ON FUNCTIONS WHICH ARE ALMOST ADDITIVE MODULO A SUBGROUP

JANUSZ BRZDĘK

Pedagogical Academy of Cracow, Poland

ABSTRACT. Let (X, +) be a commutative semigroup, uniquely divisible by 2, (G, +) be a topological group, and K be a discrete, normal and countable subgroup of G. We show that if X is endowed with a topology and the topologies in X and G satisfy some additional conditions, then for every measurable function f mapping X into G such that $f(x+y) - f(x) - f(y) \in K$ almost everywhere in X^2 , with respect to some ideal in X^2 , there is an additive function $A: X \to G$ with $f(x) - A(x) \in K$ almost everywhere in X.

1. INTRODUCTION

In connection with the problem of stability of the Cauchy equation (see [12]) several authors (see e.g. [1] - [4], [6], and [12]) have considered the following question:

Suppose that X is a real linear space,

- (H_1) (G, +) is a topological group (not necessarily commutative),
- (H_2) K is a discrete and normal subgroup of G (discrete means that there is a neighbourhood $U \subset G$ of 0 such that $U \cap K = \{0\}$),

and $f: X \to G$ is a function satisfying

(1.1)
$$f(x+y) - f(x) - f(y) \in K \text{ for every } x, y \in X.$$

When does there exist an additive function $A: X \to G$ with

(1.2)
$$f(x) - A(x) \in K$$
 for every $x \in X$

(i.e. f = A + k with some $k : X \to K$)?

²⁰⁰⁰ Mathematics Subject Classification. 39B52.

Key words and phrases. Cauchy difference, measurability, additive function, σ -ideal.

¹

JANUSZ BRZDĘK

It is known (from Example 2 in [11]; see also Remark 2 in [2]) that in the general situation this is not the case (cf. e.g. [1] and [2]). However there are assumptions on f such as continuity at a point or measurability (in some sense), with X being a linear topological space, which guarantee the desired form of f (see e.g. [1] – [4] and [6]).

In this paper we study the more general situation where the condition:

$$f(x+y) - f(x) - f(y) \in K$$

holds almost everywhere in X^2 with respect to some ideal in X^2 . We consider the case of f being measurable (in the sense specified later); the case of fcontinuous at a point has been studied in [4].

Throughout the paper \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} denote the sets of positive integers, integers, rationals, and reals, respectively.

In the sequel we will need the following hypothesis:

- (H_3) (X, +) is a commutative semigroup with zero, uniquely divisible by 2 and endowed with a topology such that every neighbourhood of zero contains a subset V such that
 - (i) $\frac{1}{2}x \in V$ for every $x \in V$,
 - $\overbrace{(ii)}^{'}X = \bigcup_{n \in \mathbb{N}} 2^n V, \text{ where } 2^n V := \{2^n x : x \in V\}.$

By (H'_3) we will denote (H_3) with the expression "a subset V" replaced by "an open subset V". Note that from (ii) it results that $0 \in V$.

For instance every topological linear space satisfies (H'_3) . In [4] (pp. 118– 119) (cf. also [6]) there are given some further examples and it is proved that there exist semitopological linear spaces which fulfil (H_3) and do not fulfil (H'_3) .

Given a topological group G and a normal subgroup K of G, in the factor group G/K we always take the factor topology, i.e. a set $U \subset G/K$ is open if the set $p^{-1}(U)$ is open in G, where $p: G \to G/K$ is the natural projection. G/K endowed with this topology is a topological group.

2. Preliminary definitions and Lemmas

Let us start with the following two definitions.

DEFINITION 2.1. We say that a topological group (Y, +) is σ -bounded provided for every neighbourhood $U \subset Y$ of zero there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subset Y$ with

$$Y = \bigcup_{n \in \mathbb{N}} U + x_n.$$

It is easily seen that every topological group having a countable dense subset is σ -bounded. For further details concerning the σ -bounded spaces refer to [7] (p. 88) and [8] (p. 125). ON FUNCTIONS WHICH ARE ALMOST ADDITIVE MODULO A SUBGROUP 3

DEFINITION 2.2. Let X and D be nonempty sets, $D \subset X$, $M \subset 2^X$, and Y be a topological space. We say that a function $f : D \to Y$ is M-measurable if $f^{-1}(U) \in M$ for every open set $U \subset Y$.

