A NOTE ON BLECHER'S CHARACTERIZATION OF HILBERT C*-MODULES

Franka Miriam Brückler

Department of Mathematics, University of Zagreb, Croatia

ABSTRACT. By a theorem of D. P. Blecher, a Hilbert C*-module V over a C*-algebra \mathcal{A} (faithfully and nondegenerately represented on a Hilbert space \mathcal{H}) is characterized by a certain Hilbert space \mathcal{H}_V , such that V can be embedded in the algebra $B(\mathcal{H}, \mathcal{H}_V)$ of bounded operators between \mathcal{H} and \mathcal{H}_V . In this paper it is shown: 1. For a Hilbert C*-module over a C*-algebra of compact operators the Hilbert space \mathcal{H}_V coincides with a Hilbert subspace of the module, which characterizes all adjointable operators on the module. 2. For any Hilbert C*-module V, its strict completion can be realized in the algebra $B(\mathcal{H}, \mathcal{H}_V)$.

1. INTRODUCTION

The aim of this paper is to show two uses of the Hilbert space \mathcal{H}_V from the following characterization of Hilbert C^{*}-modules:

THEOREM 1.1 (D. P. Blecher, [3]). Let $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ be a nondegenerate C^* -algebra and let V be a right Banach \mathcal{A} -module (and an operator space). V is a Hilbert \mathcal{A} -module (with the same norm-, resp. operator space structure) if and only if the following three conditions are satisfied: (i) $\mathcal{H}_V = V \otimes_{h\mathcal{A}} \mathcal{H}^c$ is a (column) Hilbert space;

(ii) $\phi: V \to \mathbf{B}(\mathcal{H}, \mathcal{H}_V)$, defined by $\phi(x)(\xi) = x \otimes_{\mathcal{A}} \xi$, is a (complete) isometry;

(iii) $\phi(x)^*\phi(x) \in \mathcal{A} \text{ for all } x \in V.$

If this is the case, the (unique¹) inner product on V turning it into a Hilbert A-module is given by

$$\langle x \mid y \rangle = \phi(x)^* \phi(y).$$

 $^{^{1}\}mathrm{E.C.}$ Lance has shown in [7] that there is a 1-1 correspondence between norm and inner product of Hilbert $\mathcal{A}\text{-modules}.$

²⁶³

In this paper it is shown that Blecher's Hilbert space \mathcal{H}_V for Hilbert C^{*}-modules over C^{*}-algebras of compact operators coincides with a Hilbert subspace V_e of such a module V, known for several good properties. Further, it is shown that the V-strict completion $\mathcal{M}(V)$ of V, which is a generalization of the notion of a multiplier algebra from C^{*}-algebra theory to Hilbert C^{*}-modules, can be realized in $\mathbf{B}(\mathcal{H}, \mathcal{H}_V)$ for any Hilbert C^{*}-module V.

Let us first shortly explain the objects in Blecher's theorem (for more details, see [3]). The Hilbert space $V \otimes_{h\mathcal{A}} \mathcal{H}^c$ is the module tensor product $V \otimes_{\mathcal{A}} \mathcal{H}^c$ of V and the Hilbert column space \mathcal{H}^c , treated as a left \mathcal{A} -module, completed with respect to the Haagerup norm. Elementary tensors in $V \otimes_{\mathcal{A}} \mathcal{H}^c$ are denoted by $x \otimes_{\mathcal{A}} \xi$ ($x \in V, \xi \in \mathcal{H}$). \mathcal{H}^c is isometric to the Hilbert space \mathcal{H} (that's why their elements are identified) equipped with an additional operator space² structure, setting $\mathcal{H}^c = B(\mathbf{C}, \mathcal{H})$.

