STARLIKE MAPPINGS OF ORDER α ON THE UNIT BALL IN COMPLEX BANACH SPACES

Hidetaka Hamada, Gabriela Kohr and Piotr Liczberski

Kyushu Kyoritsu University, Japan Babe¸s-Bolyai University, Romania Technical University of Lódź, Poland

Abstract. In this paper, we will give the growth theorem of starlike mappings of order α on the unit ball B in complex Banach spaces. We also give an analytic sufficient condition for a locally biholomorphic mapping on B to be a starlike mapping of order α .

1. Introduction

It is well known that the classical growth theorem of normalized biholomorphic mappings on the unit disc Δ in C cannot be generalized to normalized biholomorphic mappings on the Euclidean unit ball in \mathbb{C}^n . Barnard, FitzGerald and Gong [1] and Chuaqui [3] extended the classical growth theorem to normalized starlike mappings on the Euclidean unit ball in \mathbb{C}^n . Dong and Zhang [4] generalized the above result to normalized starlike mappings on the unit ball in complex Banach spaces. The first and second authors [7] generalized the above result to spirallike mappings of type α on the unit ball B in an arbitrary complex Banach space. The second author [12], [13] gave a growth theorem of normalized starlike mappings of order α on the Euclidean unit ball in \mathbb{C}^n .

On the other hand, Becker $[2]$ showed that if a holomorphic function f on Δ satisfies

$$
\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{1}{1-|z|^2},\,
$$

39

²⁰⁰⁰ Mathematics Subject Classification. 32A30, 32H02, 30C45.

Key words and phrases. Banach space, biholomorphic mappings, growth theorem, starlike mapping of order α .

then f is univalent on Δ . Pfaltzgraff [18] generalized the above result for normalized locally biholomorphic mappings on the Euclidean unit ball \mathbf{B}^n in \mathbb{C}^n . He showed that if a normalized locally biholomorphic mapping f on \mathbb{B}^n satisfies

$$
||(Df(z))^{-1}D^2f(z)(z,\cdot)|| \leq \frac{1}{1 - ||z||^2},
$$

then f is univalent on \mathbf{B}^n and

$$
\frac{\|z\|}{(1+\|z\|)^2} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|)^2}
$$

.

The third author [16] showed that if a locally biholomorphic mapping f on \mathbf{B}^n satisfies

$$
||(Df(z))^{-1}D^2f(z)(z,\cdot)|| < \frac{1}{1+||z||},
$$

then f is a starlike mapping on \mathbf{B}^n .

In this paper, we will give the growth theorem of normalized starlike mappings of order α on the unit ball B in complex Banach spaces. As a generalization of the result in [16], we also give a sufficient condition for locally biholomorphic mappings on the unit ball B to be starlike of order α .

2. Preliminaries

Let X be a complex Banach space with norm $\lVert \cdot \rVert$. The open ball $\{x \in$ $X: \|x\| < r$ is denoted by B_r and the unit ball is abbreviated by $B_1 = B$. Let $\mathcal{L}(X, X)$ be the space of all continuous linear operators from X into X with the standard operator norm. By I we denote the identity in $\mathcal{L}(X, X)$. Let G be a domain in X and let $f: G \to X$. f is said to be holomorphic on G, if for any $z \in G$, there exists a $Df(z) \in \mathcal{L}(X, X)$ such that

$$
\lim_{h \to 0} \frac{\|f(z+h) - f(z) - Df(z)h\|}{\|h\|} = 0.
$$

A holomorphic mapping $f: G \to X$ is said to be locally biholomorphic on G if its Fréchet derivative $Df(z)$ is nonsingular at each $z \in G$. A holomorphic mapping $f: G \to X$ is biholomorphic if the inverse f^{-1} exists, is holomorphic on an open set $V \subset X$ and $f^{-1}(V) = G$.

A holomorphic mapping $f : B \to X$ is said to be normalized if $f(0) = 0$ and $Df(0) = I$. Let X^* be the dual space of X. For each $z \in X \setminus \{0\}$, we define

$$
T(z) = \{ z^* \in X^* : ||z^*|| = 1, z^*(z) = ||z|| \}.
$$

By the Hahn-Banach theorem, $T(z)$ is nonempty.

