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A STRONGER LIMIT THEOREM IN EXTENSION THEORY
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Abstract. This work contains an improvement to a limit theorem
which has been proved by the author and P. J. Schapiro. In that result it
was shown that for a given simplicial complex K, if an inverse sequence of
metrizable spaces Xi each has the property that Xiτ |K|, then it is true that
Xτ |K|, where X is the limit of the sequence. The property that Xτ |K|
means that for each closed subset A of X and each map f : A → |K|,
there exists a map F : X → |K| which is an extension of f . This is the
fundamental notion of extension theory.

The version put forth herein is stronger in that it places a requirement
only on the bonding maps, but one which is necessarily true in case each
Xiτ |K|.

1. Introduction

The notion of extension theory is a generalization of dimension theories
such as covering and cohomological dimensions; good sources for extension
theory can be found in [DD] and [Sh]. Under the light shed by extension
theory, it is frequently possible to obtain theorems which apply to dimension
theory, but which are much more general. The limit theorem ([RS]) for inverse
sequences of metrizable spaces in extension theory is such an example. We
are going to prove here a stronger version of that limit theorem.

Recall that if K is a CW-complex and X is a space, then XτK means
that for each closed subset A of X and map f : A → K, there exists a map
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F : X → K which is an extension of F . This is the fundamental notion of
extension theory.

For information about inverse sequences and their limits, one may consult
[Du]. When K below is a simplicial complex, then |K| will be given the weak
topology determined by K.

The result in [RS], Theorem 3.1, goes this way:

Theorem 1.1. Let K be a simplicial complex and X = lim X, where
X = (Xi, pi i+1,N) is an inverse sequence of metrizable spaces Xi and Xiτ |K|
for all i ∈ N. Then Xτ |K|.

In order to state the improved version, let us first give a definition taken
from a notion previously introduced by A. Dranishnikov.

Definition 1.2. Let X = (Xi, pi i+1,N) be an inverse sequence and K be
a CW-complex. We shall write that XτK if for each i ∈ N, closed subset A
of Xi, and map f : A → K, there exists j ≥ i and a map g : Xj → K such

that g(x) = f ◦ pi j(x) for every x ∈ p−1
i j (A).

The next lemma is easy to prove.

Lemma 1.3. Let X = (Xi, pi i+1,N) be an inverse sequence and K be a
CW-complex. Then XτK if and only if for each i ∈ N, closed subset A of Xi,
and map f : A→ K, there exists j ≥ i such that for all k ≥ j, there is a map
g : Xk → K such that g(x) = f ◦ pi k(x) for every x ∈ p−1

i k (A).

We shall prove the following.

Theorem 1.4. Let X = (Xi, pi i+1,N) be an inverse sequence of metriz-
able spaces, K be a CW-complex such that XτK, and X = lim X. Then
XτK.

Since every CW-complex K is homotopy equivalent to |K0|, for some
simplicial complex K0, and every CW-complex is an absolute neighborhood
extensor for metrizable spaces, then Theorem 1.4 is equivalent to our main
result,

Theorem 1.5. Let X = (Xi, pi i+1,N) be an inverse sequence of metriz-
able spaces Xi, K be a simplicial complex such that Xτ |K|, and X = lim X.
Then Xτ |K|.

Surely Theorem 1.5 implies Theorem 1.1.
In section 3, we shall prove the following (seemingly weaker) theorem.

Theorem 1.6. Let X = (Xi, pi i+1,N) be an inverse sequence of metriz-
able spaces Xi with surjective bonding maps pi i+1, K be a simplicial complex
such that Xτ |K|, and X = lim X. Then Xτ |K|.

Proposition 1.7. Theorem 1.6 implies Theorem 1.5.
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Proof. Proof Let X be an inverse sequence as in Theorem 1.5. We begin
a recursive process. Let X∗

1 = X1 and put Y1 = X∗
1\p1 2(X2). There exists a

metrizable space X∗
2 = X2 ∪ Z2 where X2 is an open and closed subspace of

X∗
2 , and Z2 is a discrete subspace of X∗

2 having the same cardinality as Y1.
Define p∗1 2 : X∗

2 → X∗
1 so that p∗1 2|X2 = p1 2 and p∗1 2(Z2) = Y1. Such

a procedure may be continued recursively resulting in an inverse sequence
X∗ = (X∗

i , p
∗
i i+1,N) of metrizable spaces so that for each i ∈ N,

(1) p∗i i+1 is surjective,
(2) Xi is an open and closed subspace of X∗

i ,
(3) p∗i i+1|Xi+1 = pi i+1 : Xi+1 → Xi, and,
(4) X∗

i \Xi is a discrete subspace of X∗
i .