The inner product of the Hilbert space \mathcal{H}_V from Blecher's theorem is given on elementary tensors by

$$(x \otimes_{\mathcal{A}} \xi \mid y \otimes_{\mathcal{A}} \eta)_{\mathcal{H}_{V}} = (\langle y \mid x \rangle_{V} \xi \mid \eta)_{\mathcal{H}}$$

Let us now recall the definitions and properties used in this paper. The notion of a Hilbert C^{*}-module is a generalization of the notion of a Hilbert space. The first use of such objects was made by I. Kaplansky in 1953 ([6]). The research on Hilbert C^{*}-modules began in the seventies (W.L.Paschke, [9]; M.A.Rieffel, [10]). A complex vector space V which is a (right) algebraic module over a C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A} -module if there is a map (inner product) $< \cdot|_{\cdot} >: V \times V \rightarrow \mathcal{A}$ with the properties (for all $x, y, z \in V, a \in \mathcal{A}$)

$$\begin{array}{rcl} < x + y | z > & = & < x | z > + < y | z > \\ < x | y a > & = & < x | y > a, \\ < x | y >^{*} & = & < y | x >, \\ < x | x > & \geq & 0, \\ < x | x > & = & 0 \Leftrightarrow x = 0 \end{array}$$

and such that V is complete with respect to the norm defined by $|| x || = \sqrt{|| < x | x > ||_{\mathcal{A}}}$. For example, any C*-algebra \mathcal{A} is a Hilbert \mathcal{A} -module, setting $\langle a | b \rangle = a^*b$.

Two classes of (\mathcal{A}) -linear operators on V shall be considered in this paper: the C*-algebra $\mathbf{B}_{\mathcal{A}}(V)$ of adjointable (with respect to the Hilbert C*-module inner product) maps and the C*-algebra $\mathbf{K}_{\mathcal{A}}(V)$ of generalized compact operators (the norm-closure of the linear span of all operators $F_{x,y}, x, y \in V$, where $F_{x,y}(z) = x < y | z >$). $\mathbf{K}_{\mathcal{A}}(V)$ is a closed twosided ideal in $\mathbf{B}_{\mathcal{A}}(V)$.

For more details on Hilbert C^* -modules see [8].

²An operator space is a complex vector space V which can be embedded in some $\mathbf{B}(\mathcal{H})$ in a way that $M_n(V)$ (matrices with entries from V) is isometrically embedded in $M_n(\mathbf{B}(\mathcal{H}))$, for all $n \in \mathbf{N}$. A complete isometry is a map $T: X \to Y$ between operator spaces such that all $T_n: M_n(X) \to M_n(Y), T_n[x_{ij}] = [Tx_{ij}]$, are isometries.

265

Although Hilbert C*-modules are analogues of Hilbert spaces, many Hilbert space properties cannot, in general, be transferred to Hilbert C*modules, see e.g. [8] or [11]. A special class of Hilbert C*-modules for which most difficulties can be resolved is the class of Hilbert C*-modules over a C*-algebra of (all) compact operators on a Hilbert space, see [1]. Every such module V contains a Hilbert subspace V_e which defines all adjointable operators on V, in the sense that the C*-algebras $\mathbf{B}_{\mathcal{A}}(V)$ and $\mathbf{B}(V_e)$ are isomorphic, as are $\mathbf{K}_{\mathcal{A}}(V)$ and $\mathbf{K}(V_e)$, via the restriction map $T \mapsto T |_{V_e}$. If $\mathcal{A} = \bigoplus_i \mathbf{K}(\mathcal{H}_i)$ is a general C*-algebra of compact operators and V a Hilbert \mathcal{A} -module, then V can be decomposed as $V = \bigoplus_i V_i$, where $V_i = V\mathbf{K}(\mathcal{H}_i)$. Then $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\prod_i \mathbf{B}((V_i)_{e_i})$ and $\mathbf{K}_{\mathcal{A}}(V)$ is isomorphic to $\bigoplus_i \mathbf{K}((V_i)_{e_i})$, where e_i are minimal projections in $\mathbf{K}(\mathcal{H}_i)$.