DEFINITION 2.1. A holomorphic mapping $f : B \to X$ is said to be starlike if f is biholomorphic, $f(0) = 0$ and $e^{-t} f(B) \subset f(B)$ for all $t \ge 0$.

The following theorem is proved in Gurganus [6] (cf. [20]).

THEOREM 2.1. Let $f : B \to X$ be a locally biholomorphic mapping with $f(0) = 0$. If f is a starlike mapping, then

$$
Re z^* ([Df(z)]^{-1} f(z)) > 0
$$
\n(2.1)

for $z \in B \setminus \{0\}$, $z^* \in T(z)$. Moreover, if $\| [Df(z)]^{-1} f(z) \|$ is bounded on B_r for each r with $0 < r < 1$ and (2.1) holds, then f is a starlike mapping.

REMARK. In Gurganus [6], he claimed that if $f : B \to X$ is a locally biholomorphic mapping with $f(0) = 0$ and (2.1) holds, then f is starlike. For the proof, he uses Theorem 2.1 of Pfaltzgraff [18]. However, to apply Theorem 2.1 of [18], $||[Df(z)]^{-1}f(z)||$ should be bounded on B_r for each r with $0 < r < 1$.

Now, we will define a subclass of starlike mappings.

DEFINITION 2.2. Let $f : B \to X$ be a starlike mapping. Let $\alpha \in \mathbf{R}$ with $0 < \alpha < 1$. We say that f is a starlike mapping of order α if

$$
\left|\frac{1}{\|z\|}z^*\left([Df(z)]^{-1}f(z)\right)-\frac{1}{2\alpha}\right|<\frac{1}{2\alpha}
$$

for $z \in B \setminus \{0\}$, $z^* \in T(z)$.

This definition generalizes the definition of starlike mappings of order α on the unit disc and on the Euclidean unit ball in \mathbb{C}^n [11].

Let Δ denote the unit disc in C. The following lemma is proved in [9], [17].

LEMMA 2.3. Let $k \geq 1$ and let $g : \Delta \to \mathbb{C}$ be a holomorphic function with $g(0) = g'(0) = \cdots = g^{(k-1)}(0) = 0$. If there exists $a z_0 \in \Delta \setminus \{0\}$ such that

$$
|g(z_0)| = \max\{|g(z)| : |z| \le |z_0|\} > 0,
$$

then there exists a real number $m \geq k$ such that

$$
z_0g'(z_0)=mg(z_0).
$$

3. GROWTH THEOREM OF NORMALIZED STARLIKE MAPPINGS OF ORDER α

In this section, we will prove the following theorem (cf. [12], [13]).

THEOREM 3.1. Let $\alpha \in \mathbf{R}$ with $0 < \alpha < 1$. Let f be a normalized starlike mapping of order α from B to X . Then

$$
\frac{\|z\|}{(1+\|z\|)^{2(1-\alpha)}} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|)^{2(1-\alpha)}}
$$

.

PROOF. Let $w(z) = [Df(z)]^{-1}f(z)$. Let $z \in B \setminus \{0\}$, $z^* \in T(z)$ be fixed and let

$$
g(\zeta) = \frac{1}{\zeta} z^* \left(w \left(\zeta \frac{z}{\|z\|} \right) \right), \ \zeta \in \Delta \setminus \{0\}
$$

and $g(0) = 1$. Then g is a holomorphic function on Δ and

$$
\left| g(\zeta) - \frac{1}{2\alpha} \right| < \frac{1}{2\alpha}, \ \zeta \in \Delta.
$$

Hence $\text{Re}(1/g(\zeta)) > \alpha, \ \zeta \in \Delta$, which is equivalent to

$$
\operatorname{Re}\frac{\frac{1}{g(\zeta)}-\alpha}{1-\alpha}>0,\quad \zeta\in\Delta.
$$

