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FUNCTIONAL BOUNDARY VALUE PROBLEMS FOR
SECOND ORDER FUNCTIONAL DIFFERENTIAL

EQUATIONS OF THE NEUTRAL TYPE

Svatoslav Staněk

Palacký University, Czech Republic

Abstract. The functional differential equation (x′(t) + L(x′)(t))′ =
F (x)(t) together with functional boundary conditions is considered. Ex-
istence results are proved by the Leray-Schauder degree and the Borsuk

theorem for α-condensing operators. We demonstrate on examples that
our existence assumptions are optimal.

1. Introduction, notation

Let J = [0, T ] be a compact interval and A be the set of all functionals
ϕ : C0(J)→ R which are

(1) continuous, ϕ(0) = 0, and
(2) increasing (i.e., x, y ∈ C0(J), x(t) < y(t) for t ∈ J ⇒ ϕ(x) < ϕ(y)).

Example 1. Let k ∈ C0(R) be an increasing function, k(0) = 0, 0 ≤ a <
b ≤ T , 0 ≤ t1 < t2 < · · · < tn ≤ T and aj > 0 (j = 1, 2, · · · , n) be positive
constants. Then the following functionals

k
(∫ b

a

x(s) ds
)
,

∫ b

a

k(x(s)) ds,

∫ b

a

∫ s

a

k(x(ν)) dν ds,

max{k(x(t)) : a ≤ t ≤ b}, min{k(x(t)) : a ≤ t ≤ b},
n∑

j=1

ajk(x(tj))

and their linear combinations with positive coefficients belong to the set A.
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Remark 1. The assumption ϕ(0) = 0 for ϕ ∈ A is not an essential
restriction. Indeed, if ψ : C0(J) → R is a continuous increasing functional
and if we define ϕ(x) = ψ(x)− ψ(0) for x ∈ C0(J), then ϕ ∈ A.

For any x ∈ C0(J), y ∈ L1(J) and (x, a, b) ∈ C0(J)× R2 we set

‖x‖ = max{|x(t)| : t ∈ J}, ‖y‖L1 =

∫ T

0

|y(t)| dt, ‖(x, a, b)‖∗ = ‖x‖+ |a|+ |b|.

Consider the functional differential equation of the neutral type

(1) (x′(t) + L(x′)(t))′ = F (x)(t).

Here L : C0(J)→ C0(J) and F : C1(J)→ L1(J) are continuous operators.
Together with (1) consider the boundary conditions

(2) ϕ(x) = 0, ψ(x′) = 0,

where ϕ, ψ ∈ A.
We say that x ∈ C1(J) is a solution of the boundary value problem (BVP

for short) (1), (2) if the function x′(t) + L(x′)(t) is absolutely continuous on
J , x satisfies the boundary conditions (2) and (1) is satisfied for a.e. t ∈ J .

In this paper we use the following assumptions:

(H1) There exists k ∈ [0, 1/2) such that

‖L(x)− L(y)‖ ≤ k‖x− y‖, x, y ∈ C0(J);

(H2) There exist non-negative functions A, B, C ∈ L1(J) and ε1, ε2 ∈ [0, 1)
such that

|F (x)(t)| ≤ A(t) +B(t)‖x‖ε1 + C(t)‖x′‖ε2

for a.e. t ∈ J and each x ∈ C1(J).

Remark 2. From (H1) we see that

‖L(x)‖ ≤ k‖x‖+ ‖L(0)‖, x ∈ C0(J).

A special case of the operator L satisfying (H1) and the operator F sat-
isfying (H2) is the operator

L(x)(t) = w(t)x(z(t)) + w1(t), x ∈ C0(J),

where w,w1, z ∈ C0(J), z : J → J , ‖w‖ < 1/2 and the Nemytskii operator

F (x)(t) = f(t, (Ux)(t), V (x′)(t)), x ∈ C1(J),

where f satisfies the local Carathéodory conditions on J × R2, |f(t, u, v)| ≤
A(t) +B(t)|u|ε1 + C(t)|v|ε2 , U, V : C0(J)→ C0(J) are continuous operators
and ‖U(x)‖ ≤ r‖x‖, ‖V (x)‖ ≤ r‖x‖ with a positive constant r, respectively.