In what follows, given a function $f: X \to Y$ and $P \subset X$, by f_P we denote the restriction of f to the set P.

Now we prove two lemmas.

LEMMA 2.3. Suppose that (Y, +) is a σ -bounded topological group, (X, +) is a semigroup with zero endowed with a topology (Y and X need not to be commutative),

(H₄) M is a family of subsets of X such that there is a σ -ideal $\mathfrak{S}_0 \subset 2^X$ with $X \notin \mathfrak{S}_0$ and

(2.3) $0 \in int \{x \in X : (x+B) \cap B \neq \emptyset\}$ for every $B \in M \setminus \mathfrak{F}_0$,

and $P \in 2^X \setminus \mathfrak{F}_0$. Let $g: X \to Y$ be an additive function such that the function g_P is *M*-measurable. Then g is continuous at 0.

PROOF. Fix a neighbourhood $U \subset Y$ of zero. There is an open neighbourhood $V \subset Y$ of zero such that $V - V \subset U$. Let $\{x_n\}_{n \in \mathbb{N}} \subset Y$ be a sequence with

$$Y = \bigcup_{n \in \mathbb{N}} V + x_n.$$

Then

$$P \subset X = g^{-1}(Y) = \bigcup_{n \in \mathbb{N}} g^{-1}(V + x_n).$$

Thus there exists $k \in \mathbb{N}$ with

$$B := g^{-1}(V + x_k) \cap P \in M \setminus \mathfrak{S}_0$$

Put $W = int \{x \in X : (x + B) \cap B \neq \emptyset\}$. According to (2.3), $0 \in W$.

Take $x \in W$. There are $z, w \in B$ with x+z = w. Hence g(x)+g(z) = g(w)and consequently g(x) = g(w) - g(z). So we have shown that

$$g(W) \subset (V + x_k) - (V + x_k) \subset U,$$

Π

which means that g is continuous at zero.

LEMMA 2.4. Let X, M be as in Lemma 2.3 Suppose that (G, +) is a commutative topological group, K is a subgroup of $G, f : X \to G$ is a function satisfying (1.1), f is M-measurable, X is divisible by 2 (not necessarily uniquely),

(2.4)
$$2^n B \in \mathfrak{S}_0$$
 for every $n \in \mathbb{N}, B \in M \cap \mathfrak{S}_0$,

 (H_5) for every $n \in \mathbb{N}$ the set $2^{-n}K := \{x \in G : 2^n x \in K\}$ is at most countable and, for every neighbourhood $W \subset G$ of zero, $G = \bigcup_{n \in \mathbb{N}} 2^n W$.

Then the function $h := p \circ f : X \to G/K$ is continuous at zero.

PROOF. Fix a neighbourhood $U \subset G/K$ of zero. There is an open neighbourhood $V \subset G/K$ of zero such that $V - V \subset U$. Put $W = p^{-1}(V)$. Then W is an open neighbourhood of 0 in G and

$$X = f^{-1}(G) = f^{-1}(\bigcup_{n \in \mathbb{N}} 2^n W) = \bigcup_{n \in \mathbb{N}} f^{-1}(2^n W).$$

Whence, for some $m \in \mathbb{N}$, $B := f^{-1}(2^m W) \notin \mathfrak{F}_0$.

Take $x \in f^{-1}(2^m W)$. Then $f(x) \in 2^m W$. Further, there is $z \in X$ with $x = 2^m z$ and, by induction, from (1.1) we get $f(x) - 2^m f(z) \in K$. Thus

$$2^m f(z) \in K + f(x) \subset K + 2^m W,$$

which means that $f(z) \in W + 2^{-m}K$. Hence $x = 2^m z \in 2^m f^{-1}(W + 2^{-m}K)$. So we have shown that

(2.5)
$$f^{-1}(2^m W) \subset 2^m f^{-1}(W + 2^{-m} K).$$

Suppose that $f^{-1}(W + y) \in \mathfrak{S}_0$ for every $y \in 2^{-m}K$. Then, by (2.4), $2^m f^{-1}(W + y) \in \mathfrak{S}_0$ for every $y \in 2^{-m}K$ and consequently $2^m f^{-1}(W + 2^{-m}K) \in \mathfrak{S}_0$, because $2^{-m}K$ is countable. Whence, in view of (2.5), $B \in \mathfrak{S}_0$, which brings a contradiction.

