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OSCILLATION AND MULTILINEAR STIELTJES INTEGRAL

ARMIN HALILOVIG

Institutionen for matematik, Stockholm, Sweden

ABSTRACT. In this note we consider oscillation of regulated functions.
We improve and simplify the proof of the existence theorem for multilinear
Stieltjes integral in the Riemann-Stieltjes and Moore-Pollard sense and
introduce multilinear Henstock-Kurzweil-Stieltjes integral.

1. INTRODUCTION

Notations. Let X,Y and X;,j = 1,...,p be linear normed spaces.
Let L(Xy,...,Xp;Y) denote the linear normed space of bounded multilinear
transformations A : X7 x --- x X, = Y.

The existence of the Stieltjes multilinear integral of f; relativ to g, in
the case when the function ¢ is of bounded semivariation, f; are regulated
functions, and X;,j = 1,...,p are Banach spaces, was proved in [4]. In the
present paper we simplify and improve the proof, assuming only Y to be a
Banach space. Furthermore we suggest a definition of the multilinear Stieltjes
integral in Henstock- Kurzweil sense.

DEFINITION 1.1. Let (M,d) be a metric space, (X,|-|) a linear normed
space and A a subset of M. Let f be a mapping of A into X. The oscillation
of fin A , is defined to be

w(f, A) = sup{|f(t) = f(s)], 5,1 € A}

Let a be a cluster point of A. The oscillation of f at the point a with respect
to A is

w(f,a,A) = ir‘}f w(ANV)
where V' runs over the set of neighborhoods of a.

DEFINITION 1.2. A mapping [ : [a,b] — X is called a regulated function
if it has one-sided limits at every point of [a,b] .
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REMARK 1.3. If f : [a,b] — X is a regulated function and sg € (a,b) then
the oscillation of the function f at the point sq is

w(ﬁ 50, [a”b]) =
max{[f(so +0) — f(s0)],[f(s0) = f(so = 0)[,[f(so +0) — f(so — 0)|},

and similarly
w(f,a,la,b]) =|f(a+0) = fla)], w(f,b,la,b])=]f(b) = f(b—0)|.

LEMMA 1.4. Let f : [a,b] — X be a regulated function and € > 0. Then
there exists a subdivision E of the interval [a, ],

E:{t07t17"'7tn}7 a':tOStlSStn:b

such that the oscillation of f in each of the open intervals I; = (t;—1,t;) is
< €.

PROOF. Given € > 0. For every z € [a,b] there is an open interval
Ve = (z — 64,2 + ;) such that |f(s) — f(¢)] < € if either both s,t are in
(x — 0z, ) or both in (x,x + ;).
The intervals U, = (x — /2,2 + §,/2) cover [a,b]. There exists a finite
subfamily of such intervals U,,,i = 1,...,n — 1, where x; is an increasing
sequence, which is a covering of [a,b]. We take t; = z;,i=1,...,n—1,tc=a
and t,, = b. Then either x; € V(x;_1) or ;1 € V(x;) and hence

lf(s)=fO)] <e ie  w(f,(tim1,t)) <e
0

COROLLARY 1.5. Given e > 0. Let Q denote the set of the points at which
the oscillation of a regulated function f is > e. Then Q is a finite set.

2. SEMIVARIATION

DEFINITION 2.1. Let A€ L(X1,..., Xp,.... X Y), g:]a,b] — X,
P:{t07t17"'7tn}7 a':tOStlSStn:b

The function g is of bounded semivariation relative to A if there exists a pos-
itive constant M such that

| ZA[zzlav'rfilag(tl) _g(tifl)aszrla-'-v‘er

15 less than
k+1 | .

i 7

M - max |z}| - - - max [zF 1| - max |z .- max |z
K3 K3 K3 3
for all subdivisions P of [a,b] and all mf €eX;, j=1,...p, j#k, i=

1,...n.
P:{t07t17"'7tn}7 a:toﬁtlﬁﬁtnzb
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The semivariation of g relative to A, SV (g, A, [a,b]) , is defined as

n
Sl;p{|ZA[$Zl,..,,x?_l7g(ti) _g(ti—l)fo—i_lv"'vxzi)]'v
=1

lz]| <1, =z EXJ}

The supremum s taken over all subdivisions P and all zf € X, |3:f| <1

REMARK 2.2. It is obvious that if g is of bounded variation than g is also
of bounded semivariation.