Using (2)–(4), along with the information Xτ |K|, the reader will easily
check that X∗τ |K|. Let X∗ = lim X∗. By Theorem 1.6, X∗τ |K|. Of course
X∗ is a metrizable space; one sees from (2) and (3) that X embeds as a closed
subspace of X∗. So Xτ |K|.

We would like to express our thanks to Professor Ivan Ivanšić of the
University of Zagreb for his careful reading of this paper and for his many
suggestions which helped the author to make a more clear presentation of this
work. We are extremely grateful to the referee of this paper who pointed out
to us several incorrect steps in the original version. Without that thorough
and careful reading, we would not have been aware of the problems, and hence
would not have been able to make the appropriate repairs.

2. Preliminaries

For the convenience of the current reader, we shall list items 2.1, 2.4–2.7
of [RS]. More details, of course, are given in the latter.

Lemma 2.1. Let X be a space satisfying the first countability axiom, K
be a simplicial complex, and f : X → |K| be a map. Then the (indexed)
collection {Qv = f−1(st(v,K)) | v ∈ K(0)} is a locally finite open cover of X.

If Q = {Qv | v ∈ Γ} is a collection of sets, then N(Q) will denote its nerve.

Lemma 2.2. Let P be a closed subset of a metrizable space B and U =
{Uv | v ∈ Γ} be an open cover of B. Put E = {Ev = Uv ∩ P | v ∈ Γ} and
let f : P → |N(E)| be an E-canonical map. Let θ : N(E) → N(U) be the
simplicial injection determined by the vertex map Ev 7→ Uv. Then there is
a U-canonical map g : B → |N(U)| such that g(P ) ⊂ θ(|N(E)|) and for all
x ∈ P , θ−1(g(x)) = f(x) (thus, θ(f(x)) = g(x)).

Lemma 2.3. Let X be a metrizable space, K be a simplicial complex, and
f , g : X → |K| be maps such that for each x ∈ X, there is a simplex σ of K
such that f(x), g(x) ∈ σ. Then f ' g.
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Definition 2.4. Let f : X → Y be a map and W be an open subset of X.
Then resp(W, f) is the maximal open subset U of Y such that f−1(U) ⊂ W .
We call U the W -response to f . Suppose that W = {Wv | v ∈ Γ} is an
indexed collection of open subsets of X. Then by resp(W , f) we mean the
(indexed) collection, {Uv = resp(Wv , f) | v ∈ Γ}.

Lemma 2.5. Let W ⊂W ′ be open subsets of a space X, and let f : X →
Y , g : Y → Z be maps. We write h = gf : X → Z. Then g−1(resp(W,h)) ⊂
resp(W, f) ⊂ resp(W ′, f).

Considering this fact and the nature of basic open subsets of an inverse
limit, we leave a proof of the following to the reader.

Lemma 2.6. Let X = (Xi, pi i+1,N) be an inverse sequence with coordinate
projections pi : X = lim X→ Xi. If H is an open subset of X and we define
Hi = resp(H, pi) for each i ∈ N, then

(a) Hi is open in Xi,
(b) p−1

i (Hi) ⊂ H,

(c) H =
⋃{p−1

i (Hi) | i ∈ N}, and

(d) p−1
i j (Hi) ⊂ Hj whenever i ≤ j.

A few additional items also will help below. Let us state the homotopy
extension theorem for metrizable spaces. It follows easily from III.10.4 of [Hu]
and the standard proof of the (Borsuk) homotopy extension theorem.

Theorem 2.7. Let K be a simplicial complex, X be a metrizable space,
A be a closed subset of X, and f , g : A→ |K| be homotopic maps. Then if f
extends to a map of X to |K|, so does g.

Here is a routine fact from general topology.

Lemma 2.8. Let W be an open subset of a space X and H = X\W . Then
∂H = H ∩ ∂W = H ∩W .

Using the preceding lemma and the homotopy extension theorem, one
attains the next lemma.

Lemma 2.9. Let W be an open subset of a metrizable space X, K be a
simplicial complex, and H = X\W . Suppose that f : W → |K| and g : H →
|K| are maps such that g|∂H ' f |∂H. Then f extends to a map of X to |K|.

