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ON FUNCTIONS WHICH ARE ALMOST ADDITIVE
MODULO A SUBGROUP
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ABSTRACT. Let (X,+) be a commutative semigroup, uniquely di-
visible by 2, (G,+) be a topological group, and K be a discrete, nor-
mal and countable subgroup of G. We show that if X is endowed with
a topology and the topologies in X and G satisfy some additional condi-
tions, then for every measurable function f mapping X into G such that
flx+y)— f(z)— f(y) € K almost everywhere in X2, with respect to some
ideal in X2, there is an additive function A : X — G with f(z)— A(z) € K
almost everywhere in X.

1. INTRODUCTION

In connection with the problem of stability of the Cauchy equation
(see [12]) several authors (see e.g. [1] — [4], [6], and [12]) have considered
the following question:

Suppose that X is a real linear space,

(H1) (G,+) is a topological group (not necessarily commutative),
(H2) K is a discrete and normal subgroup of G (discrete means that
there is a neighbourhood U C G of 0 such that U N K = {0}),

and f: X — @ is a function satisfying

(1.1) fla+y) — f(z) - f(y) € K for every z,y € X.
When does there exist an additive function 4 : X — G with
(1.2) f(z) — A(z) € K for every x € X

(i.e. f=A+k with some k: X — K)?

2000 Mathematics Subject Classification. 39B52.
Key words and phrases. Cauchy difference, measurability, additive function, o-ideal.

1



2 JANUSZ BRZDEK

It is known (from Example 2 in [11]; see also Remark 2 in [2]) that in
the general situation this is not the case (cf. e.g. [1] and [2]). However there
are assumptions on f such as continuity at a point or measurability (in some
sense), with X being a linear topological space, which guarantee the desired
form of f (see e.g. [1] — [4] and [6]).

In this paper we study the more general situation where the condition:

flx+y)—flx) - fly) e K

holds almost everywhere in X2 with respect to some ideal in X2. We consider
the case of f being measurable (in the sense specified later); the case of f
continuous at a point has been studied in [4].

Throughout the paper N, Z, Q, and R denote the sets of positive integers,
integers, rationals, and reals, respectively.

In the sequel we will need the following hypothesis:

(H3) (X,+) is a commutative semigroup with zero, uniquely divisible by
2 and endowed with a topology such that every neighbourhood of zero
contains a subset V' such that
(i) sz €V for every z € V,
(i) X = Upen 2"V, where 2"V := {2z : z € V'}.
By (H}) we will denote (Hj) with the expression “a subset V7 replaced by
“an open subset V”. Note that from (¢7) it results that 0 € V.

For instance every topological linear space satisfies (H%). In [4] (pp. 118-
119) (cf. also [6]) there are given some further examples and it is proved that
there exist semitopological linear spaces which fulfil (H3) and do not fulfil
(113).

Given a topological group GG and a normal subgroup K of G, in the factor
group G/K we always take the factor topology, i.e. a set U C G/K is open
if the set p~(U) is open in G, where p : G — G/K is the natural projection.
G /K endowed with this topology is a topological group.

2. PRELIMINARY DEFINITIONS AND LEMMAS
Let us start with the following two definitions.

DEFINITION 2.1. We say that a topological group (Y,4+) is o-bounded
provided for every neighbourhood U C'Y of zero there is a sequence {xy, }nen C
Y with

Y = U U+ 2.
neN

It is easily seen that every topological group having a countable dense
subset is o-bounded. For further details concerning the o-bounded spaces
refer to [7] (p. 88) and [8] (p. 125).
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DEFINITION 2.2. Let X and D be nonempty sets, D C X, M C 2%, and
Y be a topological space. We say that a function f: D —Y is M-measurable
if f7Y(U) € M for every open set U C Y.

In what follows, given a function f : X — Y and P C X, by fp we denote
the restriction of f to the set P.
Now we prove two lemmas.

LEMMA 2.3. Suppose that (Y, +) is a o-bounded topological group, (X,+)
is a semigroup with zero endowed with a topology (Y and X need not to be
commutative),

(Hy) M is a family of subsets of X such that there is a o-ideal o C 2%

with X € So and
(2.3) Ocint {re X :(x+ B)NB+#D} for every B € M \ S,
and P € 2X\Sg. Let g: X — Y be an additive function such that the function
gp is M-measurable. Then g is continuous at 0.