It is easy to see that the above inequality implies the following relation (see, for example $[5]$, $[19]$):

$$
\frac{1+|\zeta|}{1+(2\alpha-1)|\zeta|} \ge \text{Reg}(\zeta) \ge \frac{1-|\zeta|}{1-(2\alpha-1)|\zeta|}, \quad \zeta \in \Delta.
$$

Letting $\zeta = ||z||$ in the above inequality, we obtain

$$
||z|| \frac{1 + ||z||}{1 + (2\alpha - 1)||z||} \ge \text{Re} z^*(w(z)) \ge ||z|| \frac{1 - ||z||}{1 - (2\alpha - 1)||z||}. \tag{3.1}
$$

Since z was arbitrarily chosen, we deduce that the inequality (3.1) holds for all $z \in B \setminus \{0\}.$

Let $0 < r_1 < r_2 < 1$. Let z_2 be a point such that $||z_2|| = r_2$. Since f is starlike, the curve $c(t) = \exp(-t) f(z_2)$ is contained in $f(B)$ for all $t \ge 0$. Also $c(t) \to 0$ as $t \to \infty$. Since f is biholomorphic, the curve $f^{-1}(c(t))$ is welldefined and intersects the sphere $||z|| = r_1$ at some point $z_1 = f^{-1}(c(t_1))$. For a C^1 curve $\gamma : [a, b] \to X$, let

$$
s = \int_{a}^{b} \left\| \frac{d\gamma}{dt}(t) \right\| dt
$$

be the arc length of γ . We will parameterize the curve $f^{-1}(c(t))$ $(0 \le t \le t_1)$ by the arc length from z_1 and write it as $z(s)$. Then $f(z(s)) = \exp(u(s))f(z_1)$, where $u(0) = 0$ and $u' > 0$. Differentiating $z(s) = f^{-1}(\exp(u(s))f(z_1))$, we have

$$
\frac{dz}{ds} = [Df(z(s))]^{-1}u'(s)f(z(s)) = u'(s)w(z(s)).
$$

Since $z(s)$ is parameterized by the arc length, we have

$$
||u'(s)w(z(s))|| = 1.
$$

Therefore,

$$
u'(s) = \frac{1}{\|w(z(s))\|}.
$$

Then

$$
\frac{dz}{ds} = \frac{1}{\|w(z(s))\|} w(z(s))\tag{3.2}
$$

and

$$
\frac{df(z(s))}{ds} = u'(s)f(z(s)) = \frac{1}{\|w(z(s))\|}f(z(s)).
$$

Let $g(s) = ||f(z(s))||$. Since $||f(z(s))|| = \exp(u(s))||f(z_1)||$, we have

$$
\frac{dg}{ds} = \frac{1}{\|w(z(s))\|}g
$$

on $(0, s_1)$, where $z(s_1) = z_2$. Let $v(t) = f^{-1}(c(t))$. Then

$$
\frac{dv}{dt} = -[Df(v(t))]^{-1}f(v(t)).
$$

Then $v(t)$ satisfies the following integral equation:

$$
v(t) = z_2 - \int_0^t [Df(v(\tau))]^{-1} f(v(\tau))d\tau.
$$

For any $0 \le s < s' \le s_1$, let $z(s) = v(t_1 - t)$ and $z(s') = v(t_1 - t')$. Then

$$
\begin{aligned}\n\left| \|z(s)\| - \|z(s')\| \right| &\leq \|z(s) - z(s')\| \\
&= \|v(t_1 - t) - v(t_1 - t')\| \\
&= \left\| \int_{t_1 - t'}^{t_1 - t'} \frac{dv(\tau)}{d\tau} d\tau \right\| \\
&\leq \int_{t_1 - t'}^{t_1 - t} \left\| \frac{dv(\tau)}{d\tau} \right\| d\tau \\
&= \int_s^{s'} \left\| \frac{dz(s)}{ds} \right\| ds \\
&= \int_s^{s'} 1 ds \\
&= |s - s'|.\n\end{aligned}
$$