3. Proof of Limit Theorem

Although the proof we give here resembles the one in [RS], it is sufficiently
different that one cannot attain it through minor adjustments. We shall try,
however, to maintain a parallel notation.
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Proof of 1.6. Noting that X is a metrizable space, let A ⊂ X be closed
and f : A → |K| be a map. We may as well assume that A 6= ∅ and A 6= X .
Extend f to a map f0 : W0 → |K| where W0 is an open neighborhood of A in

X . Let W ∗
0 be an open neighborhood of A in X whose closure W

∗
0 (relative

to X) is contained in W0.

Put H = X\W ∗
0. We are going to show that there is a map G : H → |K|

such that for each x ∈ ∂H , f0(x) and G(x) lie in a simplex of K. Then an
application of Lemmas 2.3 and 2.9 (since f0 is an extension of f) will complete
our proof.

For each v ∈ K(0), let Wv = f−1
0 (st(v,K)). We shall denote by Γ the

subset ofK(0) consisting of those v such that Wv∩∂H 6= ∅. LetW = {Wv | v ∈
Γ} and W1 =

⋃W . Applying Lemma 2.1, we see that W is a locally finite
open cover of the open subset W1 of W0 in terms of the indexing set Γ. Also
one sees that W1 is a neighborhood of ∂H .

We define

f1 = f0|W1 : W1 → |K|.
The inclusion Γ ↪→ K(0) induces a simplicial injection of nerves, η1 : N(W)→
K so that η1(Wv) = v.

Using pi to denote the ith coordinate projection of X to Xi, put

Hi = resp(H, pi).

Then (a)–(d) of Lemma 2.6 hold true.
Let us fix some more notation. For each v ∈ Γ, define

Ui,v = resp(Wv , pi).

We thus have a certain indexed open collection in Xi: Ui = {Ui,v | v ∈ Γ}.
This gives rise to an open subset of Xi, namely, Ui =

⋃Ui. Since p−1
i (Ui,v) ⊂

Wv ∈ W , the identity function Γ → Γ induces a simplicial injection βi :
N(Ui) → N(W) where βi(Ui,v) = Wv . Taking into account Lemma 2.5, one
deduces that for all k ∈ N,

(1) p−1
i i+k(Ui,v) ⊂ Ui+k,v , and, moreover,

(2) p−1
i i+k(Ui) ⊂ Ui+k.

Here now are certain closed sets. Put

Zi = clXi
(pi(∂H)).

It follows from 2.6(a) and (b) that,

Zi ∩Hi = ∅.
Consider the open subset

Ki = Ui ∩ Zi

of Zi. By a recursive process using (2), choose for each i ∈ N, a sequence

(Kj
i )∞j=1 of closed subsets of Xi such that
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(3) Kj
i ⊂ Kj+1

i ⊂ Ki for each j ∈ N

(4)
⋃{Kj

i | j ∈ N} = Ki, and

(5) p−1
i k+1(Kk

i ) ∩ Zk+1 ⊂ K1
k+1 whenever 1 ≤ i ≤ k.

One sees from this definition and the preceding that,

(6) Kj
i ∩Hi = ∅ for each i and j.

We want to describe an inductive procedure. To begin this simply, we
make the assumption, without losing generality, that X1 is a singleton.

Surely H1, U1, K1 = ∅. Define D1 = ∅ and for each j ∈ N, put Hj
1 = ∅.

Let k ∈ N. We assume inductively that for each 1 ≤ i ≤ k we have chosen
a positive integer li, so that 1 = l1 < · · · < lk, a sequence (Hj

i )∞j=1 of closed

subsets of Xli and a closed neighborhood Di of K1
li

in Xli . The sets Hj
i , Di

are to satisfy,

(7) Hj
i ⊂ Hj+1

i ⊂ Hli for each j ∈ N,

(8)
⋃{intHj

i | j ∈ N} = Hli ,

(9) p−1
lu ls

(Hs
u) ⊂ H1

s whenever 1 ≤ u < s ≤ k,

(10) Di ∩H1
i = ∅,

(11) p−1
li li+1

(Di) ⊂ Di+1 whenever i < k, and

(12) Di ⊂ Uli .

Put

(13) Ei = {Ei,v = Uli,v ∩Di | v ∈ Γ}, an indexed open cover of Di,
(14) τi : N(Ei) → N(Uli) the simplicial injection determined by the vertex

map Ei,v 7→ Uli,v, and
(15) αi = η1βliτi : N(Ei)→ K, noting that αi is a simplicial injection.