PrOOF. Fix a neighbourhood U C Y of zero. There is an open neigh-
bourhood V' C Y of zero such that V. —V C U. Let {zp}neny C Y be a
sequence with

Y=JV+a.
neN
Then
PcX=g'(Y)=Jg "(V+az)
neN
Thus there exists k € N with
B:i=g YV +x)NPe M\ .

Put W =int {z € X : (z + B) N B # (}. According to (2.3),0 € W.

Take z € W. There are z, w € B with x+2z = w. Hence g(z)+g(z) = g(w)
and consequently g(z) = g(w) — g(z). So we have shown that

gW)c (V+ap) = (V4ap) CU,
which means that g is continuous at zero. o

LEMMA 2.4. Let X, M be as in Lemma 2.3 Suppose that (G,+) is a
commutative topological group, K is a subgroup of G, f : X — G is a func-
tion satisfying (1.1), f is M-measurable, X is divisible by 2 (not necessarily
uniquely),

(2.4) 2"B € Q for every n € N, B € M N Yy,

(Hs) for every n € N the set 27"K = {z € G : 2"z € K} is
at most countable and, for every neighbourhood W C G of zero,
G =U,en2"W.
Then the function h:=po f: X — G/K is continuous at zero.
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PROOF. Fix a neighbourhood U C G/K of zero. There is an open neigh-
bourhood V' C G/K of zero such that V —V C U. Put W = p~}(V). Then
W is an open neighbourhood of 0 in G and

X=r@=r(Jzwm=Ur'ew.
neN neN
Whence, for some m € N, B := f~1(2mW) ¢ So.
Take z € f~1(2™W). Then f(z) € 2™W. Further, there is 2 € X with
x = 2™z and, by induction, from (1.1) we get f(z) — 2™ f(z) € K. Thus

2Mf(z) € K+ f(x) C K+2"W,

which means that f(z) € W+2"™K. Hence z = 2Mz € 2™ f~}(W +27"K).
So we have shown that

(2.5) frem™w) c2mf Y (W +27"K).

Suppose that f~1(W +y) € Sq for every y € 27™K. Then, by (2.4),
2m =YW + y) € Sp for every y € 27™K and consequently 2™ f~1(W +
27"K) € Sy, because 27K is countable. Whence, in view of (2.5), B € Sy,
which brings a contradiction.

In this way we have proved that for some yg € 27" K

D= "YW +yo) € M\ Sq.

Thus, according to (2.3),0 € T :=int { x € X : (xt+D)ND # 0 }. Moreover,
since h is additive,

MT) C h(D) = h(D) =po f(D) —po f(D) C(V +p(y)) = (V +p(yo)) CU
(cf. the last part of the proof of Lemma 2.3). This yields the statement. 0O

REMARK 1. We have the following examples of families M satisfying
(Ha):

1. X is a locally compact topological group, M is the family of Haar
measurable subsets of X and S¢ = {B C X : B is locally of Haar
measure zero} (see e.g. [14]);

2. X is a group endowed with a topology such that every non-empty
open set is of the second category of Baire and every translation is
continuous, M = {B C X : B has the Baire property} and So = {B C
X : B is of the first category} (see [13] and [5], Proposition 1);

3. X is a Polish abelian group, M = {B C X : B is Christensen measur-
able} and S¢ = {B C X : B is a Christensen zero set} (see [9]);

4. X is an abelian semigroup with 0 endowed with a topology generated
by a complete metric and such that all translations are continuous,
M = {B C X : B is universally measurable} and Jg is the o-ideal
generated by the family 1 ={Be M :0& int{x € X : (x+B)NB #
0}} (see e.g. [7], Theorem 7.1 and [8], Theorem 1);
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5. X is a semigroup with 0 endowed with a topology such that all transla-
tions are continuous at 0, Sg = {0}, and M ={U\B: B€ Land U C
X is a non-empty open set}, where L C 2% is an ideal such that,
for every neighbourhood W C X of zero, y € X , A € L, we have
y+ A,2A € L and y+ W & L (see [5], Proposition 1).
It is easily seen that if X (in these examples) is a real linear space and the
topology on it is semilinear (see [13]), then (2.4) holds, too.

