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DUALITY BETWEEN STABLE STRONG SHAPE
MORPHISMS AND STABLE HOMOTOPY CLASSES

Qamil Haxhibeqiri and S lawomir Nowak

Institute of Mathematics, University of Warsaw, Poland

Abstract. Let SStrShn be the full subcategory of the stable strong
shape category SStrSh of pointed compacta [H-N] whose objects are all
pointed subcompacta of Sn and let SOn be the full subcategory of the sta-
ble homotopy category S ([S-W] or [S]) whose objects are all open subsets
of Sn. In this paper it is shown that there exists a contravariant additive
functor Dn : SStrShn → SOn such that Dn(X) = Sn \ X for every sub-
compactum X of Sn and Dn : SStrShn(X, Y ) → SOn(Sn \Y,Sn \X) is an
isomorphism of abelian groups for all compacta X,Y ⊂ Sn. Moreover, if
X ⊂ Y ⊂ Sn, j : Sn \ Y → Sn \ X is an inclusion and α ∈ SStrShn(X, Y )
is induced by the inclusion of X into Y then Dn(α) = {j}.

Introduction. Basic definitions.

In [N] it has been proved that the stable shape category of subcompacta
of Sn is isomorphic to the stable weak homotopy category of their comple-
ments. This theorem generalizes the Spanier-Whitehead Duality Theorem
and corresponds to the Chapman Complement Theorem [S1].

In [H-N] the authors have constructed a stable strong shape category of
pointed metric compacta (see also [M]).

The purpose of the present note is to prove that there exists a contravari-
ant functor from the stable strong shape category of pointed subcompacta of
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Sn to the stable homotopy category of their complements which induces an
isomorphism between the sets of morphisms.

The Hilbert space l2 consists of all real sequences (x1, x2, ...) with
∑
x2

i <
∞ and R

n consists of all points (x1, x2, ...) of l2 such that xk = 0 for k > n.
It follows that R

n ⊂ R
m for n ≤ m. The point (x1, x2, ..., xn, 0, ...) is denoted

by (x1, x2, ..., xn).
The n-sphere Sn consists of all points (x1, x2, ..., xn+1) of R

n+1 with x2
1 +

x2
2 + ... + x2

n+1 = 1. It follows that S0 ⊂ S1 ⊂ ... and Sn is embedded as an

equator in Sn+1 (S0 consists of two points −1 and 1).
By the (unreduced) suspension ΣX of a subsetX of Sn we understand the

union od all segments joining points of X with the poles v = (0, 0, ..., 1) and
v′ = (0, 0, ...,−1) of Sn+1 and {v, v′} (Σ∅ = {v, v′}). If (X, x0) is a pointed
subcompactum of Sn, then we will consider that (ΣX, x0) is a pointed spaces
with the base point x0 ∈ X . The k-fold suspension ΣkX , and the suspensions
Σf,Σkf of a map are defined as usual.

If (z, t) ∈ Z×I , we denote by [z, t] the corresponding point of the reduced
suspension SZ under the quotient map qZ : Z × I → SZ. Then [z, 0] =
[z0, t] = [z′, 1] for z, z′ ∈ Z and t ∈ I , where z0 is a base point of Z. The
point [z0, 0] ∈ SZ is also denoted by z0. If z0 is a base point of Z, then SZ is
a pointed space with base point z0. If f : Z → Z ′, the map Sf : SZ → SZ ′

is defined by Sf([z, t]) = [f(x), t].
It is known that SX is a cogroup object in the homotopy category H .

Thus, H((SZ, z0), (Z
′, z′0)) is always a group, which is abelian when Z = SW .

The reduced suspension (SX, x0) is obtained from the unreduced suspen-
sion (ΣX, x0) by shrinking to a point (which is taken as a base point) the
two segments v, x0 and v′, x0. The quotient map pX : (ΣX, x0) → (SX, x0)
is a homotopy equivalence if X ∈ ANR(M). It induces an addition in
H((ΣX, x0), (ΣX

′, x′0)), which makes this set a group.
If X,X ′ ∈ ANR(M) are simply connected, then the forgetful functor

obtained by suppressing base points induces an isomorphism of the set of all
pointed homotopy classes H((X, x0), (X

′, x′0)) onto the set H(X,X ′) of all
free homotopy classes. We shall identify H(ΣkX,ΣkX ′) with H((ΣkX, x0),
(ΣkX ′, x′0)) for k ≥ 2.

The operation Σ induces a function Σ : H(ΣkX,ΣkX ′) → H(Σk+1X,
Σk+1X ′) between sets of homotopy classes which is a homomorphism.