This implies that $||z(s)||$ is an absolutely continuous function on [0, s₁]. Thus, $d||z(s)||/ds$ exists a.e., integrable on [0, s₁] and

$$
\frac{d||z(s)||}{ds} = \text{Re}z(s)^* \left(\frac{dz}{ds}\right)
$$

for $z(s)^* \in T(z(s))$ a.e. on $[0, s_1]$ by Lemma 1.3 of Kato [10]. Then

$$
||w(z(s))|| \frac{d||z(s)||}{ds} = \text{Re}z(s)^*(w(z(s)))
$$
\n(3.3)

by (3.2) . By (3.1) and (3.3) , we have

$$
\frac{1 + (2\alpha - 1) \|z(s)\|}{\|z(s)\|(1 + \|z(s)\|)} \frac{d\|z(s)\|}{ds} \le \frac{1}{g} \frac{dg}{ds} = \frac{1}{\|w(z(s))\|} \n\le \frac{1 - (2\alpha - 1) \|z(s)\|}{\|z(s)\|(1 - \|z(s)\|)} \frac{d\|z(s)\|}{ds}.
$$

Since $||z(s)||$ is strictly increasing on [0, s₁] by (3.1) and (3.3), we have

$$
\log g(s) - \log g(0) \leq \int_0^s \frac{1 - (2\alpha - 1) \|z(s)\|}{\|z(s)\| (1 - \|z(s)\|)} \frac{d\|z(s)\|}{ds} ds
$$

$$
= \int_{\|z(0)\|}^{\|z(s)\|} \frac{1 - (2\alpha - 1)x}{x(1 - x)} dx
$$

$$
= \log \|z(s)\| - 2(1 - \alpha) \log(1 - \|z(s)\|)
$$

$$
- \{\log \|z(0)\| - 2(1 - \alpha) \log(1 - \|z(0)\|) \}
$$

and

$$
\log g(s) - \log g(0) \ge \log ||z(s)|| - 2(1 - \alpha) \log(1 + ||z(s)||) \n- \{ \log ||z(0)|| - 2(1 - \alpha) \log(1 + ||z(0)||) \}.
$$

Then

$$
\frac{(1 - \|z(s)\|)^{2(1-\alpha)}}{\|z(s)\|(1 - \|z(0)\|)^{2(1-\alpha)}} \|f(z(s))\| \le \frac{\|f(z(0))\|}{\|z(0)\|} \le \frac{(1 + \|z(s)\|)^{2(1-\alpha)}}{\|z(s)\|(1 + \|z(0)\|)^{2(1-\alpha)}} \|f(z(s))\|.
$$

If we put $s = s_1$, we have

$$
\frac{(1 - \|z_2\|)^{2(1-\alpha)}}{\|z_2\|(1 - \|z(0)\|)^{2(1-\alpha)}} \|f(z_2)\| \le \frac{\|f(z(0))\|}{\|z(0)\|} \le \frac{(1 + \|z_2\|)^{2(1-\alpha)}}{\|z_2\|(1 + \|z(0)\|)^{2(1-\alpha)}} \|f(z_2)\|.
$$

Letting $r_1 \rightarrow 0$, we obtain that

$$
\frac{(1 - \|z_2\|)^{2(1-\alpha)}}{\|z_2\|} \|f(z_2)\| \le 1 \le \frac{(1 + \|z_2\|)^{2(1-\alpha)}}{\|z_2\|} \|f(z_2)\|,
$$

since

$$
\lim_{z \to 0} \frac{\|f(z)\|}{\|z\|} = \lim_{z \to 0} \frac{\|Df(0)z\|}{\|z\|} = 1.
$$
 This completes the proof.