A known concept in the C^{*}-algebra theory is the multiplier algebra $\mathcal{M}(\mathcal{A})$ of a C^{*}-algebra \mathcal{A} , which can be realized as a completion of \mathcal{A} under a certain topology (called strict topology), for details see e.g. [11]. There is also a generalization of this concept for Hilbert C^{*}-modules (for details, see [2]). For a Hilbert \mathcal{A} -module V the V-strict topology is defined on any Hilbert \mathcal{B} -module W which contains V in such a way that \mathcal{A} is an essential ideal in \mathcal{B} and $V = W\mathcal{A}$ (the set of all products of elements from W and \mathcal{A}). A strict completion of a (full³) Hilbert \mathcal{A} -module V is such a module W which is V-strictly complete. It is proven in [2] that the strict completion of a Hilbert \mathcal{A} -module V is the Hilbert $\mathcal{M}(\mathcal{A})$ -module $\mathbf{B}_{\mathcal{A}}(\mathcal{A}, V)$ (consisting of all adjointable maps from \mathcal{A} to V).

Throughout this paper, \mathcal{A} shall denote a C*-algebra, $\mathcal{M}(\mathcal{A})$ its multiplier algebra, \mathcal{H} a Hilbert space, V a Hilbert C*-module and $\mathcal{M}(V)$ its strict completion. If \mathcal{A} is represented on \mathcal{H} (resp. if $V \subseteq B(\mathcal{H}, \mathcal{H}_V)$) $\mathcal{A}\mathcal{H}$ (resp. $\phi(V)\mathcal{H}$) denotes the linear span of elements of the form $a\xi, a \in \mathcal{A}, \xi \in \mathcal{H}$ (resp. of the form $\phi(x)(\xi) = x \otimes_{\mathcal{A}} \xi, x \in V, \xi \in \mathcal{H}$). The inner product of a Hilbert C*module shall be denoted by $\langle . | . \rangle$ and of a Hilbert space by (. | .). $\mathbf{B}(\mathcal{H})$ shall denote the C*-algebra of all bounded linear operators on \mathcal{H} . $\mathbf{B}_{\mathcal{A}}(V)$ and $\mathbf{K}_{\mathcal{A}}(V)$ shall denote the C*-algebra of adjointable resp. of generalized compact operators on V. \cong denotes isometric isomorphism.

2. The characterisation Hilbert space for Hilbert C*-modules over C*-algebras of compact operators

Let V be a Hilbert **K**-module, where **K** is the C*-algebra of all compact operators on a fixed Hilbert space \mathcal{H} . Let V_e denote the subspace of V

$$V_e = \{xe : x \in V\}$$

 $^{{}^{3}}V$ is a full Hilbert $\mathcal{A}\text{-module}$ if the linear span of all products $< x \mid y >, x, y \in V,$ is dense in $\mathcal{A}.$

where e is a minimal projection in **K**, i.e. $e = F_{\xi,\xi}$ for some $\xi \in \mathcal{H}$ of norm one⁴. V_e is a Hilbert space (not only submodule!) in the norm inherited from V and the Hilbert space inner product is given by

$$(xe \mid ye) = tr(e < y \mid x >_V e).$$

For details about V_e , see [1].

PROPOSITION 2.1. If V is a Hilbert K-module and if \mathcal{H}_V is the corresponding Hilbert space from Blecher's theorem, then

$$V_e \cong \mathcal{H}_V.$$

PROOF. Let e be the minimal projection $F_{\xi,\xi}$ in **K**. From Blecher's theorem (ii) it is clear that the set $\phi(V)\mathcal{H}$ is dense in \mathcal{H}_V , so it is sufficient to define a linear map $\psi: \mathcal{H}_V \to V_e$ on elements of the form $\phi(x)\eta = x \otimes_{\mathbf{K}} \eta$. Set