The stable homotopy category S was introduced by Spanier and White-
head (see [S-W] or [S]). We will consider the full subcategory SOn of S whose
objects are open subsets of Sn (the complements of compact subsets of Sn).
The set of morphisms SOn(U, V ) = {U, V } equals to the direct limit of the
sequence

H(U, V )
Σ−→ H(ΣU,ΣV )

∑
−→ H(Σ2U,Σ2V )

Σ−→ ....
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If f : ΣkU → ΣkV is a map, then {f} = α will denote the corresponding
element of {U, V }.

Since the inclusion of Sn \X into Sn+k \ΣkX is a homotopy equivalence
for n, k ≥ 1 and X ⊂ Sn, we have a canonical bijection {Sn+k \ ΣkX,Sn+k \
ΣkY } ↔ {Sn \X,Sn \ Y }.

The space (SZ, z0) is a cogroup object in StrSh and thus
StrSh((SZ, z0), (Z

′, z′0)) is a group, which is abelian when Z = SW (com-
pare [H-N]).

By [D-S] (see Theorem 7.10 and Corollary 4.6) the quotient map pX :
(ΣX, x0) → (SX, x0) induces a strong shape equivalence for every compactum
X ⊂ Sn. The map pX canonically induces on (ΣX, x0) the structure of a
cogroup object in StrSh.

In [H-N] the authors defined the stable strong shape category SStrSh of
pointed compacta.

We shall consider the full subcategory SStrShn of SStrSh, whose objects
are pointed subcompacta of Sn. The set SStrShn((X, x0), (Y, y0)) is the direct
limit of the sequence

StrSh((X, x0), (Y, y0))
Σ−→ StrSh((ΣX, x0), (ΣY, y0))

Σ−→ ...

SStrShn(X,Y ) is an abelian group. Hereafter we shall omit references to
base points.

The strong (stable) shape morphism represented by a map f is denoted
by the bold letter f .

1. The main theorem and schedule of its proof.

Theorem 1.1. There exists a contravariant additive functor Dn :
SStrShn → SOn such that

Dn(X) = Sn \X
for every compactum X of Sn and

Dn : SStrShn(X,Y ) → SOn(Sn \ Y, Sn \X)

is an isomorphism of the abelian group SStrShn(X,Y ) onto the abelian group
SOn(Sn\Y, Sn\X) for all compacta X,Y ⊂ Sn. If X ⊂ Y ⊂ Sn, j : Sn\Y →
Sn \X is an inclusion and α ∈ SStrShn(X,Y ) is induced by the inclusion of
X into Y , then

Dn(α) = {j}.
The notion of mapping cylinder of a strong shape morphism ([D-S], p.24)

provides the starting place for the proof of Theorem 1.1.
Suppose that X and Y are pointed compacta. We say that a compactum

M ⊃ X ∪ Y is a mapping cylinder of f ∈ StrSh(X,Y ) iff the inclusion
j : Y → M induces a strong shape equivalence and jf = i as unpointed
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strong shape morphisms, where i : X → M denotes the inclusion of X into
M .

We have (see [N]) the following.

Lemma 1.2. Suppose that A ⊂ B are subcompacta of Sn and the inclusion
of A into B induces a shape equivalence. Then the inclusion of Sn \ B into
Sn \A is a stable homotopy equivalence.

We need the following.

Lemma 1.3. Suppose that A ⊂ B are compacta and that h : A → Sn is
an embedding. Then for sufficiently large m > n there exists an embedding

h̃ : B → Sm such that h̃(x) = h(x) for x ∈ A.

J. Dydak and J. Segal have proved ([D-S], p.23) that if X ∩ Y = ∅ then
for every f ∈ StrSh(X,Y ) there exists a mapping cylinder M of f with
dimM ≤ dimX + 1, dimY .

Hence we may assume that M ⊂ Sm for sufficiently large m > n in the
case when X,Y ⊂ Sn (see Lemma 1.3). Moreover, it follows from Lemma 1.2
that the inclusion j0 : Sm \M → Sm \Y is a homotopy equivalence for almost
all m.

Since the inclusion of Σk(Sn \ X) into Sn+k \ X and the inclusion of
Σk(Sn \ Y ) into Sn+k \ Y are homotopy equivalences for k = 1, 2, ..., we infer
that every map of Sn \ Y into Sn \ X determines uniquely an element of
{Sn \ Y, Sn \X}. We will use this convention in the whole paper.

Suppose that X ∩ Y = ∅ and f ∈ StrSh(X,Y ), where X,Y are subcom-
pacta of Sn. Let r : Sm \ Y → Sm \M denote the homotopy inverse of the
inclusion j0 : Sm \M → Sm \ Y , where M ⊂ Sm is a mapping cylinder of f .