REMARK 2. The functions g and & in the statements of Lemmas 2.3 and
2.4 need not to be continuous at points z # 0. Namely, for Lemma 2.3 we
take (Y, +) = (R, +) with the usual topology and (X, +) = ([0, +00), +) with
the topology generated by the basis

T ={[a,b)+kN:k eN,a,be (0,+0),a <b} U {[a,b): 0<a<b<1}.

Then it is easy to see that the topology on X is Hausdorff and every neigh-
bourhood of a point > 1 contains a subset of the form [z,b) + kN with
some b € (z,+00) and k € N. Thus the function g : X — Y, given
by: g(z) = x for z € X, is additive, continuous at 0, and discontinu-
ous at every point z > 1. Moreover it is M-measurable with M = {B C
[0, +00) : B has the Baire property with respect to the usual topology in R}.
Next, (Hy) holds with ¢ being the family of first category (with respect to
the usual topology in R) subsets of [0, 4+00) (cf. example 2 of Remark 1).

Taking G =Y, K = v/2Z and f = ¢, we get an example for Lemma 2.4.
In fact, since, for each k € N, the set {km — v/2n : n,m € N} is dense in R
(with the usual topology), the set p(kN) is dense in G/K and consequently
p([a,b) + kN) = G/K for every a,b € (0,400), a < b. Hence h = po f is
discontinuous at every point x € X,z > 1.

REMARK 3. For instance, every real linear topological space and the
multiplicative group of non-zero complex numbers (with the usual topology)
satisfy (Hs) with any countable subgroup K.

3. THE MAIN THEOREMS

‘We need one more definition.

DEFINITION 3.1. Let (Y, +) be a commutative semigroup. A family T C
2Y s translation invariant (abbreviated in the sequel to t.i.) in Y provided

v+ B¢T for every BE2X\ T,z €Y

and
x+BeT for every BeT,xz €Y.

Given a non-empty set Y and 3 C 2¥ we put

Q(S) = {D C Y? : there is Bp € § with D[z] € S for z € Y \ Bp},
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where D[z] :={y €Y : (y,z) € D} (cf. [10] and [5]). (The condition defining
() is an abstract equivalent of the Fubini Theorem). Further, we say that a
property P(z),z € D C Y holds S-almost everywhere (abbreviated to S-a.e.)
in Y provided there is a set B € & such that the property holds for every
x €D\ B.

Now, we have all tools to prove the following.

THEOREM 3.2. Suppose that (H1)—(Ha4) and one of the following two con-
ditions are valid.

(1) G is o-bounded.
(i1) G is commutative and (Hy) and (2.4) hold.

Let & C 2% be a t.i. ideal in X with
(3.6) (DUE)\ B e M for every D e M,B,E €S,
and f: X — G be a function satisfying
flx+y) - fl@) - fly) € K QUI) — a.e. in X?
which is M-measurable. Then there exists an additive function A : X — G
with
(3.7 f(x) —A(z) e K S —ae in X.

Furthermore, if (H4) holds, then A can be chosen continuous at 0 and, if,
additionally, the following two conditions are valid:

(3.8)  the translation X > x — x + y is continuous at 0 for every y € X,

(3.9) W+yéS for everyy € X and W C X with 0 € int W,
then such A (continuous at 0) is unique.
PROOF. Put go =po f. Then
go(x +y) = go(x) +g0(y) Q) —ae. in X*.

Thus, according to Theorem 1 in [5], there exists an additive function g : X —
G/K and B € S such that g(x) = go(z) for x € X \ B. Let h : X — G be
such that h(z) = f(z) for x € X \ B and h(z) € g(z) for z € B. It is easily
seen that, by (3.6), g and h are M-measurable. Hence, in view of Lemmas 2.3
and 2.4, g is continuous at 0 and, by Lemma 1 in [3], there exists k : X — G,
continuous at 0 and such that k(z) € g(x) for £ € X. Next, on account of
Theorem 2.1 in [4], there is an additive A : X — G such that k(z) — A(z) € K
for x € X, which yields (3.7); moreover, if (H4) holds, then A can be chosen
continuous at 0. It remains to show the uniqueness.