$$\psi(x \otimes_{\mathbf{K}} \eta) = xF_{\eta,\xi}.$$

 ψ maps \mathcal{H}_V into V_e because $F_{\eta,\xi} = F_{\eta,\xi}F_{\xi,\xi}$. ψ is obviously onto, since $xe \in V_e$ is the image of $x \otimes_{\mathbf{K}} \xi \in \mathcal{H}_V$. Further (note that $F_{\xi,\eta}TF_{\xi',\eta'} = (T\xi' \mid \eta)F_{\xi,\eta'}$ for all $\xi, \xi', \eta, \eta' \in \mathcal{H}$ and $T \in \mathbf{B}(\mathcal{H})$)

$$\begin{aligned} & (xF_{\eta,\xi} \mid xF_{\eta,\xi})_{V_e} = \\ & tr(e < xF_{\eta,\xi} \mid xF_{\eta,\xi} >_V e) = \\ & tr((< xF_{\eta,\xi} \mid xF_{\eta,\xi} >_V \xi \mid \xi)_{\mathcal{H}} e) = \\ & (< xF_{\eta,\xi} \mid xF_{\eta,\xi} >_V \xi \mid \xi)_{\mathcal{H}}. \end{aligned}$$

By the expression for the inner product of elementary tensors in \mathcal{H}_V , the last quantity is equal to

$$(xF_{\eta,\xi} \otimes_{\mathbf{K}} \xi \mid xF_{\eta,\xi} \otimes_{\mathbf{K}} \xi)_{\mathcal{H}_{V}} = (x \otimes_{\mathbf{K}} F_{\eta,\xi}\xi \mid x \otimes_{\mathbf{K}} F_{\eta,\xi}\xi)_{\mathcal{H}_{V}} = (x \otimes_{\mathbf{K}} \eta \mid x \otimes_{\mathbf{K}} \eta)_{\mathcal{H}_{V}}$$

so ψ extends to an isometric, surjective map $\mathcal{H}_V \rightarrow V_e$.

COROLLARY 2.2. a) If V is a Hilbert **K**-module, then the C^{*}-algebra $\mathbf{B}_{\mathbf{K}}(V)$ is isomorphic to $\mathbf{B}(\mathcal{H}_V)$ and $\mathbf{K}_{\mathbf{K}}(V)$ is isomorphic to $\mathbf{K}(\mathcal{H}_V)$. b) If V is a Hilbert C^{*}-module over a general C^{*}-algebra of compact operators $\mathcal{A} = \bigoplus_i \mathbf{K}(\mathcal{H}_i)$, let $V_i = V\mathbf{K}(\mathcal{H}_i)$. Then $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\prod_i \mathbf{B}(\mathcal{H}_{V_i})$ and $\mathbf{K}_{\mathcal{A}}(V)$ is isomorphic to $\bigoplus_i \mathbf{K}(\mathcal{H}_{V_i})$.

PROOF. This is just the restatement of theorems 5 and 7 (resp. 6 and 9) from [1], using the result from the preceding proposition. \Box

 $^{{}^{4}}F_{\xi,\eta}$ denotes the operator $\theta \mapsto (\theta \mid \eta)\xi$

3. On the strict completion of a Hilbert C*-module

By Blecher's theorem, a Hilbert \mathcal{A} -module V (with $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ nondegenerate) can be (completely) isometrically embedded in $B(\mathcal{H}, \mathcal{H}_V)$, so it is natural to ask if the V-strict completion of V can also be realized inside $B(\mathcal{H}, \mathcal{H}_V)$, i.e. if $\mathcal{M}(V) \subseteq B(\mathcal{H}, \mathcal{H}_V)$. Equivalently, the question is if $B(\mathcal{H}, \mathcal{H}_V)$ is V-strictly complete. Recall that the V-strict topology ([2]) on $B(\mathcal{H}, \mathcal{H}_V)$ (which is a Hilbert $\mathbf{B}(\mathcal{H})$ -module containing $\phi(V)$ as a Hilbert \mathcal{A} -submodule) is defined by the family of seminorms $t \mapsto || t^* \phi(x) ||, x \in V$ and $t \mapsto || ta ||, a \in \mathcal{A}$. We shall further identify V with its ϕ -image in $B(\mathcal{H}, \mathcal{H}_V)$.