It will be proved that the stable homotopy class ∆n(f ) : Sn \Y → Sn \X
determined by the composition i0r : Sm \ Y → Sm \X does not depend on
the choice of M , where i0 : Sm \M → Sm \X denotes the inclusion of Sm \M
into Sm \X .

The next step is to define ∆n(f) for every f ∈ StrSh(X,Y ).
Suppose that f ∈ StrSh(X,Y ), where X and Y are arbitrary subcom-

pacta of Sn. We can find a homeomorphism h : X → X1 ⊂ Sn+1 such that
X1∩ (X∪Y ) = ∅. We shall prove that ∆n+1(h)∆n+1(fh−1) does not depend
on the choice of h. Let α denote the element of {Sn \ Y, Sn \X} determined

by ∆n+1(h)∆n+1(fh−1).
Setting

∆n(f ) = α

one can define ∆n(f) for every f ∈ StrSh(X,Y ) and extend ∆n to a function
∆n : StrSh(X,Y ) → SOn(Sn \ Y, Sn \X).

Suppose that α ∈ SStrShn(X,Y ) is represented by
f ∈ SStrSh(Σk(X),Σk(Y )) and that β ∈ {Sn \ Y, Sn \ X} corresponds to



DUALITY 301

∆n+k(f ) ∈ {Sn+k \ Σk(Y ), Sn+k \ Σk(X)} under the canonical isomorphism
of {Sn \ Y, Sn \X} onto {Sn+k \ Σk(Y ), Sn+k \ Σk(X)}.

We define Dn : SStrShn(X,Y ) → SOn(Sn \ Y, Sn \X) by the formula

Dn(α) = β.

The last sections are devoted to the proof that Dn : SStrShn(X,Y ) →
{Sn \ Y, Sn \X} is an isomorphism.

2. Auxiliary facts on mapping cylinders.

First we present the Dydak-Segal construction of mapping cylinder (see
[D-S]). Suppose that f ∈ StrSh(X,Y ) is represented by a proper map f :
Tel X → Tel Y , where X and Y are nets (see [H-N]) associated with X and
Y such that X0 = Y0 = A ∈ AR.

It is clear that f(x, t) can be written in the form

f(x, t) = (f ′(x, t), f ′′(x, t))

where f ′ : Tel X → Y0 = A is a map and f ′′ : Tel X → [0,∞) is a proper
map.

Let A′ = A× [0,∞) ∪ {w} be a one-point compactification of A× [0,∞)
and M(f ) be defined by the formula

M(f ) = {((x, t), f ′(x, t)) ∈ A′ ×A : (x, t) ∈ X × [0,∞)} ∪ {w} × Y.

We will identify (respectively) X and Y with the set consisting of all
points ((x, 0), f ′(x, 0)) ∈ M(f) such that x ∈ X and with the set consisting
of all points (w, y) ∈ M(f) such that y ∈ Y.

In [D-S] it has been proved that M(f) is a mapping cylinder of f .

Proposition 2.1. Suppose that X,Y,M ′ and M ′′ are compacta lying
in Sn, f ∈ StrSh(X,Y ),M ′ ∩M ′′ = X ∪ Y and M ′ and M ′′ are mapping
cylinders of f . Then for sufficiently large m there exists a mapping cylinder
Sm ⊃M ⊃M ′ ∪M ′′ of f .

Proof. Let M ′,M ′′,X and Y denote nets associated respectively with
M ′,M ′′, X and Y such that

M ′
0 = M ′′

0 = X0 = Y0 and M ′
n ∩M ′′

n ⊃ Xn ∪ Yn for n = 1, 2, ....

We can find a proper map f : Tel X → Tel Y which represents f .
Consider also proper maps r1 : Tel M ′ → Tel Y and r2 : TelM ′′ → Tel Y

which represent (respectively) the inverses of j1 and j2, where j1 and j2 denote
the inclusions of Y into M ′ and M ′′.

By the twofold application of the Proper Homotopy Extension Theorem
([B-S] and [D-S]) we obtain that one can assume that

r1(x, t) = (x, t) = r2(x, t) for (x, t) ∈ Y × [0,∞)
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and that there exists a proper map g : Tel M ′ → TelM ′′ such that

g(x, t) = (x, t) for (x, t) ∈ (X ∪ Y ) × [0,∞).

For every x ∈ (X ∪ Y ) we denote by Lx ⊂ M(g) the closure of the set
consisting of all points ((x, t), x) ∈M(g) with x ∈ X ∪ Y . Then Lx is an arc
for every x ∈ X ∪ Y .

