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APPROXIMATION BY KANTOROVICH TYPE
GENERALIZATION OF MEYER- KONIG AND ZELLER
OPERATORS

OGN DoGRU AND NURI OzALP
Ankara University, Turkey

ABSTRACT. In this study, we define a Kantorovich type generalization
of W. Meyer- Konig and K. Zeller operators and we will give the approxi-
mation properties of these operators with the help of Korovkin theorems.
Then we compute the approximation order by modulus of continuity.

1. INTRODUCTION

A constructive approach to the characterization of functions is to define
and approximate them in terms of some defined positive operators. A large
reference list in the study of the subject is cited for the intersted readers
([1]-[20]). Specifically, in [8], we generalized the Meyer - Konig and Zeller
operators. In this paper, we make a Kantorovich type generalization of the
operators L, (f;x) defined in [8]. Then, we give some approximation proper-
ties of these operators.

2. KANTOROVICH TYPE GENERALIZATION OF MEYER-KONIG AND ZELLER
OPERATORS

Let A be a real number in the interval (0,1). Assume that a sequence of
functions {p, } satisfies the following conditions:
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i. Every element of the sequence {,} is analytic on a domain D contain-
ing the disk B={z€ C:|z| < A}

ii. o4 (x) = pn(x) > 0

iii. o) () = (b +n) (14 L) ot (@), k=1,2,..
where, @\ (x) = (gc—kkcpn (x), and ¢,  and -y, are sequences of numbers satis-
fying the conditions;
1 1
En,k:O - ,fn,k20;7n=1+0 - a’YnZl
n

n

For
O0<any <1l (nk=1,2,..),

consider the sequence of linear positive operators

PRSI SR o U S hat § ® () 2"

where f is an integrable function on (0, 1).
M (f;z) is a Kantorovich type generalization of Meyer - Konig and Zeller
operators.

3. APPROXIMATION PROPERTIES

In this section, we give approximation properties of the operator M (f; x)
with the help of Korovkin theorem.

THEOREM 3.1. The sequence of linear positive operators defined by
(2.1) with conditions i — iii converges uniformly to the function f € C[0, A]
in [0, A].

PROOF. It is enough to prove the conditions of Korovkin theorem [12]
which are

M:(th z) — 2F, k=0,1,2 ,

uniformly in [0, A] .
First, since

1 = xF

we get M (1;z) = 1.
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Second, we can write

N X (ktam )=k (k =
Mita)—a =55 2 Etat) 21 o010 (0) 2 — w

zF A, k x
=1 z o) + 11 Y eEelP(0)2 2

e k x
= Lu(ti®) o+ 550 ,; Teen (0%

where L, (t;x) is a generalization of Meyer- Konig and Zeller operators de-
fined, in general, as

L koo 2

(see [8]).
Using L, (t;z) — 2z > 0, WeobtainM*( ) —ax > 0.

On the other hand, since k" koo 1 = we get

1
OSMn*(t;z)fasgLn(t;z)forQ—.
n

In [8], it is shown that lim (L, (t;z) — 2) = 0. Therefore, we obtain
lim (M} (t;z) — x) = 0, and thus the second condition of Korovkin theorem

n—oo

is hold.
Finally, using iii in M (t?; x),we obtain

* k-an k zk
M (t%50) = Ln(t%2) + L z R (Uh
Ak (K)mz
+tm Z wamren (0%
Thus we can write

* i k-ap n k xT
Mn(tQ;x) -2 = Ln(t2; z) — a? + sﬁnl(z) 1;_:0 |:(k+n))€2 + 3(k+:b)2 5051 )(O)k_

Now,
L,(t*z)—2*>>0
( See [8] ).
In addition, since Z‘jﬂ’; < % and (]::‘7’1’“)2 < # , the following inequality
holds:

1
My (t%52) — 2° < (Lp(t*;2) — 2®) + —Ln(ti2) +
n
On the other hand

3n?’

Ln(t;x) — x, Ly(t*z) — 2?
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(See [8] ). Thus M/ (t?;z) — x?. Because of Korovkin theorem, the proof is
complete. [O

4. THE ORDER OF APPROXIMATION

In this section, we compute the approximation order of L, (f;x) defined
in [8] and M} (f;z) with the help of modulus of continuity which is

(4.1) w(f;0) =sup{[f(t) - f(@); [t—=z| <0, t,ze[0,A]}.

