\mathcal{A}}(V)$ and $\mathbf{K}_{\mathcal{A}}(V)$ shall denote the C^{*}-algebra of adjointable resp. of generalized compact operators on V. \cong denotes isometric isomorphism.

2. The characterisation Hilbert space for Hilbert C*-modules over C*-algebras of compact operators

Let V be a Hilbert \mathbf{K}-module, where \mathbf{K} is the \mathbf{C}^{*}-algebra of all compact operators on a fixed Hilbert space \mathcal{H}. Let V_{e} denote the subspace of V

$$
V_{e}=\{x e: x \in V\}
$$

[^2]where e is a minimal projection in \mathbf{K}, i.e. $e=F_{\xi, \xi}$ for some $\xi \in \mathcal{H}$ of norm one ${ }^{4}$. V_{e} is a Hilbert space (not only submodule!) in the norm inherited from V and the Hilbert space inner product is given by
$$
(x e \mid y e)=\operatorname{tr}\left(e<y \mid x>_{V} e\right)
$$

For details about V_{e}, see [1].
Proposition 2.1. If V is a Hilbert \mathbf{K}-module and if \mathcal{H}_{V} is the corresponding Hilbert space from Blecher's theorem, then

$$
V_{e} \cong \mathcal{H}_{V}
$$

Proof. Let e be the minimal projection $F_{\xi, \xi}$ in \mathbf{K}. From Blecher's theorem (ii) it is clear that the set $\phi(V) \mathcal{H}$ is dense in \mathcal{H}_{V}, so it is sufficient to define a linear map $\psi: \mathcal{H}_{V} \rightarrow V_{e}$ on elements of the form $\phi(x) \eta=x \otimes_{\mathbf{K}} \eta$. Set

$$
\psi\left(x \otimes_{\mathbf{K}} \eta\right)=x F_{\eta, \xi}
$$

ψ maps \mathcal{H}_{V} into V_{e} because $F_{\eta, \xi}=F_{\eta, \xi} F_{\xi, \xi} . \psi$ is obviously onto, since $x e \in V_{e}$ is the image of $x \otimes_{\mathbf{K}} \xi \in \mathcal{H}_{V}$. Further (note that $F_{\xi, \eta} T F_{\xi^{\prime}, \eta^{\prime}}=\left(T \xi^{\prime} \mid \eta\right) F_{\xi, \eta^{\prime}}$ for all $\xi, \xi^{\prime}, \eta, \eta^{\prime} \in \mathcal{H}$ and $\left.T \in \mathbf{B}(\mathcal{H})\right)$

$$
\begin{aligned}
& \left(x F_{\eta, \xi} \mid x F_{\eta, \xi}\right)_{V_{e}}= \\
& \operatorname{tr}\left(e<x F_{\eta, \xi} \mid x F_{\eta, \xi}>_{V} e\right)= \\
& \operatorname{tr}\left(\left(<x F_{\eta, \xi}\left|x F_{\eta, \xi}>_{V} \xi\right| \xi\right)_{\mathcal{H}} e\right)= \\
& \left(<x F_{\eta, \xi}\left|x F_{\eta, \xi}>_{V} \xi\right| \xi\right)_{\mathcal{H}} .
\end{aligned}
$$

By the expression for the inner product of elementary tensors in \mathcal{H}_{V}, the last quantity is equal to

$$
\begin{aligned}
& \left(x F_{\eta, \xi} \otimes_{\mathbf{K}} \xi \mid x F_{\eta, \xi} \otimes_{\mathbf{K}} \xi\right)_{\mathcal{H}_{V}}= \\
& \left(x \otimes_{\mathbf{K}} F_{\eta, \xi \xi \mid}=\right. \\
& \left(x \otimes_{\mathbf{K}} \eta \mid x \otimes_{\mathbf{K}} F_{\eta, \xi}\right)_{\mathcal{H}_{V}}
\end{aligned}
$$

so ψ extends to an isometric, surjective map $\mathcal{H}_{V} \rightarrow V_{e}$.
Corollary 2.2. a) If V is a Hilbert \mathbf{K}-module, then the C^{*}-algebra $\mathbf{B}_{\mathbf{K}}(V)$ is isomorphic to $\mathbf{B}\left(\mathcal{H}_{V}\right)$ and $\mathbf{K}_{\mathbf{K}}(V)$ is isomorphic to $\mathbf{K}\left(\mathcal{H}_{V}\right)$.
b) If V is a Hilbert C^{*}-module over a general C^{*}-algebra of compact operators $\mathcal{A}=\oplus_{i} \mathbf{K}\left(\mathcal{H}_{i}\right)$, let $V_{i}=V \mathbf{K}\left(\mathcal{H}_{i}\right)$. Then $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\prod_{i} \mathbf{B}\left(\mathcal{H}_{V_{i}}\right)$ and $\mathbf{K}_{\mathcal{A}}(V)$ is isomorphic to $\oplus_{i} \mathbf{K}\left(\mathcal{H}_{V_{i}}\right)$.