Consider the decomposition space M of M(g) of the upper semicontinuos
decomposition of M(g) into individual points M(g)\ ⋃

x∈(X∪Y )

Lx and the arcs

Lx for x ∈ (X ∪ Y ).
Then the quotient map of M(g) into M is the strong shape equivalence

([D-S], p.32).
Identifying M ′ and M ′′ with suitable subsets of M one can easily check

that M is a mapping cylinder of f and M ⊃M ′ ∪M ′′.
Since dimM <∞ we may assume that M ⊂ Sm for sufficiently large m.

Proposition 2.2. Suppose that X,Y, Z are subcompacta of Sn, f ∈
StrSh(x, Y ), g ∈ StrSh(Y, Z) and X ∩ Y = Y ∩ Z = X ∩ Z = ∅. Then
for sufficiently large m there are compacta N ⊃ X ∪Y and Sm ⊃M ⊃ N ∪Z
such that

(a) N is a cylinder of f

(b) M is a cylinder of gf

(c) M is a cylinder of g

Proof. For sufficiently large m there are subcompacta N and V of Sm

such that N ∩ V = Y and

V is a mapping cylinder of f

and

N is a mapping cylinder of g.

The compacta M = N ∪ V and N satisfy the required conditions.

Lemma 2.3. If M is a mapping cylinder of f ∈ StrSh(X,Y ), then ΣM
is a mapping cylinder of Σf ∈ StrSh(ΣX,ΣY ).

3. The function ∆n and its properties.

Lemma 3.1. ∆n(f ) does not depend on the choice M , if X ∩ Y = ∅.

Proof. LetM1,M2 ⊂ Sm be mapping cylinders of f ∈ StrSh(X,Y ) such
that the inclusion jm,k : Sm \Mk → Sm \Y is a stable homotopy equivalence
for k = 1, 2 and let αk ∈ {Sm \ Y, Sm \Mk} denote the inverse of {jm,k} for
k = 1, 2.
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Since for every pair of compacta A ⊂ B,B ⊂ Sm there exists a com-
pactum B′ ⊂ Sn+1 and a homeomorphism h : B → B′ such that h(x) = x for
x ∈ A and B′ ∩ Sm = A, we may assume that M1 ∩M2 = X ∪ Y.

¿From Proposition 2.1 it follows that there exists a mapping cylinder
Sm ⊃ P ⊃ M1 ∪ M2 of f . Let β ∈ {Sm \ Y, Sm \ P} denote the inverse
of stable homotopy class of the inclusion of Sm \ P into Sm \ Y . Let α′

k ∈
{Sm \ Mk, S

m \ P} denote the inverse of the stable homotopy class of the
inclusion of Sm \ P into Sm \Mk for k = 1, 2.

We have β = α′
kαk and γβ = γα′

kαk = γkγ
′
kα

′
kαk = γkαk, where γ, γk, γ

′
k

denote respectively the stable homotopy classes of the inclusions of Sm \ P
into Sm \X , of Sm \ P into Sm \Mk and of Sm \Mk into Sm \X .

Lemma 3.2. Suppose that f ∈ StrSh(X,Y ) and g ∈ StrSh(Y, Z), where
X,Y, Z ⊂ Sn are compacta and X ∩ Y = Y ∩ Z = X ∩ Z = ∅. Then

∆n(gf ) = ∆n(f )∆n(g).

Proof. Let N and M ⊃ N ∪ Z be respectively mapping cylinders of f

and g such that M is also a mapping cylinder of gf (see Proposition 2.2).
Let i1 : Sm \M → Sm \Y , i2 : Sm \M → Sm \N , i3 : Sm \N → Sm \Y ,

i4 : Sm \N → Sm \X , i5 : Sm \M → Sm \X and i6 : Sm \M → Sm \Z be
inclusions.

We have ∆n(gf) = {i5}{i6}−1, {i5} = {i4}{i2} = {i4i2} and {i2} =
{i3}−1{i1}. Hence

∆n(gf ) = {i4}{i2}{i6}−1 = {i4}{i3}−1{i1}{i6}−1 = ∆n(f)∆n(g).

Lemma 3.3. Suppose that h : X → Y is a homeomorphism and X,Y ⊂
Sn are compacta such that X ∩ Y = ∅. Then ∆n(h) is a stable homotopy

equivalence and [∆n(h)]−1 = ∆n(h−1).

Proof. There exists an embedding h̃ : X×I → Sm such that h̃(x, 0) = x

and h̃(x, 1) = h(x) for every x ∈ X . Using the fact that M = h̃(X × I) is a

mapping cylinder of h and h−1 one can easily prove that Lemma 3.3 holds
true.