PROPOSITION 3.1. Let V be a Hilbert A-module (with $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ nondegenerate) and \mathcal{H}_V the corresponding Hilbert space from Blecher's theorem. Then $\mathcal{B}(\mathcal{H}, \mathcal{H}_V)$ is V-strictly complete.

PROOF. Let $(t_{\lambda})_{\lambda \in \Lambda}$ be a V-strictly convergent net in $B(\mathcal{H}, \mathcal{H}_V)$, i.e. the nets $(t_{\lambda}a)_{\lambda}$ and $(t_{\lambda}^*x)_{\lambda}$ converge in norm in $B(\mathcal{H}, \mathcal{H}_V)$ resp. $B(\mathcal{H})$, for all $a \in \mathcal{A}$ resp. $x \in V$. Denote the (norm-)limits

$$L(a) = \lim_{\lambda} t_{\lambda} a, \ a \in \mathcal{A},$$
$$R(x) = \lim_{\lambda} t_{\lambda}^* x, \ x \in V.$$

If \mathcal{A} is an unital C*-algebra the net $(t_{\lambda})_{\lambda}$ trivially converges in norm to an operator $t \in B(\mathcal{H}, \mathcal{H}_V)$, for if 1 is the unit element in \mathcal{A} then the net $(t_{\lambda})_{\lambda} = (t_{\lambda}1)_{\lambda}$ converges by presumption to a $t \in B(\mathcal{H}, \mathcal{H}_V)$ and this is the required V-strict limit of $(t_{\lambda})_{\lambda}$.

In the nonunital case, we proceed as follows:

It is easy to check that the above defined maps $L: \mathcal{A} \to B(\mathcal{H}, \mathcal{H}_V)$ and $R: V \to B(\mathcal{H})$ are linear. Further, for all $a \in \mathcal{A}, x \in V$

$$L(a)^*x = a^*R(x):$$

 $L(a)^*x = (\lim_{\lambda} t_{\lambda}a)^*x = (\lim_{\lambda} (t_{\lambda}a)^*)x = (\lim_{\lambda} a^*t_{\lambda}^*)x = \lim_{\lambda} a^*t_{\lambda}^*x = a^*\lim_{\lambda} t_{\lambda}^*x = a^*R(x)$ (since the adjoint map $*: B(\mathcal{H}, \mathcal{H}_V) \to B(\mathcal{H}_V, \mathcal{H})$ is norm-continuous, as are right multiplication $R_x: B(\mathcal{H}_V, \mathcal{H}) \to B(\mathcal{H})$ by a fixed element $x \in V$ and left multiplication $L_a: B(\mathcal{H}) \to B(\mathcal{H})$ by a fixed element $a \in \mathcal{A}$). Set

$$t(a\xi) = L(a)(\xi)$$

for $a \in \mathcal{A}, \xi \in \mathcal{H}$ and

$$t^*(x\xi) = R(x)(\xi)$$

for $x \in V, \xi \in \mathcal{H}$. Extending the above defined maps t and t^* linearly we get a map t defined on the dense subset \mathcal{AH} of \mathcal{H} (with range in \mathcal{H}_V) and a map t^* defined on the dense subset \mathcal{VH} of \mathcal{H}_V (with range in \mathcal{H}). Both of these

maps are continuous on their domains, check this e.g. for t:

$$\| t(\sum_{i=1}^{n} a_{i}\xi_{i}) \| = \| \sum_{i} (\lim_{\lambda} t_{\lambda}a_{i})\xi_{i} \| =$$
$$= \| \sum_{i} \lim_{\lambda} t_{\lambda}a_{i}\xi_{i} \| = \| \lim_{\lambda} t_{\lambda}(\sum_{i} a_{i}\xi_{i}) \| = \le$$
$$\le (\sup_{\lambda} \| t_{\lambda} \|) \| \sum_{i=1}^{n} a_{i}\xi_{i} \| .$$

(If the net (t_{λ}) is V-strictly convergent, then it is uniformly bounded by the uniform boundedness principle, because \mathcal{A} is nondegenerately represented on \mathcal{H} .)