The proofs of the next two lemmas follow from Definition 2.1.

LEMMA 2.3. If [a;,b;], i=1,...n, are non-overlapping intervals such
that

then
n
> Al af T g(b) — gla), 22t
=1
s less than
max|al] -+ max o5 - max [2541] -max 27 - SV (g, 4, [a, b]).
K2 K2 (2 K2

LEMMA 2.4. Ifc<a <b<d, then SV (g, A,[a,b]) < SV(g, A,|c,d])

LEMMA 2.5. LetY and X;,5 =1,...,p, be linear normed spaces.
Let Ae L(X1,...,Xp,...,Xp;Y) , let g : [a,b] — X} be a function of bounded
semivariation and let

P:{to,tl,...,tn}, a:togtlg-ugtn:b,
Suppose that the vectors Uf,ug €X;, j#k, i=1,...n, satisfy
o] —ull <e,
and denote M; = sup,{1, |uf|, |vf|}
Then the sum

n
|S| = |Z{A[Uzlﬂ "7Ufil7g(ti) _g(ti—l)avf+17" '7Uf]
=1

_A[uzlv 7uk_lvg(tl) _g(tifl)auk-i_lv'- 7u;zn] }|

K3 2

is less than ¢ - M - SV (g, A, [a,b]), where M =p- My -+ My_1 - Mpyq--- M.
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PROOF. Since A is a multilinear operator we can rewrite S .

n
_ 1,2 k—1 k+1 P
|S|_|Z{A[’Uivvi'-'vvi 7g(ti)_g(ti*1)7vi g ’U-]

i=1

— Afu},v? ..

ST

)

“g(ts) — g(tin), ot L of])
n
k— k
+Z{A[u},vf,_,7vi 179(751')—9(151'71),1)1»“,... vp]
=1

— Aluf,uf .. 0F T g(t) — gltior), vf 0P}

n
k- k
—|—Z {Alu},ui. .. u Log(t) — gtiza),ul ™ o o7
i=1

— Aluf, i g(t) — g(tioa),ui Tl b
So we have

S| <€ Mz My—y - Mgy --- My - SV (g, A, [a,b])
+Ml'6""Mk—l'Mk+1"'Mp'SV(g7Aa[aab])

—|—M1"'Mk71'Mk+1"'M;D*1'G'SV(Q’A7[a7bD
<e-M- SV(guA7 [a’7b])
0

LEMMA 2.6. Let Y and X;,5 = 1,...,p, be linear normed spaces. Let
Ae L(Xy,..., Xg,...,Xp;Y) , let g : [a,b] — Xi be a function of bounded
semivariation and let

P={to,t1,....ta}, a=tg<t; <---<t,=bh.
Suppose that the vectors Uf,uf,yf,xf € X;, j#k, i=1,...n, satisfy
ol —ull<e, gl -l <e,
and that Mj = Supi{la |u‘1]|a |’Uz]"|a |$z|7 |yf|}
Then the sum
n
1S =1 _{AW},... vt gt — 0) — g(tia +0),0f . oF]
i=1
— Aty ulb T gt —0) — gty +0),ul T W] )
n—1
+> {Alyl -y gt +0) — gt — 0,y ol
i=1

_A[xivaxfilag(tl_ko)_g(tl_o)aszrl ,.If] }|

1 )

is less than ¢ - M - SV (g, A, [a,b]), where M =p- My -+ My_1 - Myyq--- M.
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PRrROOF. Let €; > 0. Since A is a bounded operator we can chose points
t; and t such that t; € (¢;,¢/), t! < t;+1 and that the sum

177

n
k— k
1S = 1> {Alv), ... ot g(th) — g(t]_y), o ol
=1
_A[uzla' "7ufilag(t2) _g(télfl)aui’wrla- . auf] }

n—1
Y {AW -y g — gy ]
=1

_A[‘T%a' "7:6?7159(%/) _g(t/

Dot

e

differs from S by less than e;. It follows from Lemma 2.5 that [S1]| <e- M -
SV (g, A,]a,b]), so we have

[S] <|S = S1|+|S1| <e1+e-M-SV(g,A,a,b]).
Since €7 is arbitrary small, we have that

[S| < 1S =81+ |S1| <e-M-SV(g,A,a,b]).