In this way we have proved that for some $y_0 \in 2^{-m}K$

$$D := f^{-1}(W + y_0) \in M \setminus \mathfrak{F}_0$$

Thus, according to (2.3), $0 \in T := int \{ x \in X : (x+D) \cap D \neq \emptyset \}$. Moreover, since h is additive,

 $h(T) \subset h(D) - h(D) = p \circ f(D) - p \circ f(D) \subset (V + p(y_0)) - (V + p(y_0)) \subset U$

(cf. the last part of the proof of Lemma 2.3). This yields the statement. $\hfill\square$

REMARK 1. We have the following examples of families M satisfying (H_4) :

- 1. X is a locally compact topological group, M is the family of Haar measurable subsets of X and $\mathfrak{F}_0 = \{B \subset X : B \text{ is locally of Haar measure zero}\}$ (see e.g. [14]);
- 2. X is a group endowed with a topology such that every non-empty open set is of the second category of Baire and every translation is continuous, $M = \{B \subset X : B \text{ has the Baire property}\}$ and $\mathfrak{F}_0 = \{B \subset X : B \text{ is of the first category}\}$ (see [13] and [5], Proposition 1);
- 3. X is a Polish abelian group, $M = \{B \subset X : B \text{ is Christensen measur-able}\}$ and $\mathfrak{F}_0 = \{B \subset X : B \text{ is a Christensen zero set}\}$ (see [9]);
- 4. X is an abelian semigroup with 0 endowed with a topology generated by a complete metric and such that all translations are continuous, $M = \{B \subset X : B \text{ is universally measurable}\}$ and \mathfrak{F}_0 is the σ -ideal generated by the family $\mathfrak{F}_1 = \{B \in M : 0 \notin int\{x \in X : (x+B) \cap B \neq \emptyset\}\}$ (see e.g. [7], Theorem 7.1 and [8], Theorem 1);

5. X is a semigroup with 0 endowed with a topology such that all translations are continuous at 0, $\mathfrak{F}_0 = \{\emptyset\}$, and $M = \{U \setminus B : B \in L \text{ and } U \subset X \text{ is a non-empty open set}\}$, where $L \subset 2^X$ is an ideal such that, for every neighbourhood $W \subset X$ of zero, $y \in X$, $A \in L$, we have $y + A, 2A \in L$ and $y + W \notin L$ (see [5], Proposition 1).

It is easily seen that if X (in these examples) is a real linear space and the topology on it is semilinear (see [13]), then (2.4) holds, too.

REMARK 2. The functions g and h in the statements of Lemmas 2.3 and 2.4 need not to be continuous at points $x \neq 0$. Namely, for Lemma 2.3 we take $(Y, +) = (\mathbb{R}, +)$ with the usual topology and $(X, +) = ([0, +\infty), +)$ with the topology generated by the basis

$$T = \{ [a, b) + k\mathbb{N} : k \in \mathbb{N}, a, b \in (0, +\infty), a < b \} \cup \{ [a, b) : 0 < a < b < 1 \}.$$

Then it is easy to see that the topology on X is Hausdorff and every neighbourhood of a point $x \ge 1$ contains a subset of the form $[x, b) + k\mathbb{N}$ with some $b \in (x, +\infty)$ and $k \in \mathbb{N}$. Thus the function $g : X \to Y$, given by: g(x) = x for $x \in X$, is additive, continuous at 0, and discontinuous at every point $x \ge 1$. Moreover it is *M*-measurable with $M = \{B \subset [0, +\infty) : B$ has the Baire property with respect to the usual topology in $\mathbb{R}\}$. Next, (H_4) holds with \mathfrak{F}_0 being the family of first category (with respect to the usual topology in \mathbb{R}) subsets of $[0, +\infty)$ (cf. example 2 of Remark 1).