Proof. This is just the restatement of theorems 5 and 7 (resp. 6 and 9) from [1], using the result from the preceding proposition.

[^3]
3. On the strict completion of a Hilbert C*-module

By Blecher's theorem, a Hilbert \mathcal{A}-module V (with $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ nondegenerate) can be (completely) isometrically embedded in $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$, so it is natural to ask if the V-strict completion of V can also be realized inside $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$, i.e. if $\mathcal{M}(V) \subseteq B\left(\mathcal{H}, \mathcal{H}_{V}\right)$. Equivalently, the question is if $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ is V strictly complete. Recall that the V-strict topology $([2])$ on $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ (which is a Hilbert $\mathbf{B}(\mathcal{H})$-module containing $\phi(V)$ as a Hilbert \mathcal{A}-submodule) is defined by the family of seminorms $t \mapsto\left\|t^{*} \phi(x)\right\|, x \in V$ and $t \mapsto\|t a\|, a \in \mathcal{A}$. We shall further identify V with its ϕ-image in $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$.

Proposition 3.1. Let V be a Hilbert \mathcal{A}-module (with $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ nondegenerate) and \mathcal{H}_{V} the corresponding Hilbert space from Blecher's theorem. Then $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ is V-strictly complete.

Proof. Let $\left(t_{\lambda}\right)_{\lambda \in \Lambda}$ be a V-strictly convergent net in $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$, i.e. the nets $\left(t_{\lambda} a\right)_{\lambda}$ and $\left(t_{\lambda}^{*} x\right)_{\lambda}$ converge in norm in $B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ resp. $B(\mathcal{H})$, for all $a \in \mathcal{A}$ resp. $x \in V$. Denote the (norm-)limits

$$
\begin{aligned}
& L(a)=\lim _{\lambda} t_{\lambda} a, a \in \mathcal{A}, \\
& R(x)=\lim _{\lambda} t_{\lambda}^{*} x, x \in V .
\end{aligned}
$$

If \mathcal{A} is an unital C^{*}-algebra the net $\left(t_{\lambda}\right)_{\lambda}$ trivially converges in norm to an operator $t \in B\left(\mathcal{H}, \mathcal{H}_{V}\right)$, for if 1 is the unit element in \mathcal{A} then the net $\left(t_{\lambda}\right)_{\lambda}=\left(t_{\lambda} 1\right)_{\lambda}$ converges by presumption to a $t \in B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ and this is the required V-strict limit of $\left(t_{\lambda}\right)_{\lambda}$.

In the nonunital case, we proceed as follows:
It is easy to check that the above defined maps $L: \mathcal{A} \rightarrow B\left(\mathcal{H}, \mathcal{H}_{V}\right)$ and $R: V \rightarrow B(\mathcal{H})$ are linear. Further, for all $a \in \mathcal{A}, x \in V$

$$
L(a)^{*} x=a^{*} R(x):
$$

$L(a)^{*} x=\left(\lim _{\lambda} t_{\lambda} a\right)^{*} x=\left(\lim _{\lambda}\left(t_{\lambda} a\right)^{*}\right) x=\left(\lim _{\lambda} a^{*} t_{\lambda}^{*}\right) x=\lim _{\lambda} a^{*} t_{\lambda}^{*} x=$ $a^{*} \lim _{\lambda} t_{\lambda}^{*} x=a^{*} R(x)$ (since the adjoint map $*: B\left(\mathcal{H}, \mathcal{H}_{V}\right) \rightarrow B\left(\mathcal{H}_{V}, \mathcal{H}\right)$ is norm-continuous, as are right multiplication $R_{x}: B\left(\mathcal{H}_{V}, \mathcal{H}\right) \rightarrow B(\mathcal{H})$ by a fixed element $x \in V$ and left multiplication $L_{a}: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ by a fixed element $a \in \mathcal{A})$. Set

$$
t(a \xi)=L(a)(\xi)
$$

for $a \in \mathcal{A}, \xi \in \mathcal{H}$ and

$$
t^{*}(x \xi)=R(x)(\xi)
$$

for $x \in V, \xi \in \mathcal{H}$. Extending the above defined maps t and t^{*} linearly we get a map t defined on the dense subset $\mathcal{A H}$ of \mathcal{H} (with range in \mathcal{H}_{V}) and a map t^{*} defined on the dense subset $V \mathcal{H}$ of \mathcal{H}_{V} (with range in \mathcal{H}). Both of these
maps are continuous on their domains, check this e.g. for t :