Special cases of boundary conditions (2) (with ϕ(x) = x(T ) and ψ(x) =

x(0); ϕ(x) = x(0), ψ(x) =
∫ T

0 x(s) ds) are the mixed boundary conditions

(3) x(T ) = 0, x′(0) = 0
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or the Dirichlet conditions

(4) x(0) = 0, x(T ) = 0.

We observe that many papers and monographs have been devoted to existence
results for the differential equation

x′′ = f(t, x, x′)

and boundary conditions (3) and (4). Here f is either continuous or satisfies
the Carathéodory conditions. We refer for example to [1], [5], [8]-[12], [15],
[16] and the references given therein. The proofs of the existence results are
mostly based upon the Schauder fixed point theorem, a priori estimates, the
shooting procedure, topological degree and the technique of lower and upper
solutions. In [13] equation (1) was considered with L = 0, a special type of the
operator F and a linear functional ϕ and ψ(x) = x(0) in (2). The boundary
conditions (2) are the special case of those considered by Brykalov ([2]-[4]) for
BVP with equation (1) where L = 0.

In this paper we will show that under assumptions (H1) and (H2) BVP
(1), (2) is solvable. The results are proved by the Leray-Schauder degree and
the Borsuk theorem for α-condensing operators (see [6]) which have in our
case the form G + Q where G is a strict contraction and Q is a completely
continuous operator. Examples 2–5 demonstrate that our assumptions are
optimal.

Throughout the paper we will make use of the continuous operators

Π : C0(J)× R→ C1(J), H : C0(J)× R→ L1(J)

given by

(5) Π(x, a)(t) =

∫ t

0

x(s) ds+ a

and

(6) H(x, a)(t) = F (Π(x, a))(t).

Here F is the operator on the right-hand side of (1).

2. Lemmas

Lemma 1. [14, Lemma 3]. Let ϕ ∈ A and let the equality

ϕ(x) = ϕ(y)

be satisfied for some x, y ∈ C0(J). Then there exists ξ ∈ J such that

x(ξ) = y(ξ).
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Lemma 2. Let ϕ, ψ ∈ A, h, l and m be positive constants and set

(7) Ω1 =
{

(x, a, b) : (x, a, b) ∈ C0(J) × R2, ‖x‖ < h, |a| < l, |b| < m
}
.

Let Γ : Ω̄1 → C0(J)× R2 be defined by

(8) Γ(x, a, b) =

(
a, a+ ϕ

(∫ t

0

x(s) ds+ b
)
, b+ ψ(x)

)
.

Then

(9) D(I − Γ,Ω1, 0) 6= 0

where “D” stands for the Leray-Schauder degree and I is the identity operator
on C0(J)× R2.

Proof. Set P : [0, 1]× Ω̄1 → C0(J)× R2,

P (λ, x, a, b) =

(
a, a+ ϕ

(∫ t

0

x(s) ds+ b
)
−

(1− λ)ϕ
(
−
∫ t

0

x(s) ds − b
)
, b+ ψ(x)− (1− λ)ψ(−x)

)
.

To prove (9) it suffices to show, by the homotopy theory and the Borsuk
theorem, that

(a) P (0, ·) is an odd operator on Ω̄1,
(b) P is a compact operator, and
(c) P (λ, x, a, b) 6= (x, a, b) for (λ, x, a, b) ∈ [0, 1]× ∂Ω1.

For (x, a, b) ∈ Ω̄1 we have

P (0,−x,−a,−b) =

(
−a,−a+ ϕ

(
−
∫ t

0

x(s) ds− b
)
−

ϕ
(∫ t

0

x(s) ds+ b
)
,−b+ ψ(−x)− ψ(x)

)

=− P (0, x, a, b).