Taking G = Y, $K = \sqrt{2\mathbb{Z}}$ and f = g, we get an example for Lemma 2.4. In fact, since, for each $k \in \mathbb{N}$, the set $\{km - \sqrt{2}n : n, m \in \mathbb{N}\}$ is dense in \mathbb{R} (with the usual topology), the set $p(k\mathbb{N})$ is dense in G/K and consequently $p([a,b) + k\mathbb{N}) = G/K$ for every $a, b \in (0, +\infty)$, a < b. Hence $h = p \circ f$ is discontinuous at every point $x \in X, x \geq 1$.

REMARK 3. For instance, every real linear topological space and the multiplicative group of non-zero complex numbers (with the usual topology) satisfy (H_5) with any countable subgroup K.

3. The main theorems

We need one more definition.

DEFINITION 3.1. Let (Y, +) be a commutative semigroup. A family $T \subset 2^{Y}$ is translation invariant (abbreviated in the sequel to t.i.) in Y provided

$$x + B \notin T$$
 for every $B \in 2^X \setminus T, x \in Y$

and

$$x + B \in T$$
 for every $B \in T, x \in Y$.

Given a non-empty set Y and $\Im \subset 2^Y$ we put

 $\Omega(\mathfrak{F}) = \{ D \subset Y^2 : \text{there is } B_D \in \mathfrak{F} \text{ with } D[x] \in \mathfrak{F} \text{ for } x \in Y \setminus B_D \},\$

where $D[x] := \{y \in Y : (y, x) \in D\}$ (cf. [10] and [5]). (The condition defining $\Omega(\mathfrak{F})$ is an abstract equivalent of the Fubini Theorem). Further, we say that a property $P(x), x \in D \subset Y$ holds \mathfrak{F} -almost everywhere (abbreviated to \mathfrak{F} -a.e.) in Y provided there is a set $B \in \mathfrak{F}$ such that the property holds for every $x \in D \setminus B$.

Now, we have all tools to prove the following.

THEOREM 3.2. Suppose that (H_1) - (H_4) and one of the following two conditions are valid.

(i) G is σ -bounded.

(ii) G is commutative and (H_5) and (2.4) hold.

Let $\Im \subset 2^X$ be a t.i. ideal in X with

$$(3.6) (D \cup E) \setminus B \in M \text{ for every } D \in M, B, E \in \mathfrak{S},$$

and $f: X \to G$ be a function satisfying

$$f(x+y) - f(x) - f(y) \in K \ \Omega(\Im) - a.e. \ in \ X^2$$

which is M-measurable. Then there exists an additive function $A:X\to G$ with

$$(3.7) f(x) - A(x) \in K \quad \Im - a.e. \ in \ X.$$

Furthermore, if (H'_3) holds, then A can be chosen continuous at 0 and, if, additionally, the following two conditions are valid:

(3.8) the translation $X \ni x \to x + y$ is continuous at 0 for every $y \in X$,

(3.9) $W + y \notin \Im$ for every $y \in X$ and $W \subset X$ with $0 \in int W$,

then such A (continuous at 0) is unique.

PROOF. Put $g_0 = p \circ f$. Then

$$g_0(x+y) = g_0(x) + g_0(y) \quad \Omega(\Im) - \text{a.e. in } X^2.$$

Thus, according to Theorem 1 in [5], there exists an additive function $g: X \to G/K$ and $B \in \mathfrak{S}$ such that $g(x) = g_0(x)$ for $x \in X \setminus B$. Let $h: X \to G$ be such that h(x) = f(x) for $x \in X \setminus B$ and $h(x) \in g(x)$ for $x \in B$. It is easily seen that, by (3.6), g and h are M-measurable. Hence, in view of Lemmas 2.3 and 2.4, g is continuous at 0 and, by Lemma 1 in [3], there exists $k: X \to G$, continuous at 0 and such that $k(x) \in g(x)$ for $x \in X$. Next, on account of Theorem 2.1 in [4], there is an additive $A: X \to G$ such that $k(x) - A(x) \in K$ for $x \in X$, which yields (3.7); moreover, if (H'_3) holds, then A can be chosen continuous at 0. It remains to show the uniqueness.