3. MULTILINEAR STIELTJES INTEGRAL

DEFINITION 3.1. Let Y and X;,5 = 1,...,p, be linear normed spaces.
Let A€ L(Xq,...,Xp,...,XpY) , let g : [a,b] — Xi and let f; : [a,b] —
X, i=1,...,p, j # k .For the partition

P:{t07t17"'7tn}7 a':tOStlSStn:b

7

we denote max{[t; —t;—1[} by |P|.
Let sl,j=1,...,p,j # k, be p— 1 points arbitrarily taken from the interval
[ti—1,ti] , by S(P) we denote the Stieltjes sum

S(P) =
= Z {A[fl(szl)J R fk—l(sf_l)Jg(ti) - g(ti—l)vfk-i-l(sf-i_l% ) fp(sf)]} .
i=1

We say that the Stieltjes integral on [a,b] of f1,..., fk—1, fk41,---, [p with
respect to g and A exists in the Riemann sense and has the value I if, for
every € > 0 there exist § > 0 such that

Pl <6=|I—S(P)|<e
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for any choice of the points t; € [a,b] and 57 € [t;_1,t;].

We denote
A

I= (RS) /(flu'"7fk—17dgafk+17"'7fp)'
[a,b]

DEFINITION 3.2. We say that the Stieltjes integral exists in the Moore-
Pollard sense and has the value I if, for every e > 0 there exist a subdivision
Py such that for every refinement P O P, we have

11— S(P)| < .

We denote

I:(MP) (fla'"7fk717dgafk+1;"'afp)'

—

=

[a,
In the case when g is a regulated function we can define Stieltjes integral

in the Young-Moore-Pollard sense.

DEFINITION 3.3. Let g : [a,b] — X}, be a regulated function. Let
P:{to,fl,...,fn}7 a=ty<ti1<---<t,=0.

Let sf,j # k, be p— 1 points in the open interval (t;—1,t;). By YS(P) we
denote the sum
k1

DAL fra(sE ) gt = 0) = g1 4+ 0), frra (85, fo(sD)]+

n—1
Z Alfi(ti), -, foe—1(ti), g(ti +0) — g(t; — 0), frg1(ts), ..., fpo(ti)]+
=1

A[f1(b),- -, fr=1(b), g(b) — g(b = 0), frt1(b), ..., fo(b)]+
A[fl(a)7 EER] fkfl(a)vg(a’ + O) - g(a)v fk+1(a)7 LR fp(a)]
We say that the Stieltjes integral on [a,b] of f1,..., fk—1, fk41,---, [p with

respect to g and A exists in the Young-Moore-Pollard sense and has the value
I if, for every e > 0 there exist a subdivision Py such that for every refinement

P DO P we have

0

I—YS(P)| <e
We denote
A
I:(Y) /(fl?'"7fk—17dgafk+17"'7fp)'
[

a,b]
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Similarly we define integrals
A

[ @fidater.. sy
[a,b]
where d; f; denotes f; or df;, see A. Halilovic [2].
In the next theorem we assume only Y to be a Banach space.

THEOREM 3.4. Let Y be a Banach space and let X;,5 = 1,...,p, be
linear normed spaces over the same field. Let A € L(X4,..., Xk, ..., Xp;Y),
let g : [a,b] — Xk be a requlated function of bounded semivariation and let
fiila,bl— X;, j=1,...,p, j #k be requlated functions. Then
(i)  The Stieltjes integral

A

I= (Y) / (fla" '7fk—17dg7fk+17' "7fp)
[a,b]
exists in the Young-Moore-Pollard sense.
(ii)  The Stieltjes integral
A
I= (MP) / (fla"'7fk—17dg7fk+17"'7fp)
[a,b]

exists in the Moore-Pollard sense if and only if the functions g : [a,b] — X}
and f; :[a,b] — X;, j=1,...,p, j #k, satisfy conditions (b) and (c) below.
(tit)  The Stieltjes integral
A
1= (RS) / (fl, ey fk_l,dg, fk-l—lu ey fp)