$$
\begin{gathered}
\left\|t\left(\sum_{i=1}^{n} a_{i} \xi_{i}\right)\right\|=\left\|\sum_{i}\left(\lim _{\lambda} t_{\lambda} a_{i}\right) \xi_{i}\right\|= \\
=\left\|\sum_{i} \lim _{\lambda} t_{\lambda} a_{i} \xi_{i}\right\|=\left\|\lim _{\lambda} t_{\lambda}\left(\sum_{i} a_{i} \xi_{i}\right)\right\|=\leq \\
\leq\left(\sup _{\lambda}\left\|t_{\lambda}\right\|\right)\left\|\sum_{i=1}^{n} a_{i} \xi_{i}\right\| .
\end{gathered}
$$

(If the net $\left(t_{\lambda}\right)$ is V-strictly convergent, then it is uniformly bounded by the uniform boundedness principle, because \mathcal{A} is nondegenerately represented on \mathcal{H}.)

Accordingly, t and t^{*} can be extended to bounded linear maps $t: \mathcal{H} \rightarrow \mathcal{H}_{V}$ and $t^{*}: \mathcal{H}_{V} \rightarrow \mathcal{H}$. These maps are mutually adjoint on the dense subsets $\mathcal{A H}$ resp. $V \mathcal{H}$:

$$
\begin{aligned}
(t(a \xi) \mid x \eta)_{\mathcal{H}_{V}} & =(L(a) \xi \mid x \eta)=\left(\xi \mid L(a)^{*} x \eta\right)=\left(\xi \mid a^{*} R(x) \eta\right) \\
& =\left(a \xi \mid t^{*}(x \eta)\right)_{\mathcal{H}}
\end{aligned}
$$

so t and t^{*} are mutually adjoint maps.
It is now easy to check that t is the required V-strict limit of $\left(t_{\lambda}\right)_{\lambda}$, i.e. that $t_{\lambda} a \rightarrow t a$ for all $a \in \mathcal{A}$ and $t_{\lambda}^{*} x \rightarrow t^{*} x$ for all $x \in V$.

Corollary 3.2. For any Hilbert C^{*}-module $V \subseteq \mathbf{B}\left(\mathcal{H}, \mathcal{H}_{V}\right)$

$$
V \subseteq \mathcal{M}(V) \subseteq \mathbf{B}\left(\mathcal{H}, \mathcal{H}_{V}\right)
$$

(isometrically).

Finally, note the following fact:
Proposition 3.3. If V is a Hilbert C^{*}-module, then $\mathcal{H}_{V} \mathcal{H}_{\mathcal{M}(V)}$.
Proof. If $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ then $\mathcal{M}(\mathcal{A}) \subseteq \mathbf{B}(\mathcal{H})$. Let $\phi^{\mathcal{M}}$ be the map associated to the Hilbert $\mathcal{M}(\mathcal{A})$-module $\mathcal{M}(V)$ by Blecher's theorem. $\phi(V) \mathcal{H}$ is dense in \mathcal{H}_{V} and $\phi^{\mathcal{M}} \mathcal{M}((V)) \mathcal{H}$ is dense in $\mathcal{H}_{\mathcal{M}(V)}$. The map $\phi(x) \xi \mapsto \phi^{\mathcal{M}}(x) \xi$ $(x \in V \subseteq \mathcal{M}(V)), \xi \in \mathcal{H}$ is easily seen to be an isometry from $\phi(V) \mathcal{H}$ into $\phi^{\mathcal{M}} \mathcal{M}((V)) \mathcal{H}$, so it extends to an isometry from \mathcal{H}_{V} into $\mathcal{H}_{\mathcal{M}(V)}$.

Remark 3.4. Another use of the Hilbert space \mathcal{H}_{V} is the possibility of representing $\mathbf{B}_{\mathcal{A}}(V)$ (faithfully and nondegenarately) in $\mathbf{B}\left(\mathcal{H}_{V}\right)$, if V and \mathcal{A} are as in Blecher's theorem. This is a consequence of results from [8] and [3]. Namely, there is a more general construction - the inner tensor product of two Hilbert C^{*}-modules (details in [8]) and in [3] it is shown that the inner tensor product coincides with the Haagerup (module) tensor product. The results on embedding the C^{*}-algebra $\mathbf{B}_{\mathcal{A}}(V)$ in the C^{*}-algebra of the inner
tensor product of V with another module, in the special case of tensoring V with \mathcal{H}^{c} as in Blecher's theorem, yield the embedding $\mathbf{B}_{\mathcal{A}}(V) \subseteq \mathbf{B}\left(\mathcal{H}_{V}\right)$.