Accordingly, t and t^{*} can be extended to bounded linear maps $t : \mathcal{H} \to \mathcal{H}_V$ and $t^* : \mathcal{H}_V \to \mathcal{H}$. These maps are mutually adjoint on the dense subsets \mathcal{AH} resp. \mathcal{VH} :

$$(t(a\xi) \mid x\eta)_{\mathcal{H}_{V}} = (L(a)\xi \mid x\eta) = (\xi \mid L(a)^{*}x\eta) = (\xi \mid a^{*}R(x)\eta) = (a\xi \mid t^{*}(x\eta))_{\mathcal{H}},$$

so t and t^* are mutually adjoint maps.

It is now easy to check that t is the required V-strict limit of $(t_{\lambda})_{\lambda}$, i.e. that $t_{\lambda}a \rightarrow ta$ for all $a \in \mathcal{A}$ and $t_{\lambda}^* x \rightarrow t^* x$ for all $x \in V$.

COROLLARY 3.2. For any Hilbert C^* -module $V \subseteq \mathbf{B}(\mathcal{H}, \mathcal{H}_V)$

$$V \subseteq \mathcal{M}(V) \subseteq \mathbf{B}(\mathcal{H}, \mathcal{H}_V)$$

(isometrically).

Finally, note the following fact:

PROPOSITION 3.3. If V is a Hilbert C^{*}-module, then $\mathcal{H}_V \mathcal{H}_{\mathcal{M}(V)}$.

PROOF. If $\mathcal{A} \subseteq \mathbf{B}(\mathcal{H})$ then $\mathcal{M}(\mathcal{A}) \subseteq \mathbf{B}(\mathcal{H})$. Let $\phi^{\mathcal{M}}$ be the map associated to the Hilbert $\mathcal{M}(\mathcal{A})$ -module $\mathcal{M}(V)$ by Blecher's theorem. $\phi(V)\mathcal{H}$ is dense in \mathcal{H}_V and $\phi^{\mathcal{M}}\mathcal{M}((V))\mathcal{H}$ is dense in $\mathcal{H}_{\mathcal{M}(V)}$. The map $\phi(x)\xi \mapsto \phi^{\mathcal{M}}(x)\xi$ $(x \in V \subseteq \mathcal{M}(V)), \xi \in \mathcal{H}$ is easily seen to be an isometry from $\phi(V)\mathcal{H}$ into $\phi^{\mathcal{M}}\mathcal{M}((V))\mathcal{H}$, so it extends to an isometry from \mathcal{H}_V into $\mathcal{H}_{\mathcal{M}(V)}$.

REMARK 3.4. Another use of the Hilbert space \mathcal{H}_V is the possibility of representing $\mathbf{B}_{\mathcal{A}}(V)$ (faithfully and nondegenarately) in $\mathbf{B}(\mathcal{H}_V)$, if V and \mathcal{A} are as in Blecher's theorem. This is a consequence of results from [8] and [3]. Namely, there is a more general construction - the inner tensor product of two Hilbert C^{*}-modules (details in [8]) and in [3] it is shown that the inner tensor product coincides with the Haagerup (module) tensor product. The results on embedding the C^{*}-algebra $\mathbf{B}_{\mathcal{A}}(V)$ in the C^{*}-algebra of the inner

269

tensor product of V with another module, in the special case of tensoring V with \mathcal{H}^c as in Blecher's theorem, yield the embedding $\mathbf{B}_{\mathcal{A}}(V) \subseteq \mathbf{B}(\mathcal{H}_V)$.