$$
\mathbf{L} \\
$$

Example 3.1. When

$$
X = \ell_p = \{ z = (z_1, z_2, \ldots) : ||z||^p = \sum_{n=1}^{\infty} |z_n|^p < \infty \},
$$

where $p \geq 1$, the estimates in Theorem 3.1 are sharp. We will show that the holomorphic mapping

$$
f(z) = (f_1(z_1), f_2(z_2), \ldots)',
$$

where

$$
f_j(z_j) = \frac{z_j}{(1 - z_j)^{2(1 - \alpha)}},
$$

is a normalized starlike mapping of order α which attains the equalities in Theorem 3.1. Since

$$
Df(z)x = \left(\frac{(1-2\alpha)z_1+1}{(1-z_1)^{3-2\alpha}}x_1, \frac{(1-2\alpha)z_2+1}{(1-z_2)^{3-2\alpha}}x_2, \ldots\right)',
$$

 f is a normalized locally biholomorphic mapping. Moreover,

$$
2\alpha [Df(z)]^{-1}f(z) - z = \left(\frac{z_1(2\alpha - 1 - z_1)}{(1 - 2\alpha)z_1 + 1}, \frac{z_2(2\alpha - 1 - z_2)}{(1 - 2\alpha)z_2 + 1}, \ldots\right)'.
$$
 (3.4)

When $1 < p < \infty$, $T(z)$ $(z \neq 0)$ consists of one element

$$
z^*(y) = \sum_{j=1}^{\infty} \frac{|z_j|^p}{|z_j||z||^{p-1}} y_j.
$$

Then

$$
|z^*(2\alpha[Df(z)]^{-1}f(z) - z)| = \left| \sum_{j=1}^{\infty} \frac{|z_j|^p}{\|z\|^{p-1}} \frac{2\alpha - 1 - z_j}{(1 - 2\alpha)z_j + 1} \right|
$$

$$
\leq \frac{1}{\|z\|^{p-1}} \sum_{j=1}^{\infty} |z_j|^p \left| \frac{2\alpha - 1 - z_j}{(1 - 2\alpha)z_j + 1} \right|
$$

$$
< \frac{1}{\|z\|^{p-1}} \sum_{j=1}^{\infty} |z_j|^p
$$

$$
= \|z\|.
$$

When $p = 1, T(z)$ $(z \neq 0)$ consists of those functionals z^* given by

$$
z^*(y) = \sum_{z_j \neq 0} \frac{|z_j|}{z_j} y_j + \sum_{z_j=0} \alpha_j y_j,
$$

where $|\alpha_j| \leq 1$. Then we can show that $|z^*(2\alpha[Df(z)]^{-1}f(z) - z)| < ||z||$ as above. Since $||Df(z)|^{-1}f(z)||$ is bounded on B_r for each r with $0 < r < 1$ by (3.4), f is a starlike mapping of order α . For $z = (r, 0, 0, ...) \in B$, we have $||f(z)|| = ||z||/(1 - ||z||)^{2(1-\alpha)}$, and for $z = (-r, 0, 0, ...) \in B$, we have $||f(z)|| = ||z||/(1 + ||z||)^{2(1-\alpha)}.$

REMARK. Let $f : B \to X$ be a normalized convex mapping. That is, f is a biholomorphic mapping from B onto a convex domain with $f(0) = 0$, $Df(0) = I$. Then we can show that f is a starlike mapping of order 1/2. Then we obtain the following growth theorem from the above theorem.

$$
\frac{\|z\|}{1+\|z\|} \le \|f(z)\| \le \frac{\|z\|}{1-\|z\|}.
$$

For details, see Theorem 2.1 of [8] (cf. [11], [12]).

46 HIDETAKA HAMADA, GABRIELA KOHR AND PIOTR LICZBERSKI

4. A SUFFICIENT CONDITION TO BE STARLIKE OF ORDER α

In this section, we will give a sufficient condition for locally biholomorphic mappings on the unit ball in complex Banach spaces to be starlike of order α .

First, we will generalize Lemma 2.3 to complex Banach spaces (cf. [14], $[15]$.

THEOREM 4.1. Let B be the unit ball in a complex Banach space X . Let $f : B \to X$ be a holomorphic mapping with $f(0) = 0$. Suppose that there exists an $a \in B \setminus \{0\}$ such that

$$
||f(a)|| = \max{||f(\zeta a)|| : |\zeta| \le 1} > 0.
$$

Then there exists a real number $s \geq 1$ such that

$$
||Df(a)(a)|| = s||f(a)||.
$$

Moreover, if $Df(0) = 0$, then $s \geq 2$.