Further, it is known ([2]) that $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\mathbf{B}_{\mathcal{M}(\mathcal{A})}(\mathcal{M}(V))$, so Blecher's theorem and it's corollaries from this paper show that the following isometric embeddings are valid for any Hilbert \mathcal{A}-module V with \mathcal{A} faithfully and nondegenerately represented on \mathcal{H} (so $\mathcal{A} \subseteq \mathcal{M}(\mathcal{A}) \subseteq \mathbf{B}(\mathcal{H})$):

$$
\begin{aligned}
& V \subseteq \mathcal{M}(V) \subseteq \mathbf{B}\left(\mathcal{H}, \mathcal{H}_{V}\right)\left(\subseteq \mathbf{B}\left(\mathcal{H}, \mathcal{H}_{\mathcal{M}(V)}\right)\right) \\
& \mathbf{K}_{\mathcal{A}}(V) \subseteq \mathbf{B}_{\mathcal{A}}(V) \subseteq \mathbf{B}\left(\mathcal{H}_{V}\right) \\
& \mathbf{K}_{\mathcal{A}}(V) \subseteq \mathbf{K}_{\mathcal{M}(A)}(\mathcal{M}(V)) \subseteq \mathbf{B}_{\mathcal{A}}(V) \cong \mathbf{B}_{\mathcal{M}(\mathcal{A})}(\mathcal{M}(V)) \subseteq \mathbf{B}\left(\mathcal{H}_{V}\right)
\end{aligned}
$$

Also, the linking algebra of a Hilbert C^{*}-module (defined formally as

$$
\mathcal{L}=\left[\begin{array}{cc}
\mathbf{K}_{\mathcal{A}}(V) & V \\
V^{*} & \mathcal{A}
\end{array}\right]
$$

and suitably equipped with a C^{*}-algebra structure) can be represented (faithfully and nondegenerately) as a C^{*}-subalgebra of $\mathbf{B}\left(\mathcal{H}_{V} \oplus \mathcal{H}\right)$. In short, all important structures related to a Hilbert C^{*}-module V (the algebras of adjointable and of generalized compact operators, the linking algebra, the strict completion) can be concretely represented using the Hilbert space the underlying C^{*}-algebra \mathcal{A} is represented on and Blecher's space \mathcal{H}_{V}.

References

[1] D. Bakić, B. Guljaš, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, preprint, 1999.
[2] D. Bakić, B. Guldaš, Extensions of Hilbert C*-modules, preprint, 1999.
[3] D. P. Blecher, A new approach to Hilbert C*-modules, preprint, 1995.
[4] D. P. Blecher, V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991) 262-292
[5] E. Christensen, A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989) 417-448
[6] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953) 839-858
[7] E. C. Lance, Unitary operators on Hilbert C C^{*}-modules, Bull. London Math. Soc. 26 (1994) 363-366
[8] E. C. Lance, Hilbert C^{*}-modules, A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, 1995
[9] W. L. Paschke Inner product modules over B^{*}-algebras Trans. Amer. Math. Soc. 182 (1973) 443-468
[10] M. A. Rieffel Induced representations of C^{*}-algebras Adv. Math. 13 (1974) 176-257
[11] N. E. Wegge-Olsen K-theory and C^{*}-algebras Oxford University Press, 1993.

Department of Mathematics
PO Box. 335
HR-10002 Zagreb
Croatia
E-mail: bruckler@math.hr
Received: 10.10.2000.

[^0]: ${ }^{1}$ E.C. Lance has shown in [7] that there is a 1-1 correspondence between norm and inner product of Hilbert \mathcal{A}-modules.

[^1]: ${ }^{2}$ An operator space is a complex vector space V which can be embedded in some $\mathbf{B}(\mathcal{H})$ in a way that $M_{n}(V)$ (matrices with entries from V) is isometrically embedded in $M_{n}(\mathbf{B}(\mathcal{H}))$, for all $n \in \mathbf{N}$. A complete isometry is a map $T: X \rightarrow Y$ between operator spaces such that all $T_{n}: M_{n}(X) \rightarrow M_{n}(Y), T_{n}\left[x_{i j}\right]=\left[T x_{i j}\right]$, are isometries.

[^2]: ${ }^{3} V$ is a full Hilbert \mathcal{A}-module if the linear span of all products $\langle x \mid y\rangle, x, y \in V$, is dense in \mathcal{A}.

[^3]: ${ }^{4} F_{\xi, \eta}$ denotes the operator $\theta \mapsto(\theta \mid \eta) \xi$