Further, it is known ([2]) that $\mathbf{B}_{\mathcal{A}}(V)$ is isomorphic to $\mathbf{B}_{\mathcal{M}(\mathcal{A})}(\mathcal{M}(V))$, so Blecher's theorem and it's corollaries from this paper show that the following isometric embeddings are valid for any Hilbert \mathcal{A} -module V with \mathcal{A} faithfully and nondegenerately represented on \mathcal{H} (so $\mathcal{A} \subseteq \mathcal{M}(\mathcal{A}) \subseteq \mathbf{B}(\mathcal{H})$):

$$V \subseteq \mathcal{M}(V) \subseteq \mathbf{B}(\mathcal{H}, \mathcal{H}_V) (\subseteq \mathbf{B}(\mathcal{H}, \mathcal{H}_{\mathcal{M}(V)}))$$

$$\mathbf{K}_{\mathcal{A}}(V) \subseteq \mathbf{B}_{\mathcal{A}}(V) \subseteq \mathbf{B}(\mathcal{H}_V)$$

$$\mathbf{K}_{\mathcal{A}}(V) \subseteq \mathbf{K}_{\mathcal{M}(\mathcal{A})}(\mathcal{M}(V)) \subseteq \mathbf{B}_{\mathcal{A}}(V) \cong \mathbf{B}_{\mathcal{M}(\mathcal{A})}(\mathcal{M}(V)) \subseteq \mathbf{B}(\mathcal{H}_V)$$

Also, the linking algebra of a Hilbert C*-module (defined formally as

$$\mathcal{L} = \begin{bmatrix} \mathbf{K}_{\mathcal{A}}(V) & V \\ V^* & \mathcal{A} \end{bmatrix}$$

and suitably equipped with a C*-algebra structure) can be represented (faithfully and nondegenerately) as a C*-subalgebra of $\mathbf{B}(\mathcal{H}_V \oplus \mathcal{H})$. In short, all important structures related to a Hilbert C*-module V (the algebras of adjointable and of generalized compact operators, the linking algebra, the strict completion) can be concretely represented using the Hilbert space the underlying C*-algebra \mathcal{A} is represented on and Blecher's space \mathcal{H}_V .

References

- D. BAKIĆ, B. GULJAŠ, Hilbert C*-modules over C*-algebras of compact operators, preprint, 1999.
- [2] D. BAKIĆ, B. GULJAŠ, Extensions of Hilbert C* -modules, preprint, 1999.
- [3] D. P. BLECHER, A new approach to Hilbert C* -modules, preprint, 1995.
- [4] D. P. BLECHER, V. I. PAULSEN, Tensor products of operator spaces, J. Funct. Anal. 99 (1991) 262-292
- [5] E. CHRISTENSEN, A. M. SINCLAIR, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989) 417-448
- [6] I. KAPLANSKY, Modules over operator algebras, Amer. J. Math. 75 (1953) 839-858
- [7] E. C. LANCE, Unitary operators on Hilbert C^{*}-modules, Bull. London Math. Soc. 26 (1994) 363-366
- [8] E. C. LANCE, Hilbert C^{*}-modules, A toolkit for operator algebraists, London Mathematical Society Lecture Note Series 210, Cambridge University Press, 1995
- [9] W. L. PASCHKE Inner product modules over B^{*}-algebras Trans. Amer. Math. Soc. 182 (1973) 443-468
- [10] M. A. RIEFFEL Induced representations of C*-algebras Adv. Math. 13 (1974) 176-257
- [11] N. E. WEGGE-OLSEN K-theory and C*-algebras Oxford University Press, 1993.

Department of Mathematics PO Box. 335 HR-10002 Zagreb Croatia *E-mail:* bruckler@math.hr *Received:* 10.10.2000.