Consequently, P (0, ·) is an odd operator.
The continuity of P follows from that of ϕ and ψ. Since Ω̄1 is bounded

and ϕ, ψ map any bounded subset of C0(J) into a bounded subset of R, the
set P ([0, 1] × Ω̄1) is relatively compact by the Bolzano-Weierstrass theorem.
Hence P is a compact operator.

Assume, on the contrary, that

P (λ0, x0, a0, b0) = (x0, a0, b0)
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for some (λ0, x0, a0, b0) ∈ [0, 1]× ∂Ω1. Then

x0(t) = a0, t ∈ J
and

(10)
ϕ(a0t+ b0) = (1− λ0)ϕ(−a0t− b0),

ψ(a0) = (1− λ0)ψ(−a0).

If a0 6= 0 then ψ(a0)ψ(−a0) < 0, which contradicts (cf. (10)) ψ(a0)ψ(−a0) =
(1− λ0)(ψ(−a0))2 ≥ 0. Therefore a0 = 0, and so (cf. (10))

ϕ(b0) = (1− λ0)ϕ(−b0).

We can now proceed analogously to prove that b0 = 0. Hence (x0, a0, b0) 6∈
∂Ω1, a contradiction.

Consider the BVP (cf. (6))

x(t) = a+ λ
(
−L(x)(t)+

∫ t

0

H(x, b)(s) ds
)
,(11)(λ,a,b)

ϕ
(∫ t

0

x(s) ds+ b
)

= 0,(12)b

ψ(x) = 0(13)

depending on the parameters λ, a, b, (λ, a, b) ∈ [0, 1]× R2. Here ϕ, ψ ∈ A.
We say that x ∈ C0(J) is a solution of BVP (11)(λ,a,b), (12)b, (13) for

some (λ, a, b) ∈ [0, 1]×R2 if (11)(λ,a,b) is satisfied for t ∈ J and x satisfies the
boundary conditions (12)b, (13).

Lemma 3. Let assumptions (H1) and (H2) be satisfied. Let x(t) be a
solution of BVP (11)(λ,a,b), (12)b, (13) for some (λ, a, b) ∈ [0, 1]× R2. Then

(14) ‖x‖ ≤ S, |a| ≤ S, |b| ≤ ST,
where S is a positive constant such that

(15)
2‖L(0)‖+ ‖A‖L1

S
+
‖B‖L1T

ε1

S1−ε1
+
‖C‖L1

S1−ε2
≤ 1− 2k.

Proof. From (13) and Lemma 1 it follows: x(ξ) = 0, ξ ∈ J . Then (cf.

(11)(λ,a,b)) a = λ(L(x)(ξ) −
∫ ξ

0
H(x, b)(s) ds), and so

x(t) = λ
(
L(x)(ξ) − L(x)(t) +

∫ t

ξ

H(x, b)(s) ds
)
, t ∈ J.

By (H1), (H2), Remark 2, the definition (6) of H and the equality
∫ ν

0
x(s) ds+

b = 0 for some ν ∈ J which follows from (12)b and Lemma 1,

|x(t)| ≤ 2k‖x‖+ 2‖L(0)‖

+

∫ T

0

(
A(s) +B(s)

∥∥∥
∫ t

0

x(v) dv + b
∥∥∥

ε1

+ C(s)‖x‖ε2

)
ds



78 SVATOSLAV STANĚK

= 2k‖x‖+ 2‖L(0)‖+ ‖A‖L1 + ‖B‖L1

∥∥∥
∫ t

ν

x(v) dv
∥∥∥

ε1

+ ‖C‖L1‖x‖ε2

for t ∈ J . Consequently,

(16) ‖x‖ ≤ 1

1− 2k

(
2‖L(0)‖+ ‖A‖L1 + ‖B‖L1(T‖x‖)ε1 + ‖C‖L1‖x‖ε2

)
.