Suppose that (3.8) and (3.9) hold and $A_0 : X \to G$ is also an additive function which is continuous at 0 and satisfies

$$f(x) - A_0(x) \in K \quad \Im - \text{a.e. in } X.$$

Then $A(x) - A_0(x) \in K$ \Im -a.e. in X. Fix neighbourhoods $V_0, V, U \subset G$ of zero such that $U \cap K = \{0\}, V_0 - V_0 \subset V$, and $V - V \subset U$. Since A and A_0 are continuous at 0, there is a neighbourhood $W \subset X$ of 0 with $A(W), A_0(W) \subset V_0$. Further, there is $B_0 \in \Im$ with $A(x) - A_0(x) \in K$ for $x \in X \setminus B_0$. Put $D = W \setminus B_0$ and

$$D_0 := \{ x \in X : (x+D) \cap D \neq \emptyset \}.$$

Then we have

$$A(x) - A_0(x) \in [(V_0 - V_0) - (V_0 - V_0)] \cap K \subset U \cap K = \{0\} \text{ for } x \in D_0$$

and, by Proposition 1 in [5], $0 \in int D_0$.

In this way we have proved that there is a neighbourhood $W_0 \subset X$ of 0 such that $A_0(x) = A(x)$ for every $x \in W_0$. Take $x \in X$. According to (H_3) there are $n \in \mathbb{N}$ and $y \in W_0$ with $x = 2^n y$. Thus

$$A_0(x) = 2^n A_0(y) = 2^n A(y) = A(x).$$

Consequently $A = A_0$.

Π

REMARK 4. The examples 1-3 and 5 in Remark 1 satisfy (3.6) and (3.9).

REMARK 5. Let M and \mathfrak{F}_0 be as in example 4 of Remark 1. Then $M_0 = \{(D \setminus B) \cup E : D \in M \text{ and } B, E \in \mathfrak{F}_0\}$ satisfies (H_4) and (3.6) (with M replaced by M_0).

For the proof of our last theorem we need a proposition.

PROPOSITION 3.3. Suppose that (X, +) is a group, \Im is a t.i. ideal in X, \mathbb{F} is a field (not necessarily commutative), $K \subset \mathbb{F} \setminus \{0\}, K \neq \emptyset$, and $f : X \to \mathbb{F}$ satisfies

(3.10)
$$f(x+y) \in Kf(x)f(y) \quad \Omega(\mathfrak{S})\text{-a.e. in } X^2.$$

Then either f(x) = 0 \Im -a.e. in X or there exists a function $f_0 : X \to \mathbb{F} \setminus \{0\}$ such that $f(x) = f_0(x)$ \Im -a.e. in X and

(3.11)
$$f_0(x+y)f_0(y)^{-1}f_0(x)^{-1} \in K \ \Omega(\mathfrak{S})\text{-a.e. in } X^2.$$

PROOF. Let $P = \{(x, y) \in X^2 : f(x+y) \notin Kf(x)f(y)\}$. Then $P \in \Omega(\mathfrak{F})$. First suppose that $D_0 := f^{-1}(\{0\}) \in \mathfrak{F}$. Take $z_0 \in \mathbb{F} \setminus \{0\}$ and define $f_0 : X \to \mathbb{F} \setminus \{0\}$ by $f_0(x) = f(x)$ for $x \in X \setminus D_0$ and $f_0(D_0) = \{z_0\}$. Clearly $f(x) = f_0(x)$ \mathfrak{F} -a.e. in X. Next, for every $(x, y) \in X^2 \setminus [(D_0 \times X) \cup (X \times D_0) \cup P]$ we have $f(x+y) \in Kf(x)f(y)$, which means that $f(x+y) \neq 0$ and consequently

$$f_0(x+y) = f(x+y) \in Kf(x)f(y) = Kf_0(x)f_0(y).$$

Since $(D_0 \times X) \cup (X \times D_0) \cup P \in \Omega(\mathfrak{S})$, (3.11) holds.