Lemma 3.4. Suppose that h1 : X → X1 and h2 : X → X2 are homeo-
morphisms such that Xk ∩ (X ∪ Y ) = ∅ for k = 1, 2, where X,Y ⊂ Sn−1 and
X1, X2 ⊂ Sn are compacta. Then

∆n(h1)∆n(fh−1
1 ) = ∆n(h2)∆n(fh−1

2 )

for every f ∈ StrSh(X,Y ).
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Proof. Without loss of generality we may assume that X1 ∩ X2 = ∅.
Using Lemmas 3.2 and 3.3 we obtain that

∆n(h2)∆n(fh−1
2 ) = ∆n(h1)∆n(h−1

1 )∆n(h2)∆n(fh−1
2 ) =

∆n(h1)∆n(h2h
−1
1 )∆n(fh−1

2 ) = ∆n(h1)∆n(fh−1
1 ).

Lemma 3.4 allows us to define ∆n(f ) for every f ∈ StrSh(X,Y ), where X
and Y are arbitrary subcompacta of Sn (see the Section 1).

Lemma 3.5. Suppose that f ∈ StrSh(X,Y ) and g ∈ StrSh(Y, Z), where
X,Y, Z are subcompacta of Sn. Then ∆n(gf ) = ∆n(f )∆n(g).

Proof. Without loss of generality we may assume that there are home-
omorphisms h : X → X1 ⊂ Sn+1 and k : Y → Y1 ⊂ Sn+1 such that
(X ∪ Y ∪ Z) ∩X1 = ∅ = (X ∪ Y ∪ Z) ∩ Y1 and X1 ∩ Y1 = ∅.

Then it follows from Lemmas 3.2 and 3.3 that

∆n(h)∆n(gfh−1) = ∆n(h)∆n(gk−1kfh−1)

= ∆n(h)∆n(kfh−1)∆n(gk−1) = ∆n(h)∆n(fh−1)∆n(k)∆n(gk−1).

Theorem 3.6. For every of compacta X,Y ⊂ Sn there exists a function
∆n : StrSh(X,Y ) → {Sn \ Y, Sn \X} satisfying the following conditions:

(a) if X ⊂ Y then ∆n(i) = j, where i : X → Y and j : Sn \ Y → Sn \X
are inclusion

(b) ∆n(gf ) = ∆n(f )∆n(g) for all f ∈ StrSh(X,Y ) and g ∈ StrSh(Y, Z)
(c) for every f ∈ StrSh(X,Y ) the stable homotopy class ∆n(f) ∈ {Sn \

Y, Sn \ X} corresponds to the stable homotopy classes ∆n+1(Σf ) ∈
{Sn+1 \ Σ(Y ), Sn+1 \ Σ(X)} and ∆n+1(f) ∈ {Sn+1 \ Y, Sn+1 \ X}
under the canonical one-to-one correspondences {Sn \ Y, Sn \ X} ↔
{Sn+1\Σ(Y ), Sn+1\Σ(X)} and {Sn\Y, Sn\X} ↔ {Sn+1\Y, Sn+1\X}.

Proof. The condition (c) is a consequence of Lemma 2.3.

Corollary 3.7. There exists a contravariant functor Dn : SStrShn →
SOn such that

(a) Dn(X) = Sn \X for every X ⊂ Sn;
(b) if X ⊂ Y then Dn(α) = {j}, where α ∈ StrSh(X,Y ) is induced by the

inclusion and j : Sn \ Y → Sn \X is the inclusion;
(c) for every α ∈ SStrSh(X,Y ) the stable homotopy class Dn(α) corre-

sponds Dn+1(α) under the canonical one-one correspondence {Sn \
Y, Sn \X} ↔ {Sn+1 \ Y, Sn+1 \X}.
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4. Algebraic properties of Dn.

Theorem 4.1. Dn(α1 + α2) = Dn(α1) + Dn(α2) for all α1,α2 ∈
SStrSh(X,Y ).

For the proof of Theorem 4.1 we need the following fact:

Proposition 4.2. If X ⊂ Sn ⊂ Sm, m > n, then

Sm \ (X ∨X) ' (Sm \X) ∨ (Sm \X).