PROOF. Let $b = f(a)$ and let $F(\zeta) = b^*(f(\zeta a/\|a\|))$, where $b^* \in T(b)$. Then F is a holomorphic function on Δ and $F(0) = 0$. Since $F(||a||) = ||f(a)||$ and $|F(\zeta)| \leq ||f(a)||$ for $|\zeta| \leq ||a||$, there exists a real number $m \geq 1$ such that $||a||F'(||a||) = mF(||a||)$ by Lemma 2.3. This implies that $b^*(Df(a)(a)) =$ $m||f(a)||$. Since $||b^*|| = 1$, we can find a real number s with $s \ge m \ge 1$ such that $||Df(a)(a)|| = s||f(a)||.$

If $Df(0) = 0$, then $F'(0) = 0$. Then by Lemma 2.3, $s \ge m \ge 2$. This completes the proof.

The following theorem generalizes the result of third author's paper [16].

THEOREM 4.2. Let B be the unit ball in a complex Banach space X . Let $f : B \to X$ be a locally biholomorphic mapping with $f(0) = 0$. Assume that f satisfies one of the following two conditions:

(i) $1/2 < \alpha < 1$ and

$$
||(Df(z))^{-1}D^2f(z)(z,\cdot)|| < \frac{1-(2\alpha-1)||z||}{1+||z||};
$$

(ii) $\alpha = 1/2$ and

$$
||(Df(z))^{-1}D^2f(z)(z,\cdot)|| < \frac{2}{1+||z||}.
$$

Then f is starlike of order α . Moreover, if f is normalized, then

$$
\frac{\|z\|}{(1+\|z\|)^{2(1-\alpha)}} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|)^{2(1-\alpha)}}
$$

PROOF. Let $p(z) = 2\alpha [Df(z)]^{-1}f(z) - z$. First we show that

$$
||p(z)|| < 1, z \in B.
$$
 (4.1)

.

If the inequality (4.1) does not hold, then there exists a point $a \in B \setminus \{0\}$ such that

$$
||p(a)|| = \max{||p(\zeta a)|| : |\zeta| \le 1} = 1.
$$

By Theorem 4.1, there exists a real number $s \geq 1$ such that

$$
||Dp(a)(a)|| = s||p(a)|| = s \ge 1.
$$

When $\alpha = 1/2$, $Dp(0) = 0$ and therefore, $s \ge 2$. Since

$$
[Df(z)]^{-1}D^{2}f(z)(p(z)+z,\cdot)+Dp(z)=(2\alpha-1)I,
$$

we have

$$
s \le ||Dp(a)(a)|| = ||(2\alpha - 1)a - [Df(a)]^{-1}D^2f(a)(p(a) + a, a)||
$$

\n
$$
\le (2\alpha - 1)||a|| + ||[Df(a)]^{-1}D^2f(a)(a, \cdot)|| ||p(a) + a||
$$

\n
$$
\le (2\alpha - 1)||a|| + ||[Df(a)]^{-1}D^2f(a)(a, \cdot)||[1 + ||a||).
$$

Then

$$
\frac{s - (2\alpha - 1)\|a\|}{1 + \|a\|} \le \|[Df(a)]^{-1}D^2f(a)(a, \cdot)\|
$$

This is a contradiction. So, $||p(z)|| < 1$ on B. Since $p(0) = 0$, $||p(z)|| \le ||z||$ for $z \in B$ by the Schwarz lemma. For fixed $z \in B \setminus \{0\}$, $z^* \in T(z)$, let $w = z / ||z||$ and let

$$
g(\zeta) = z^* \left(\frac{p(\zeta w)}{\zeta} \right).
$$

Then g is a holomorphic function on Δ with $|g(\zeta)| \leq 1$. Since $g(0)$ = $z^*(Dp(0)w) = 2\alpha - 1$, $|g(0)| < 1$. Then $|g(\zeta)| < 1$ by the maximum principle. This implies that

$$
\frac{1}{2\alpha}|g(||z||)| = \left|\frac{1}{||z||}z^* \left([Df(z)]^{-1}f(z) \right) - \frac{1}{2\alpha} \right| < \frac{1}{2\alpha}
$$

Since $||Df(z)|^{-1}f(z)||$ is bounded on B from (4.1), f is a starlike mapping of order α . By Theorem 3.1, we obtain the growth theorem. This completes the proof. \Box

Acknowledgements.