[a,b]
exists in the ordinary Riemann-Stieltjes sense if and only if the functions
g :la,b] — Xy and f; : [a,b] — X;, 5 =1,...,p, j # k, satisfy conditions
(a), (b) and (c) below.
The conditions (a) — (c) are

(a) A[fl(sl)J EER) fk_1(8k_1),g(t + O) - g(t - 0)7fk+1(5k+1)= EER) fp(sp)]

= A[fl(t)v s 7fk71(t)ag(t + O) - g(t - O)vkarl(t)a ) fp(t)]
for all 3P~' combinations obtained by taking fj(s;) € {f;j(t —0), f;(t), f;(t +
0)}, j=1,...,p, j #k, for every t € (a,b) .

(b) A[fl(sl)v .- '7fk*1(5k*1)vg(t+ 0) - g(t)7fk+1(5k+1)v R fp(sp)]
= A[fl(t)ﬂ s 'afk—l(t)ag(t+0) - g(t)7fk+l(t)ﬂ s 7fp(t)]
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for all 2P~1 combinations obtained by taking f;(s;) € {f;(t), f;(t +0)},
ji=1,....p, j £k, for everyt € [a,b) .

(c) Alf1(s1)s -5 fre—1(86-1),9(t) — g(t = 0), frr1(sk+1),-- -, fp(Sp)]

= Alf1(t), -, fr1(2), 9(t) = g(t = 0), frqa (D), ..., fp(1)]
for all 2P~ combinations obtained by taking f;(s;) € {f;(t —0), f;(t)},
i=1,....p, j#k, for everyt € (a,b] .

PROOF. Existence in the Young-Moore-Pollard sense. Given € > 0. It
follows from Lemma 1.4 that there exists a subdivision E of the interval [a, ],

E:{t07t17"'7tn}7 a/:tOStlSStn:ba

such that the oscillation of f; in each of the open intervals I; = (t;—1,¢;), =
1,...,n, is less than e. Let P be any refinement of E. We compare Y(E) and
Y(P). Let s{,j =1,...,p,j # k , be p—1 points arbitrarily chosen from the
interval [t;_1,t;]. We suppose that t; 1 = 2,0 < 2i1- -+ < 2, 0(;) = t; are new
points in the interval [t;_1, ;] and that ufe € |zie—1,%iel,J=1,...,p0, ] #k,
e=1,...,r;. We consider the difference S(P)— S(F) in the intervals [t;_1,t;].
Since the points t; are in P and in F, the terms

Alfi(ti), -+ fre—1(ti), g(ti +0) — g(ti = 0), frr1(ti), - - -, fo(ti)],
A[fi(b), ..., f—1(b),g(b) — g(b—0), fe+1(D),. .., fp(D)]

and

Alfi(a),- -, fr-1(a), g(a +0) = g(a), frra(a); ..., fp(a)]

vanish, so we have.

A ZA[fl(S%), B fk—l(si?_l)vg(ti - O) - g(ti—l + O)a fk-i—l(si'g-i_l); ceey fp(Si))]
(i)
- ZA[fl (uzl,e)ﬂ R fk—l(u?,gl%g(zi,e - 0)_
e=1

— g(zie—1 +0), for (T, .o, fo(ul )]

r(i)—1
- Z A[fl (Zi,e); R fk—l(zi,e)a Q(Zi,e + O)_
e=1
- g(zi,e - O)a karl(Zi,e); ceey fp(zi,e)]-
Inserting
g(ti = 0)=g(ti—1 +0) = g(2ir) — 0) — 9(2i,r(i)—1 + 0)+

r(i)—1
+ ) [9(zie — 0) = g(zie1+0) + g(zic +0) — g(zic — 0)]
e=1
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we obtain
r(i)
A= {ALAGD, - S (557, 9510 — 0)-
e=1