Proof. Let a ∈ X be a base point ofX and c ∈ Sn\X ⊂ Sm\X be a base
point of Sm \X . Let σ : Sn → [0, 1) be a map such that σ−1(0) = {a}. If we
regard Sm = Sm−1× [−1, 1]/Sm−1×{−1}, Sm−1×{1}, we define embeddings
hi : Sn → Sm, i = 1, 2, by putting h1(x) = [x, σ(x)] and h2(x) = [x,−σ(x)].
Then hi(a) = [a, 0] = a, hi are isotopic to the inclusion Sn ↪→ Sm−1 ⊂ Sm

and W = X1 ∪X2, where Xi = hi(X), i = 1, 2, is a copy of (X, a) ∨ (X, a) in
Sm. We shall show that

(Sm \W, c) ' (Sm \X, c) ∨ (Sm \X, c).
The homotopy equivalence will be a pointed equivalence.
There is a homeomorphism h : Sm \ {a} → Sm \L, where L is a compact

arc on the great circle through a and the poles of Sm, a ∈ intL, c /∈ L. This
exists for geometric reasons, simply deform all the great circles through the
poles. Hence,

(4.1) (Sm \W, c) ' (Sm \ (X ′
1 ∪ L ∪X ′

2), c)

where X ′
1 = h(X1) is the upper hemisphere Sm

+ and X ′
2 = h(X2) is the lower

hemisphere Sm
− .

Contracting Sm−1 \ {a} ⊂ Sm \ (X ′
1 ∪L∪X ′

2) to a point yields a pointed
homotopy equivalence

(4.2) (Sm \ (X ′
1 ∪ L ∪X ′

2), c) ' (V1, ∗) ∨ (V2, ∗)
where Vi = (Sm

± \X ′
i)∪Con(Sn−1 \{a}), i = 1, 2. (”Con” denotes the cone on

a space and * denotes the top of the cone). This is true because Sm−1 \ {a}
is contractible and the inclusion Sm−1 \ {a} ⊂ Sm−1 \ (X ′

1 ∪ L ∪ X ′
2) is a

cofibration (as an inclusion of a subcomplex).
There is an injection i : Con(Sm−1 \ {a}) → Con(Sm−1) \ {a} which has

a homotopy inverse r such that ri ' id rel((Sm−1 \ {a} ∪ {∗}) and ir ' id
rel((Sm−1 \ {a} ∪ {∗}). This fact is obtained from [Mr], Lemma 2, replacing
J = [−1, 1] by I = [0, 1] and A by {a}.

Thus,

(Vi, ∗) ' ((Sm
± \X ′

i) ∪ (ConSm−1) \ {a}, ∗) ' (Sm
i \X ′

i, ∗),
where Sm

i is a homeomorphic copy of Sm, i = 1, 2.
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With this in mind, from 4.1 and 4.2 it follows that

(Sm \W, c) ' (Sm \ (X1 ∪X2), c) ' (Sm
1 \X ′

1, ∗) ∨ (Sm
2 \X ′

2, ∗).
Of course, we can isotope X ′

1, X
′
2 back to its position, so that

(Sm \W, c) ' (Sm \X, c) ∨ (Sm \X, c).

Proof of Theorem 4.1. It suffices to show that ∆n : StrSh(X,Y ) →
{Sn \ Y, Sn \ X} is a homomorphism if X = Σn−k(A) and Y = Σn−k(B),
where A and B are subcompacta of Sk.

Suppose f1,f2 ∈ StrSh(X,Y ). Let a be a base point of X and c a base
point of Sn\X . Let m > 2n and for i = 1, 2 let hi : Sn → Sm be a topological
embedding as in the proof of Proposition 4.2. Then

(Sm \ (X1 ∪X2), c) ' (Sm
1 \X ′

1, ∗) ∨ (Sm
2 \X ′

2, ∗),
where Sm

i are homeomorphic copies of Sm, X ′
i are homeomorphic copies of

X and Xi = hi(X), i = 1, 2. Using this fact we can identify Sm \ (X1 ∪X2)
with U ′

1 ∪ U ′
2, where U ′

i is the (m− n)-fold suspension of Ui = hi(S
n \X) in

Sm, i = 1, 2.
Moreover, one can observe that the stable homotopy class of the inclusion

Sm \ (X1 ∪ X2) into Sm \ Xq equals to the stable homotopy class of the
retraction r′q : U1 ∪ U2 → Uq with r′q(Up) = {cq}, where cq = hq(c) for q 6= p,
p, q = 1, 2.

Similarly, the stable homotopy class r′q of the inclusion Uq into U1 ∪ U2

equals to the stable homotopy class Dm(rq), where rq : X1 ∪ X2 → Xq is a
retraction with rq(Xp) = {a} for p, q = 1, 2, p 6= q. Indeed, the one-point
union of Xq and the cone over Xp is a mapping cylinder for rq , where q 6= p,
p, q = 1, 2.