The first author is supported by Grant-in-Aid for Scientific Research (C) no.11640194 from Japan Society for the Promotion of Science, 1999.

REFERENCES

- [1] R.W. Barnard, C.H. FitzGerald and S. Gong, The growth and 1/4-theorems for starlike mappings in \mathbb{C}^n , Pacific J. Math., 150 (1991), 13-22.
- [2] J. Becker, Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math., 255 (1972), 23–43.
- [3] M. Chuaqui, Application of subordination chains to starlike mappings in \mathbb{C}^n , Pacific J. Math. 168 (1995), 33–48.
- [4] D. Dong and W. Zhang, Growth and 1/4-theorem for starlike maps in the Banach space, Chin. Ann. Math., Ser.A 13, No.4 (1992), 417–423.

48 HIDETAKA HAMADA, GABRIELA KOHR AND PIOTR LICZBERSKI

- [5] A.W. Goodman, Univalent Functions, I-II, Mariner, Tampa Florida, 1983.
- [6] K. R. Gurganus, Φ -like holomorphic functions in \mathbb{C}^n and Banach spaces, Trans. Amer. Math. Soc., 205 (1975), 389–406.
- [7] H. Hamada and G. Kohr, Subordination chains and the growth theorem of spirallike mappings, to appear in Mathematica(Cluj).
- [8] H. Hamada and G. Kohr, Growth and distortion results for convex mappings in infinite dimensional spaces, submitted.
- [9] I.S. Jack, Functions starlike and convex of order α , J. London Math. Soc. 3 (1971), 469–474.
- [10] T. Kato, Nonlinear semigroups and evoluation equations, J. Math. Soc. Japan 19 (1967), 508–520.
- [11] G. Kohr, Certain partial differential inequalities and applications for holomorphic mappings defined on the unit ball of \mathbb{C}^n , Ann. Univ. Mariae-Curie Sklodowska, 50 (1996), 87–94.
- [12] G. Kohr, On certain conditions of starlikeness of order α in \mathbb{C}^n , Zeszyty Nauk. Politech. Rzeszowskiej, Mat., 20 (1996), 61–72.
- [13] G. Kohr, On starlikeness and strongly starlikeness of order alpha in \mathbb{C}^n , Mathemat $ica(Cluj)$, $40(63)$ (1998), 95-109.
- [14] G. Kohr and P. Liczberski, On some sufficient conditions for univalence in \mathbb{C}^n , Demonstratio Mathematica, 29 (1996), 407–412.
- [15] P. Liczberski, Jack's lemma for holomorphic mappings in \mathbb{C}^n , Ann. Univ. Mariae Curie-Sklodowska, Sect.A 15 (1986), 131–139.
- [16] P. Liczberski, A starlikeness criterion for holomorphic mappings in \mathbb{C}^n , Complex Variables 25 (1994), 193–195.
- [17] S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Analysis and Applications 65 (1978), 289–305.
- [18] J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic mappings in \mathbb{C}^n , Math. Ann., 210 (1974), 55–68.
- [19] Ch. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [20] T.J. Suffridge, Starlike and convex maps in Banach spaces, Pacif. J. Math., 46 (1973), 575–589.

Faculty of Engineering Kyushu Kyoritsu University 1-8 Jiyugaoka, Yahatanishi-ku Kitakyushu 807-8585, Japan E-mail: hamada@kyukyo-u.ac.jp

Faculty of Mathematics Babeş-Bolyai University 1 M. Kogălniceanu Str. 3400 Cluj-Napoca, Romania E-mail: gkohr@math.ubbcluj.ro

Institute of Mathematics Technical University of Lódź Av.Politechniki 11 90 - 924, Lódź Poland E-mail: piliczb@ck-sg.p.lodz.pl Received: 10.11.99.