g(zi,e—l + O)a fk-i-l(siﬁ_l)v R fp(sf)]
_A[fl (uzl,e)v R fkfl(ui:l)ag(zi,e - 0)_
9(ziet +0), froa (W), fy(t )}

r(i)—1

+ 30 ARG S (5, g+ 0)-

e=

—

9(zie = 0), frs1 (5§+1)= R fp(sf)]
—Alf1(zie)s s fu—1(Zire), 9(2ie +0)—

9210 = 0), S (i), oo Sylzi)] |-

Since
S(P) - S(B) = 3" A,

and the oscillation in the intervals (¢;_1,¢;) is less than €, by Lemmas 2.3- 2.6
we have

Since S(P) € Y, and Y is a Banach space, the integral exists in the Young-
Moore-Pollard sense.

FExistence in the Moore-Pollard sense. Given € > 0. It follows from
Lemma 1.4 that there exists a subdivision F of the interval [a, b],

E={y,y1,- - sym}, a=y9<y1 < <ym=>

such that the oscillation of f; in every of the open intervals I; = (yi—1,u1),
I =1,...,m, is less than e. It follows from the conditions (b) and (c) that
there exists § > 0 such that for ¢ = y; we have

|A[f1 (811/)7 SRR fk_l(Sg,l),g(U) - g(t), fk-i—l(s;clJrl)J R fp(sp)]_

3.1 €
B A ) fia(5h1). 000) = 00, S () S5 < 5
if s, € [t,t+0], j=1,....p, j#k,u,v € (t,t+7], and
(3 2) |A[f1(811/)7 .- '7fk—1(sg—l)7g(t) - g(u)7fk+l(sg+1)v R fp(sp)]_

T ALA(S)s s Pt (85-1), 9(8) = 9(0), Frar (Sha)s s Fo(sp)]] < %
if s,sh €ft—0,t], j=1,....p, j#k,u,v €[t —4,1).
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Let now PO = {to,tl,...,tn}, a:to S tl S S tn = b, be a subdivi-
sion of [a,b] such that Py D E and |FPy| < §. Let sg,j =1,...,p,5 # k , be
p — 1 points arbitrarily chosen from the interval [t;_1,t;]

Let P be an arbitrary refinement of Fy. We suppose that t;_1 = 2;0 <
1 < Zy) = t; are new points in the interval [t;_1,%;] and that uze €
[Zie—1,Zie)s J = 1,...,p, j # Kk ,e=1,...,7. We consider the difference
S(P) - S(Po) in the intervals [tifl,ti] .

Zi

Let
Ai =A[fi(s])s s foma (87, 0(t) = g(timn)s o (s50), s Fo(sD)]
r(i)
=Y {AlAEl) o fea ) (i)
e=1
g(Zi,e—1)7fk+1(U§:1); S fp(uf,e)]}
Inserting
r(1)
g(ti) —g(ti-1) = Z[Q(Zz e) = 9(zie—1)]
e=1
we obtain

(4)
A=Y (ARG, fer (5. g~
e=1

g(zl}efl)v karl(Si'H_l)v R fp(sf)]
—Alfu(ul ), e (oY), 9(zie) — 9(zie—1), fren(uth), ., fp(uﬁe)]}-

Hence
S(R) —S(P) =>4
=1
n r(4)
:Z {A[fl(sll), ,fk—l(sif ),9(%ie)
1=1 e=1
(3.3)

9(zie-1), fk+1(5f+1)7 s fo(89)]
_A[fl(u},e)v ] fkfl(uf;l)ag(zi,e) - g(ziyefl)a karl(u?,Jerl)v R fp(uie)]}
= +) .