Let h′q : X → Xq be the map given by the formula

h′q(x) = hq(x) for x ∈ X and q = 1, 2,

and let

h = i1h
′
1 + i2h

′
2

where iq : Xq → X1∪X2 denotes the inclusion of Xq into X1∪X2 for q = 1, 2.
It is clear that i1r1 + i2r2 : X1 ∪ X2 → X1 ∪ X2 equals to the strong

shape morphism induced by the identity map X1 ∪X2.
We also known that ∆m(i1r1)+∆m(i2r2) equals to the stable homotopy

class which is induced by the identity map of U1 ∪ U2.
Let v : X1 ∪X2 → Y be the strong shape morphism satisfying the condi-

tion

viq = f qh
′
q,

where q = 1, 2.
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Then f q = viqh
′
q and f1 + f2 = v(i1h

′
1 + i2h

′
2) = vh. Since h′

q = rqh,
we have f q = viqrqh for q = 1, 2. Hence

∆m(f 1 + f2) = ∆m(h)(∆m(i1r1) + ∆m(i2r2))∆m(v)

= ∆m(vi1r1h) + ∆m(vi2r2h) = ∆m(f 1) + ∆m(f 2).

5. The proof that Dn : SStrShn(X,Y ) → {Sn \ Y, Sn \X} is an

isomorphism.

Theorem 5.1. Dn : SStrShn(X,Y ) → {Sn\Y, Sn\X} is an isomorphism
for all compacta X,Y ⊂ Sn.

Proof. Suppose that Q ⊂ Sn is a polyhedral cube which contains X
and

⋂∞
k=1 Yk ⊂ ... ⊂ Y2 ⊂ Y1 ⊂ Y0 = Q, where Yk is a subpolyhedron of Q for

k = 1, 2, ....
We may assume that X ∩ Y = ∅ and that the sets of all stable strong

(pointed) shape morphisms SStrSh(X,Y ) and SStrSh(ΣX,Yk) is one-to-one
correspondence with the sets StrSh(X,Y ) and StrSh(ΣX,Yk) ' H(ΣX,Yk)
for k = 0, 1, 2, ....

Suppose that e = {ek} ∈ lim1H(SX,Yk) and ek ∈ H(SX,Yk) is repre-
sented by a map fk : S(X) → Yk for k = 0, 1, 2, ....

We can construct a sequence X0 = Q ⊃ X1 ⊃ X2 ⊃ ... of subpolyhedra of

Q such that ∩∞
k=1Xk and for k = 0, 1, 2, .... there exists f̃k : SXk → Yk such

that f̃k(x) = fk(x) for x ∈ SX ⊂ SXk.
Setting

f ′(x, r) = f̃k([x, r − k]) for x ∈ Xk, r ∈ [k, k + 1] and k = 0, 1, 2, ...

and

f ′′(x, r) = r for x ∈ Xk, r ∈ [k, k + 1] and k = 0, 1, 2, ...

and

f(x, r) = (f ′(x, r), f ′′(x, r)) for (x, r) ∈ TelX

we get a map f ′ : Tel X → Y0 and proper maps f ′′ : Tel X → [0,∞) and f :
Tel X → Tel Y , where X and Y denote respectively nets X0 ⊃ X1 ⊃ X2 ⊃ ...
and Y0 ⊃ Y1 ⊃ Y2 ⊃ ... associated with X and Y .

The proper homotopy class of f determines uniquely an element α(e) of
StrSh(X,Y ) ∼= SStrSh(X,Y ). It is known that α is a homorphism ([H-N]) and
that the sequence

0 → lim 1{S(X), Yk} α−→ SStrSh(X,Y )
β−→ SSh(X,Y ) → 0

is exact, where β is induced by the natural functor from the strong shape
category to the shape category.
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Let Q′ = Q × [0,∞) ∪ {w} be one-point compactification of Q × [0,∞)
and Z = M(f) be defined as follows

Z = {((x, r), f ′(x, r)) ∈ Q′ ×Q : (x, r) ∈ X × [0,∞)} ∪ {w} × Y.

Let s ∈ [k, k + 1] ⊂ [0,∞) and

Zs = {((x, r), f ′(x, r)) ∈ Q′ ×Q : (x, r) ∈ Xk × [0, s)} ∪Q′
s × Yk,

where Q′
s ⊂ Q′ is one-point compactification of Q×[s,∞) ⊂ Q′ = Q×[0,∞)∪

{w}.
We identify X and Y with the subset of Z consisting of all points

((x, 0), f ′(x, 0)) ∈ Z such that x ∈ X and with the subset of Z consisting
of all (w, y) ∈ Z such that y ∈ Y.