Suppose that (3.8) and (3.9) hold and Ay : X — G is also an additive
function which is continuous at 0 and satisfies

fx) —Ap(z) e K S —ae in X.
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Then A(z) — Ag(z) € K S-a.e. in X. Fix neighbourhoods Vp, V.U C G
of zero such that UNK = {0}, Vo —Vp C V,and V —V C U. Since A
and Ay are continuous at 0, there is a neighbourhood W C X of 0 with
AW), Ag(W) C V. Further, there is By € & with A(z) — Ag(z) € K for
x € X\ By. Put D =W\ By and

Dy:={z € X :(x+ D)nD #0}.
Then we have
A(m)—AQ(I')E[(VQ—%)—(VQ—VQ)]QKCUQK:{O} for x € Dy

and, by Proposition 1 in [5], 0 € int Dy.

In this way we have proved that there is a neighbourhood Wy C X of 0
such that Ag(z) = A(x) for every z € Wy. Take x € X. According to (Hs)
there are n € N and y € Wy with z = 2"y. Thus

Ag(z) = 2" Ao (y) = 2"A(y) = A(z).
Consequently A = Aj. 0
REMARK 4. The examples 1-3 and 5 in Remark 1 satisfy (3.6) and (3.9).

REMARK 5. Let M and g be as in example 4 of Remark 1. Then
My={(D\B)UE :D e M and B,E € Sy} satisfies (H,) and (3.6) (with
M replaced by My).

For the proof of our last theorem we need a proposition.

PROPOSITION 3.3. Suppose that (X,+) is a group, S is a t.i. ideal in X,
F is a field (not necessarily commutative), K CF\{0}, K #0, and f : X — F
satisfies

(3.10) flx+y) e Kf(x)f(y) QAY)-a.e. in X2

Then either f(x) =0 S-a.e. in X or there exists a function fo: X — F\ {0}
such that f(z) = fo(z) S-a.e. in X and

(3.11) folx+y)foly)  folx) ™t € K QI)-a.e. in X2

PROOF. Let P = {(z,y) € X?: f(x+y) € K f(x)f(y)}. Then P € Q).
First suppose that Dy := f~1({0}) € 3. Take z9 € F\ {0} and define
fo: X = F\ {0} by fo(x) = f(x) for . € X \ Do and fo(Do) = {#0}. Clearly
f(x) = fo(r) S-ae. in X. Next, for every (z,y) € X2\ [(Do x X)U (X x
Dy) U P] we have f(z +y) € K f(z)f(y), which means that f(z+y) # 0 and
consequently

folx +y) = flz+y) € Kf(2)f(y) = Kfo(x)foy).
Since (Dg x X)U (X x Do) U P € Q(S), (3.11) holds.
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It remains to consider the case Dy ¢ . Then there exists z € Dy such
that P[z] € S. Note that

flx+2) e Kf(x)f(z) = {0} for z € X \ P[7]

and P[z] + z € . Thus f(z) =0 S-a.e. in X. This completes the proof. 0O
Finally we have the following.

THEOREM 3.4. Suppose that (X, +) is a group satisfying (Hs), (Hy) holds,
F is a field (not necessarily commutative) endowed with a topology such that
(F\ {0},) is a topological group, K is a multiplicative normal and discrete
subgroup of ¥, one of conditions (i), (i) of Theorem 3.2 (with G = F \ {0})
holds, & is as in Theorem 3.2, and f: X — F is a function satisfying (3.10)
which is M-measurable. Then either f(x) = 0 S-a.e. in X or there exists a
solution g : X — F \ {0} of the functional equation

g(x +y) = g(x)g(y)

such that f(z)g(z)™! € K S-a.e. in X.
Furthermore, if (H%) holds, then g can be chosen continuous at 0 and if,
additionally, (3.8) and (3.9) are valid, such g (continuous at 0) is unique.

PROOF. Suppose that {z € X : f(z) # 0} ¢ 3. According to Proposition
3.3 there is fo : X — F\ {0} such that f(z) = fo(z) S-a.e. in X and (3.11)
holds. Now, in view of (3.6), it suffices to use Theorem 3.2 for f; (with
(G,+) = (F\ {0},-)). This completes the proof. O
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