Some of the z; . are in E, i.e. coincide with y;, and we denote by > the
sum of terms over those intervals, where at least one of the endpoints z; . is
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in E. According to (3.1) and (3.2) we have

!/
€
3.4 o - =
(3.4) |Z|<m2m €

The oscillation of the functions f; over every interval, which build the sum
denoted by E", is less than e. Hence by Lemmas 2.3 and 2.5 we have

"
(3.5) 1Y I <e-M-SV(g, A la,b]).
It follows from (3.3), (3.4) and (3.5) that

1S(Po) = S(P) =) _+D 1<IDI+ID> [ <e+e-M-SV(g, A a,b])

Since S(P) € Y, and Y is a Banach space, the integral exists in Moore-Pollard
sense. Necessity. Suppose that one of the conditions (b), (¢) for example (c)
does not hold in a point ¢ . We consider a subdivision P,, which includes the
interval [t — 1/n,t]. We can chose associated points s/, so that

An = Alfr(sp), - froma (s 1) g(8) = g(t = 0), fraa(si ™), -, Fu(sh)]
A1), fr1 (), 9(8) = (8 = 0); frga (8)s- -5 ()]

does not converge to 0 when n — oo. We compare two sums Sp(P,) and
S2(P,) which agree excepting that in the interval [t —1/n, t] we take different
associated points, s/ = sJ for S and s/ =t for Sa. So we have that |S; —Ss| =
A,, does not converge to 0 when n — oo. Consequently (M P) [ does not exist.

Ezistence in the Riemann-Stieltjes sense. If the conditions (a), (b) are
fulfilled then the integral exists in the Moore-Pollard sense, and let I denote
its value. By Definition 3.2, for € > 0, there exists a subdivision

E={yo,y1,- - ym}, a=% <y <...,<Yn=2»0
such that
(3.6) P OE=|S(P)—1I| <«

It follows, from the conditions (a), (b) and (c), that there exists § > 0 such
that for t = y; we have

[AL1(s7)s s frma(s5o1), 9 (w) = 9(8), fora(siga)s -5 fo(sp)l—

3.7 €
BT Ao s (510, 00) = 900, Fur (e Syl <
it sf,sb €[t,t+0], j=1,...,p, j# Kk, u,v € (t,t+4],

gy A0 B (G000 fea ) o)

B8 A6 emr (51280 = 900D, s () S5 <

if s,sh €ft—=90,t], j=1,...,p, j#k ,u,v €[t —4,t), and

77
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|A[f1(sT), s fom1(sk—1), 9(u') = g (), fra1(Shsn)s- - Fp(sp)]—
L), s frot (551)s 90) = 90 fira (k) Bl < 5=

if s,sh €[t —=0,t+0], j=1,....p, j #k,u,v €[t —41), v v € (tt+7]

For ¢ so determined, we consider any subdivision P with |P| < §. Suppose

(3.9)

P:{t07t17"'7tn}7 a:tOStlggtn:b7

and let s{,j =1,...,p,j # k, be p — 1 points arbitrarily taken from the
interval [t;_1,t;]. Suppose P, = P U E. We define associated points sJ“ = sf
in any interval [t;_1,t;] which contains no points of E. In the intervals which
contains y; as an end point we chose associated points to be equal y;. We can
assume that § is less than min |y; — y;—1] so that there is maximum one point
y; in any interval [t;_1,t;]. Because of (3.9) we have

(3.10) [S(P) = S(P1)| < 2m - 5.
Since P O E we have
(3.11) [l —S(P)| <e.
It follows from (3.10) and (3.11) that
[T —S(P)| < 2e.

It means that the integral exists in the Riemann-Stieltjes sense. We can prove
the necessity of the conditions (a), (b) and (c) in the same way as in (i7). For
the condition (a) we consider the intervals (t — 1/n,t + 1/n). O

Remark. For the necessity in Theorem 3.4 we do not need the assumption
that Y is a Banach space, but only that Y is a linear normed space, so we
have the following theorem.

THEOREM 3.5. Let X;,5 =1,...,p, and Y be linear normed spaces over
the same field. Let A € L(Xq1,..., Xk,...,Xp;Y) and let f; : [a,b] — X, j =
1,...,p, j £k, and g : [a,b] — Xj be regulated functions. Then
the Stieltjes integral
A
/ (fla" '7fk—17dg7fk+17" '7fp)

[=(MP)
la,b

exists in the Moore-Pollard sense only if the functions g : [a,b] — X and
fi +a,b] — X, j = 1,...,p, j # k, satisfy conditions (b) and (c) in
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Theorem 3.4;
The Stieltjes integral

A

I= (RS) /(fla'"afkflvdgafk+1;"'afp)'
[a,b]

exists in the ordinary Riemann-Stieltjes sense only if the functions g : [a,b] —
Xk and f; : [a,b] — X;, 5 =1,...,p, j # k, satisfy conditions (a), (b) and
(¢) in Theorem 3.4.