We may assume that Zk and
⋃

s∈[k,k+1] Zk ×{s} = Wk are polyhedra for

k = 0, 1, 2, ...
Let us observe that Z =

⋂∞
k=0 Zk.

We may assume that Z ⊂ Sm for sufficiently large m.
Let U = Sm \ X and V = Sm \ Y and let X∗

0 ⊂ X∗
1 ⊂ X∗

2 ⊂ ... and
Y ∗

0 ⊂ Y ∗
1 ⊂ Y ∗

2 ⊂ ... be sequences of subpolyhedra of Sm such that X∗
k

and Y ∗
k are (respectively) Spanier-Whitehead duals of Xk and Yk in Sm for

k = 0, 1, 2, ...,
⋃∞

k=0 Y
∗
k = V and

⋃∞
k=0 X

∗
k = U .

Then we have a short exact sequence (see Theorem (5.1) of [N])

0 → lim 1{SY ∗
k , U} → {V, U} → {V, U}w → 0.

Let V ∗ = Y ∗
0 × [0, 1] ∪ Y ∗

1 × [1, 2] ∪ Y ∗
2 × [2, 3] ∪ ... and let g∗ : V → V ∗

be the natural homotopy equivalence.
We may also assume that the set of all stable homotopy classes {Y ∗

k , X
∗
t }

and {SY ∗
k , X

∗
t } are in one-to-one correspondence with the sets H(Y ∗

k , X
∗
t ) and

H(SY ∗
k , X

∗
t ) for k, t = 0, 1, 2, ....

Suppose that e∗ ∈ lim 1{SY ∗
k , U} is represented by the sequence of maps

f∗
k : SY ∗

k → X∗
α(k) ⊂ U for k = 0, 1, 2, ....

Let f∗ : V ∗ → U be defined by the formulas

f∗(x, r) = f∗
k ([x, r − k]) for x ∈ Y ∗

k , r ∈ [k, k + 1] and k = 0, 1, 2, ....

Then α′(e) = {f∗g∗}.
Suppose that γ : lim 1{SX,Yk} → lim 1{SY ∗

k , U} is induced by the
Spanier-Whitehead Duality Theorem ([S-W])i.e. if e ∈ lim 1{SX,Yk} is repre-
sented by the sequence of the homotopy classes of maps fk : SXk → Yk then
γ(e) is represented by the sequence of homotopy classes of maps f ∗

k : SY ∗
k →

X∗
k ⊂ ⋃∞

k=0 X
∗
k = U such that {fk} and {f∗

k} are dual (in the sense of the
Spanier-Whitehead Duality Theorem) in Sm+1.
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Consider the diagram

0 −−−−→ lim 1{SX,Yj} −−−−→ SStrSh(X,Y ) −−−−→ SSh(X,Y ) −−−−→ 0
yλ

yDm

yD′

m

0 −−−−→ lim 1{SY ∗
j , U} −−−−→ {V, U} −−−−→ {V, U}w −−−−→ 0

where D′
m : SSh(X,Y ) → {V, U}w is the isomorphism which is induced by by

the functor described in [N] (see [N], Theorem (4.1)).
Using the properties of the inclusions of Xk × [k, k+1] and Yk × [k, k+1]

into Wk we can check that the above diagram is commutative.
Since γ is an isomorphism we infer that Dm is an isomorphism.
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Final remarks.

The first version of the present note was written in 1987, but we believe
some its aspects are still up-to-date and are not covered by newer results.

In the meantime Theorem 6.1 was obtained [B1] (correction in [B2]) by
F. W. Bauer as a consequence of a very general version of the Alexander
Duality Theorem. Next, he generalized it to arbitrary subsets of the n-sphere
(see [B2] and [B3]).

Bauer’s investigations are concentrated on the categories which contain
the stable strong shape category of compacta.

The approach of the paper allows to compare various generalizations of
the Spanier-Whitehead Duality (see [S2] p. 217), i.e. the Lima Duality [L]
defined on the stable shape category and the duality being the topic of the
present paper.

In fact, (keeping the notations of the section 6) we show that the short
exact sequence

0 → lim 1{SX, Yj} → SStrSh(X,Y ) → SSh(X,Y ) → 0

is mapped isomorphically onto the exact sequence

0 → lim 1{SY ∗
j , U} → {V, U} → {V, U}W → 0

by these dualities. The crucial argument of the proof is to deduce that the
middle homorphism Dn : SStrSh(X,Y ) → {V, U} is an isomorphism because
the other vertical arrows (i.e. γ and D′

n) are isomorphisms.
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