The following theorems are analogous to one given in [7] for Gadjiev-
Ibragimov operators.
THEOREM 4.1. The following inequality holds:

|w4ﬁ@—fumqwﬂs0wug%>

where w(f; ﬁ) is a modulus of continuity defined by (4.1), and C is a positive
constant.
PROOF. From well-known properties of w(f;4d), we can write
1

(4.2)  [Ln(f;2) = f(2)] < w(f36) g(Ln(tQ;fE) — 2L, (t;x) + 2°)% + 1

If we use (3.1) and inequalities

dxyp
Ly(t;z) —x < (v — Dz + ﬂ,

2dz2y2 + a7y, n 22y2d% + xy,d

Ln(t2,$)*l’2 S‘T2(’Y'I’2171)+ P ’

n
(see[8]) in (4.2) and making the simplifications, we obtain,

Ln(fi2) = f(@)] < w(f;0) [E0(d) +1]

<w(f:0) |35 +1]-
1

By choosing § = T We obtain the desired result. d

THEOREM 4.2. Let f be uniform continuous on [0,1]. Then, the se-
quence of linear positive operators defined by (2.1) under the conditions i—iit,
satisfies the inequality

|Mﬂﬁ@—f@»g0ﬂﬁ§%»
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PRrROOF. By using the triangle inequality, we can write

(4.3)
oo k4o k X
“(fp) 1 1 _& N\ ® ()2
s~ f < S / 1 (555) - a0
On the other hand, since
¢ - 7]
1(55) - @) < [ e et
we get
k4an, k
ko k ¢ { H%—z’df
[ () - ] < . Vo | w(:0).
k

Using the last inequality and (3.1) in (4.3), we obtain
|My(f;2) = fa)] <

i 00 k4o ke
k z*
o o R LSO e P
=) k+an,k 2 *) X 2
<l lewm o (a1 [ i) @005 +1] o)

L
< {% (Ln(t*;2) + 2Ly (t;2) + 55 + 20Ln(t2) + £ — 32%)2 + 1_ w(f;9)

< [1¢10(2) + 1] ws:6).

If we choose § = \/Lﬁ, then the proof is completed. O

5. A DIFFERENTIAL EQUATION

We refer to some papers, in which equations analogous to the following
theorem are given: May [14], Volkov [20], Alkemade [2] and [8].
Let g satisfy the equality
k )= ak
k+n

g( =
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where a and b are arbitrary nonzero constant. Hence letting n = — — k, we

at

bt t
obtain g(t) = i
Now we give the following theorem.
Let

U (e [0,A], a,b+0).

THEOREM 5.1.

f e C0,4] and an i = 1; M}(f;x) satisfies the

For each x € [0, 4] ,
following functional differential equation for n =2,3
LM(fi2) = [+ 0)(1+ bo)o + =y — 0] M (f;0)
(5.1) "
— o= M (£, 9)i ).
where
o k1 k+1 ¢ o
_S5 *) (0
V(S 0 (k+n> i€ [ o(75) et 0
k

PROOF. Since M;(f;x) is uniform convergent on [0, A], we can differen-

tiate this series term by term in this interval

Hence,
J o )(1 ' oo k+1
N +n)(1+4n1)z
k=0 "}
oo k+1
* . _ - n(1+”)(1+€n,1)1 (k) z*
e My (fiz) = = en(2) kzz:o k f (’HL") dg on”(0) 3
(5.2)
oo k+1
(k) z*
w2 ! (w5 de o2 (k3.

It can be shown that
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By using this equality in (5.2), after simplification, we get

AM(fir) = [ )L+ )+ e —n] g
oo k+1 k
<5 f(#55) d€ e 0% - st 529

ST () T a8 02

k=0 k
Thus the theorem is proved. o
ProroOSITION 5.1. For ap i = 1, M} (t;x) gives a solution of the
differential equation
a+b
(5.3) xy — [—'yn(1+n)(1 +lp1)T + —— fn]y:
aln(™—=)
1
’yn(l + n)(l +£n11>3§ — @ +n
PROOF. Setting, in (5.1), f =1—t, it follows that
d * 1 *
(54) e M)
. _ 1 T).
aln(" n=ly=on
Using the linearity of M;* and M(1;2) =1 in (5.4) we get (5.3). O
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