Set p(u) = (2‖L(0)‖+ ‖A‖L1)/u+ (‖B‖L1T
ε1)/u1−ε1 + ‖C‖L1/u

1−ε2 for u ∈
(0,∞). Then p is decreasing and limu→∞ p(u) = 0. Hence there exists S > 0
such that p(u) ≤ 1− 2k for all u ≥ S, and so (cf. (16)) ‖x‖ ≤ S. Then

|a| =
∣∣∣λ
(
L(x)(ξ) −

∫ ξ

0

H(x, b)(s) ds
)∣∣∣

≤ kS + ‖L(0)‖+ ‖A‖L1 + ‖B‖L1(TS)ε1 + ‖C‖L1S
ε2

≤ kS + (1− 2k)S ≤ S
and |b| = |

∫ ν

0 x(s) ds| ≤ ST .

Under assumptions (H1) and (H2) Lemma 3 gives a priori bounds for
solutions of BVP (11)(λ,a,b), (12)b, (13) which are very important in proofs
of existence results for BVP (1), (2) (see the proof of Theorem 1). If the
operator L in (1) satisfies some another assumptions and contingently bound-
ary conditions (2) are more specified, (H1) can be relaxed. The next Re-
mark 3 (resp. Remark 4) shows that we can assume k ∈ [0, 1) in (H1) if
sup{|L(x)(0)| : x ∈ C0(J)} < ∞ and ψ(x) = x(0) in (13) (resp. L is a
bounded linear operator).

Remark 3. Let assumption (H2) be satisfied,

sup{|L(x)(0)| : x ∈ C0(J)} = m <∞
and there exists k1 ∈ [0, 1) such that ‖L(x) − L(y)‖ ≤ k1‖x − y‖ for x, y ∈
C0(J). Let x(t) be a solution of (11)(λ,a,b) for some (λ, a, b) ∈ [0, 1] × R2

satisfying the boundary condition (12)b and x(0) = 0. Then |a| ≤ m, b =

−
∫ ν

0
x(s) ds with some ν ∈ J and Π(x, b)(t) =

∫ t

ν
x(s) ds. Thus

x(t) = a+ λ
(
−L(x)(t) +

∫ t

0

F (x̃)(s) ds
)
, t ∈ J,

where x̃(t) =
∫ t

ν x(s) ds. We can check that ‖x‖ ≤ S1, and consequently
|b| ≤ S1T , where S1 is a positive constant such that

(17)
‖L(0)‖+ ‖A‖L1 +m

S1
+
‖B‖L1T

ε1

S1−ε1
1

+
‖C‖L1

S1−ε2
1

≤ 1− k1.
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Remark 4. Let assumption (H2) be satisfied. Assume that L is a
bounded linear operator. By [7, p. 517],

L(x)(t) =

∫ T

0

x(s) dg(t, s) for x ∈ C0(J), t ∈ J

where g : J × J → R satisfies the following conditions:

(j) for each t ∈ J the function g(t, ·) is a normalized function of bounded
variation on J ,

(jj) g(t, T ) and

∫ r

0

g(t, s) ds are continuous in t for each r ∈ J ,

(jjj) sup
{

var
0≤s≤T

g(t, s) : t ∈ J
}
<∞.

Suppose that there exists k2 ∈ [0, 1) such that

(jv) var
0≤s≤T

(g(t1, s)− g(t2, s)) ≤ k2 for each t1, t2 ∈ J .