Example. Let M,, , denote the linear normed space of all m x n matri-
ces. We define i : [-1,1] — R to be

) 1, if t is a rational number;
VA =
2, if t is an irrational number.

Let a,b and ¢ be real numbers and b # 0. We define functions
fi:[-1,1]— Mas, ¢:[-1,1]— M3z and f3:[—1,1] — Mz 4 as follows

ro =5 o

=[50 0 0 1)

The functions f1,¢ and f3 have common discontinuities at all points of the
interval [—1,1]. We define a multilinear operator A : M2 3 X M3 3 X My 4 +—
M274 as ordinary matrix multiplication, A(ngg, X372, X274) = X213 'X312 'X214,
where X ; is a matrix in M; ;. Let

P:{t07t17"'7tn}7 _1:t0§t1§§tn:1

In every interval [t;_1,t;] we choose two arbitrary points s}, s? and form the
Stieltjes sum

S(P) = Z fi(si) - [g(ti) — g(tiz1)] - fa(s?)

. - Cd(ti — ti—l) Cd(ti — ti—l) Cd(ti — ti—l) Cd(ti — ti—l)
B — Cd(ti — ti—l) Cd(ti — ti—l) Cd(ti — ti—l) Cd(ti — ti—l)

7
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By Definition 3.1 we have that the RS integral exists and have the value

A
. 2cd  2c¢d 2cd  2cd
I =(RS) / (fl,dg,fs)ZUI;I@OS(P)— 9%d 2cd 2ed 2ed

[7171]
although the functions fi1,g and fs have a common discontinuity in every
point in the interval [—1,1].
Multilinear Stieltjes integral in the Henstock-Kurzweil sense.

Let ¥ and X;,7 = 1,...,p, be linear normed spaces. Let A €
L(X1,...,Xp;Y) and let f; : [a,b] — X;, j=1,...,p. Let

Pz{to,tl,...,tn}, a=thg<t1 <---<t,=0b,

be a partition of [a, b]. If we consider multilinear Stieltjes integral in the general
case, we need an ordered set J which indicates functions and those coordinates
where we consider ”df 7. For example, if J = (0,1,0,1,0) then we consider
the multilinear Stieltjes integral

A
/ (flvdf25f3adf47f5)'
[a,0]

If we consider the integral in the Riemann sense then the integral is the limit
of the sums

ZA[fl(S%)a fa(ti) = fa(tion), f3(s3), fa(ts) = fa(ti1), f5(s))],

where s}, s3,s? € [t;_1,t;], and in the Henstock sense (see definition below )

the integral is the limit of the sums

n

D Alfi(si), falts) = faltion), fa(si), falti) = fa(tin), fo(si)],

i=1

where s; € [ti—luti]'

Let the "indicator”, set J = {e1,ea,...,€,}, where e; = 1 or e; = 0, be
given. For given J we denote
FJ _ fj(Si), if € = O;
' f](tl) — fj(tifl), lf ej =1.

We define Henstock-Stieltjes sum to be
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DEFINITION 3.6. We say that the multilinear Stieltjes integral on [a,b]
exists in the Henstock-Kurzweil sense and has the value I, if for every e > 0
there exists 6(s) > 0, such that whenever a partition P and points s; satisfy

8; € (w4, 1] C (8i — 0(54), 80 4 0(s4))

fori=1,... ,n, we have

- A[F},... . FF]| <e
i=1

We write

A

I= (HS) / (dlfla' "7dpfp)7
[a,b]

where the symbol d; f; is defined as follows

f‘u Zf@ =0;

d]f] — J ‘ J B
dfj, Zf €; = 1.

Remark The Stieltjes integral which we consider in the example obviously
exist in the Henstock-Kurzweil sense. We compare Stieltjes integral in the
Riemann, Moore-Pollard, Young and Henstock-Kurzweil sense in [5].
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