JANUSZ BRZDĘK

It remains to consider the case $D_0 \notin \mathfrak{S}$. Then there exists $z \in D_0$ such that $P[z] \in \mathfrak{S}$. Note that

$$f(x+z) \in Kf(x)f(z) = \{0\}$$
 for $x \in X \setminus P[z]$

and $P[z] + z \in \mathfrak{S}$. Thus f(x) = 0 \mathfrak{S} -a.e. in X. This completes the proof. \Box Finally we have the following.

THEOREM 3.4. Suppose that (X, +) is a group satisfying (H_3) , (H_4) holds, \mathbb{F} is a field (not necessarily commutative) endowed with a topology such that $(\mathbb{F} \setminus \{0\}, \cdot)$ is a topological group, K is a multiplicative normal and discrete subgroup of \mathbb{F} , one of conditions (i),(ii) of Theorem 3.2 (with $G = \mathbb{F} \setminus \{0\}$) holds, \mathfrak{F} is as in Theorem 3.2, and $f : X \to \mathbb{F}$ is a function satisfying (3.10) which is M-measurable. Then either f(x) = 0 \mathfrak{F} -a.e. in X or there exists a solution $g : X \to \mathbb{F} \setminus \{0\}$ of the functional equation

$$g(x+y) = g(x)g(y)$$

such that $f(x)g(x)^{-1} \in K$ \Im -a.e. in X.

Furthermore, if (H'_3) holds, then g can be chosen continuous at 0 and if, additionally, (3.8) and (3.9) are valid, such g (continuous at 0) is unique.

PROOF. Suppose that $\{x \in X : f(x) \neq 0\} \notin \Im$. According to Proposition 3.3 there is $f_0 : X \to \mathbb{F} \setminus \{0\}$ such that $f(x) = f_0(x)$ \Im -a.e. in X and (3.11) holds. Now, in view of (3.6), it suffices to use Theorem 3.2 for f_0 (with $(G, +) = (\mathbb{F} \setminus \{0\}, \cdot)$). This completes the proof.

References

- K. Baron and PL. Kannappan, On the Pexider difference. Fund. Math. 134 (1990), 247–254.
- [2] K. Baron and PL. Kannappan, On the Cauchy difference. Aequationes Math. 46 (1993), 112–118.
- [3] J. Brzdęk, On the Cauchy difference. Glasnik Mat. 27 (47) (1992), 263-269.
- [4] J. Brzdęk, The Cauchy and Jensen differences on semigroups. Publ. Math. Debrecen 48 (1996), 117-136.
- [5] J. Brzdęk, On almost additive functions. Bull. Austral. Math. Soc. 54 (1996), 281–290.
- [6] J. Brzdęk and A. Grabiec, *Remarks to the Cauchy difference*. In: Stability of mappings of Hyers-Ulam type, ed. by Th. M. Rassias and J. Tabor, Hadronic Press, 1994, 23–30.
- [7] J. P. R. Christensen, *Topology and Borel structure*. [North-Holland Mathematical Studies 10], North-Holland, Amsterdam - London, American Elsevier, New York, 1974.
- [8] J. P. R. Christensen, Borel structure in groups and semigroups. Math. Scand. 28 (1971), 124–128.
- P. Fisher and Z. Słodkowski, Christensen zero sets and measurable convex functions. Proc. Amer. Math. Soc. 79 (1980), 449–453.
- [10] R. Ger, Almost additive functions on semigroups and a functional equation. Publ. Math. Debrecen 26 (1979), 219–228.
- G. Godini, Set-valued Cauchy functional equation. Rev. Roumaine Math. Pure Appl. 20 (1975), 1113–1121.
- [12] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms. Aequationes Math. 44 (1992), 125–153.

ON FUNCTIONS WHICH ARE ALMOST ADDITIVE MODULO A SUBGROUP 9

- [13] Z. Kominek and M. Kuczma, Theorems of Bernstein-Doetsch, Piccard and Mehdi and semilinear topology. Arch. Math. (Basel) 52 (1989), 595–602.
- [14] K. Stromberg, An elementary proof of Steinhaus's theorem. Proc. Amer. Math. Soc. 36 (1972), 308.

Department of Mathematics, Pedagogical Academy, Podchorążych, 30–084 Cracow, Poland

Received: 10.07.96.