Then

|(Lx)(t) − (Lx)(ξ)| =
∣∣∣
∫ T

0

x(s) d(g(t, s) − g(ξ, s))
∣∣∣

≤ ‖x‖ var
0≤s≤T

(g(t, s)− g(ξ, s)) ≤ k2‖x‖

for each x ∈ C0(J) and t, ξ ∈ J . If x(t) is a solution of BVP
(11)(λ,a,b), (12)b, (13) for some (λ, a, b) ∈ [0, 1] × R2 then it is easy to check
that

‖x‖ ≤ S2, |a| ≤ (‖L‖+ 1− k2)S2, |b| ≤ S2T

where S2 is a positive constant such that

‖A‖L1

S2
+
‖B‖L1T

ε1

S1−ε1
2

+
‖C‖L1

S1−ε2
2

≤ 1− k2.

3. Existence results, examples

Theorem 1. Let assumptions (H1) and (H2) be satisfied. Then for each
ϕ, ψ ∈ A, BVP (1), (2) has a solution x(t) such that ‖x‖ ≤ 2ST and ‖x′‖ ≤ S
where S is a positive constant satisfying (15).

Proof. Fix ϕ, ψ ∈ A and set

(18)
Ω =

{
(x, a, b) : (x, a, b) ∈ C0(J)× R2, ‖x‖ < S + 1,

|a| < S + 1, |b| < ST + 1
}
.

Let the operators C, K : Ω̄→ C0(J)× R2 be defined by

C(x, a, b) =

(
a+

∫ t

0

H(x, b)(s) ds, a+ ϕ
(∫ t

0

x(s) ds+ b
)
, b+ ψ(x)

)
,
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K(x, a, b) = (−L(x), 0, 0)

and let U, V : [0, 1]× Ω̄→ C0(J)× R2,

U(λ, x, a, b) =

(
a+ λ

∫ t

0

H(x, b)(s) ds, a+ ϕ
(∫ t

0

x(s) ds + b
)
, b+ ψ(x)

)
,

V (λ, x, a, b) = λK(x, a, b).

Then U(0, ·) + V (0, ·) = Γ(·) and U(1, ·) + V (1, ·) = C(·) + K(·), where Γ is
defined on Ω̄ by (8). Hence D(I−U(0, ·)−V (0, ·),Ω, 0) 6= 0 by Lemma 2, and
to prove that

(19) D(I − C −K,Ω, 0) 6= 0

it suffices to verify, by the theory of homotopy for α-condensing operators,
that

(i) U is a compact operator,
(ii) there exists m ∈ [0, 1) such that for (λ, x, a1, b1), (λ, y, a2, b2) ∈ [0, 1]×

Ω̄,

‖V (λ, x, a1, b1)− V (λ, y, a2, b2)‖∗ ≤ m‖(x, a1, b1)− (y, a2, b2)‖∗,
(iii) U(λ, x, a, b) + V (λ, x, a, b) 6= (x, a, b) for (λ, x, a, b) ∈ [0, 1]× ∂Ω.

Continuity of U follows from that of H , ϕ and ψ. Let {(λn, xn, an, bn)} ⊂
[0, 1]× Ω̄. Then (cf. (H2) and (18))

∣∣∣an + λn

∫ t

0

H(xn, bn)(s) ds
∣∣∣

≤ |an|+
∫ T

0

(
A(t) +B(t)

∥∥∥
∫ s

0

xn(ν) dν + bn

∥∥∥
ε1

+ C(t)‖xn‖ε2

)
dt

≤ S + 1 + ‖A‖L1 + (2ST + T + 1)ε1‖B‖L1 + (S + 1)ε2‖C‖L1 ,
∣∣∣
∫ t2

t1

H(xn, bn)(s) ds
∣∣∣ ≤

∣∣∣
∫ t2

t1

A(s) ds
∣∣∣

+(2ST + T + 1)ε1

∣∣∣
∫ t2

t1

B(s) ds
∣∣∣+ (S + 1)ε2

∣∣∣
∫ t2

t1

C(s) ds
∣∣∣,

∣∣∣an+ϕ
(∫ t

0

xn(s) ds+bn

)∣∣∣ ≤ S+1+max{ϕ(2ST+T+1), −ϕ(−2ST−T−1)},

|bn + ψ(xn)| ≤ ST + 1 + max{ψ(S + 1), −ψ(−S − 1)}
for t, t1, t2 ∈ J and n ∈ N. By the Arzelà-Ascoli theorem and the Bolzano-
Weierstrass theorem, there is a convergent subsequence of {U(λn, xn, an, bn)}.
Hence U is a compact operator.

For (λ, x, a1, b1), (λ, y, a2, b2) ∈ [0, 1]× Ω̄ we have

‖V (λ, x, a1, b1)− V (λ, y, a2, b2)‖∗ = λ‖L(x)− L(y)‖ ≤ λk‖x− y‖
≤ k‖(x, a1, b1)− (y, a2, b2)‖∗,
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and consequently (ii) is satisfied with m = k.
Assume that

U(λ0, x0, a0, b0) + V (λ0, x0, a0, b0) = (x0, a0, b0)

for some (λ0, x0, a0, b0) ∈ [0, 1]× ∂Ω. Then

x0(t) = a0 + λ0

(
−L(x0)(t) +

∫ t

0

H(x0, b0)(s) ds
)
, t ∈ J,

ϕ
(∫ t

0

x0(s) ds+ b0

)
= 0, ψ(x0) = 0.

Hence x0(t) is a solution of BVP (11)(λ0,a0,b0), (12)b0 , (13) and then, by
Lemma 3,

‖x0‖ ≤ S, |a0| ≤ S, |b0| ≤ ST,
which contradicts (x0, a0, b0) ∈ ∂Ω. We have proved (19). Therefore there
exists a fixed point (u, a, b) of the operator C +K. Then

(20) u(t) = a− L(u)(t) +

∫ t

0

H(u, b)(s) ds, t ∈ J,

ϕ
(∫ t

0

u(s) ds+ b
)

= 0, ψ(u) = 0.

Setting x(t) =
∫ t

0
u(s) ds+ b for t ∈ J , we see that

x′(t) + L(x′)(t) = a+

∫ t

0

F (x)(s) ds, t ∈ J,

ϕ(x) = 0, ψ(x′) = 0,

and consequently x(t) is a solution of BVP (1), (2). Moreover (cf. Lemma 3),
‖x‖ ≤ T‖u‖+ |b| ≤ 2ST , ‖x′‖ ≤ S.

Remark 5. It is easily seen that the results of our paper are true if we
consider instead of J = [0, T ] a compact interval [a, b] with b− a = T .

Remark 6. Consider the boundary conditions

(21) ϕ(x) = a, ψ(x′) = b

where ϕ, ψ ∈ A and a ∈ Im(ϕ), b ∈ Im(ψ). Here Im(%) denotes the range of
% ∈ A. Under the assumptions of Theorem 1 we can even prove that, for each
ϕ, ψ ∈ A and a ∈ Im(ϕ), b ∈ Im(ψ), BVP (1), (21) has a solution

Remark 7. The solvability of BVP (1), (2) has been proved in Theorem 1
under the assumption that the operator L satisfies

(22) ‖L(x)− L(y)‖ ≤ k‖x− y‖, x, y ∈ C0(J)

with some k ∈ [0, 1/2). If we consider, for example, the boundary conditions

(23) ϕ(x) = 0, x′(0) = 0,
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which are a special case of (2), we can even proof the following result:

Let sup{|L(x)(0)| : x ∈ C0(J)} <∞ and (22) be fulfilled with some k ∈
[0, 1). Then under assumption (H2), for each ϕ ∈ A, BVP (1), (23)
has a solution.

The proof of the above result is based on Remark 3 and uses the procedure
of the proof of Theorem 1.

Remark 8. Let L in (1) be a linear bounded operator. Using Remark 4
and applying the procedure of the proof of Theorem 1, we can prove the
followig assertion:

Let (Lx)(t) =

∫ T

0

x(s) dg(t, s) for x ∈ C0(J) and t ∈ J with g :

J×J → R satisfying conditions (j)−(jv) in Remark 4 with k2 ∈ [0, 1).
Suppose also that assumption (H2) be satisfied. Then BVP (1), (2) has
a solution for each ϕ, ψ ∈ A.

In the next example, Example 2, we will show that the conditions k ∈
[0, 1/2) in assumption (H1) is optimal for BVP (1), (2) and cannot be replaced
by k ∈ [0, 1/2]. Analogously, Example 3 shows that the condition k ∈ [0, 1)
in (22) is optimal for BVP (1), (23) (with sup{|L(x)(0)| : x ∈ C0(J)} <∞).

Example 2. Let J = [0, 1] and consider the BVP

(24) (x′(t) + w(t)x′(1))′ = 1,

(25) ϕ(x) = 0, min{x′(t) : t ∈ J} = 0,

where w ∈ C0(J), ‖w‖ = 1/2, w(0) = 1/2 and w(1) = −1/2. Assume that
u(t) is a solution of BVP (24), (25). Then (cf. (25))

(26) u′(t) ≥ 0, t ∈ J
and there exists ν ∈ J such that u′(ν) = 0. Therefore

(27) u′(t) = t− ν + (w(ν) − w(t))u′(1), t ∈ J.
If ν = 0 then

u′(1) = 1 + (w(0)− w(1))u′(1) = 1 + u′(1),

which is impossible. If ν = 1 then

u′(t) = t− 1 +
(
−1

2
− w(t)

)
u′(1) ≤ t− 1 < 0, t ∈ [0, 1),

which contradicts (26). Hence ν ∈ (0, 1) and from (27) we have

u′(0) = −ν +
(
w(ν) − 1

2

)
u′(1) ≤ −ν,

contrary to (26). We have proved that BVP (24), (25) is not solvable.
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Example 3. Let J = [0, 1] and consider the BVP

(28) (x′(t)− x′(t2))′ = 1, (23)

where ϕ ∈ A in (23). Assume that u(t) is a solution of BVP (28). Since
u′(0) = 0 we have

u′(t)− u′(t2) = t, t ∈ J,
and so u′(1)− u′(1) = 1, which is impossible.

The next two examples illustrate that the constants ε1, ε2 ∈ [0, 1) in
assumption (H2) are optimal for BVP (1), (2) that it, if either ε1 = 1 or
ε2 = 1 then there exists an unsolvable BVP of the type (1), (2).

Example 4. Consider the BVP (for ϕ ∈ A)

(29) x′′(t) = 1 + ‖x′‖,

(30) ϕ(x) = 0, min{x′(t) : t ∈ J} = 0

on the interval J = [0, 1]. Assume that there exists a solution u(t) of BVP
(29), (30). From (30) it follows that u′(t) ≥ 0 on J and there is a ν ∈ J
such that u′(ν) = 0. Since u′(t) is increasing on J , ν = 0, ‖u′‖ = u′(1), and
consequently

u′(t) = (1 + u′(1))t, t ∈ J.
Therefore

u′(1) = 1 + u′(1),

which is impossible.

Example 5. Consider the BVP

(31) x′′(t) = 1 + 2‖x‖,

(32) min{x(t) : t ∈ J} = 0, min{x′(t) : t ∈ J} = 0

on the interval J = [0, 1]. Suppose that u(t) is a solution of BVP (31), (32).
Then u′(t) is increasing on J and from (32) we deduce that u(t) ≥ 0, u′(t) ≥ 0
for t ∈ J and u(0) = 0, u′(0) = 0, ‖u‖ = u(1). Then from the equality

u′′(t) = 1 + 2u(1), t ∈ J,

we obtain

u(t) =
t2

2

(
1 + 2u(1)

)
, t ∈ J.

Hence u(1) = 1/2 + u(1), which is impossible.
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[13] I. RachΣunková and S. Staněk, Topological degree method in functional boundary value
problems, Nonlin. Anal. TMA 27 (1996), 153–166.
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