In addition, assume we have selected

(16) an Ei-canonical map gi : Di → |N(Ei)|.
Put

Ti = Di ∪H1
i .

We further require that we have chosen a map g∗i : Ti → |K| which is an
extension of αigi : Di → |K| in such a manner that,

(17) g∗i (x) = g∗i−1pli−1 li(x) whenever 1 < i ≤ k and x ∈ p−1
li−1 li

(Ti−1).

Suppose that 1 ≤ i < k and that {Ei,v1 , . . . , Ei,vs
} is the vertex set of a

simplex of N(Ei). Then (13) shows that {Uli,v1 , . . . , Uli,vs
} is the vertex set of

a simplex of N(Uli). This, the surjectivity of pli li+1 , (1), (11), and (13) show
that the vertex maps Ei,v 7→ Ei+1,v and Uli,v 7→ Uli+1,v respectively determine
simplicial injections θi : N(Ei) → N(Ei+1) and θ∗i : N(Uli) → N(Uli+1). One
can see from the definitions that,

(18) θ∗i τi = τi+1θi and βli+1θ
∗
i = βli .

Choose lk+1 > lk by applying Xτ |K|, to the closed subset Tk of Xlk . Let

R = p−1
lk lk+1

(Tk).
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Next select a sequence (Hj
k+1)∞j=1 of closed subsets of Xlk+1

so that (7)–(9)
are true when the index k is increased to k + 1. One is assured of being able
to obtain (9) because of 2.6(d).

Select a closed neighborhood Dk+1 of K1
lk+1

in Xlk+1
so that (10)–(12)

are true for k replaced by k + 1. This may be accomplished because of (6),
(2) and the fact that always Ki ⊂ Ui. Then pick Ek+1, τk+1, and αk+1 in
analogy with (13)–(15). We are not yet ready for gk+1, but the reader easily
can see that there are maps θk and θ∗k like those above satisfying (18).

Let

P = p−1
lk lk+1

(Dk),

and put E = {Ev = Ek+1,v∩P | v ∈ Γ}. Then E is an open cover of P because
of (11) and (13). For each vertex Ek,v of N(Ek), we know from (1) and (11)

that, p−1
lk lk+1

(Ek,v) = p−1
lk lk+1

(Ulk,v ∩ Dk) = p−1
lk lk+1

(Ulk,v) ∩ p−1
lk lk+1

(Dk) ⊂
Ulk+1,v ∩ P = Ev , i.e.,

(19) p−1
lk lk+1

(Ek,v) ⊂ Ev.

So, again using the surjectivity of the bonding maps, the vertex map
Ek,v 7→ Ev determines a simplicial injection φ : N(Ek) → N(E). Define

f̂ : P → |N(E)| by

f̂(x) = φgkplk lk+1
(x), x ∈ P.

We wish to show that

(20) f̂ is an E-canonical map.

Surely φ−1(st(Ev , N(E))) ⊂ st(Ek,v , N(Ek)) for each vertex Ev of N(E).

From (16) we get that g−1
k (st(Ek,v , N(Ek))) ⊂ Ek,v . We conclude from this,

the definition of f̂ , and (19), that (20) is true.
Next define θ : N(E)→ N(Ek+1) to be the simplicial injection determined

by the vertex map Ev 7→ Ek+1,v . With B = Dk+1, f̂ in place of f , and
Ek+1 in place of U , we apply Lemma 2.2. This yields an Ek+1-canonical
map gk+1 as requested in (16), but which enjoys the property that for x ∈
p−1

lk lk+1
(Dk), θf̂(x) = gk+1(x). The definition of f̂ thus shows that gk+1(x) =

θφgkplk lk+1
(x), x ∈ P . One readily checks that θφ = θk, so,

(21) gk+1(x) = θkgkplk lk+1
(x), x ∈ P .

For such x, αk+1gk+1(x) ∈ |K| and by the definition of αk+1 and (18),
αk+1θk = η1βlk+1

τk+1θk = η1βlk+1
θ∗kτk = η1βlkτk. From this and (21),

αk+1gk+1(x) = η1βlkτkgkplk lk+1
(x) = αkgkplk lk+1

(x).

Since plk lk+1
(x) ∈ Dk, and g∗k is an extension of αkgk, we see that

αk+1gk+1(x) = g∗kplk lk+1
(x). Therefore we may extend αk+1gk+1 : P → |K|

to a map ĝk+1 : R→ |K| by setting

(22) ĝk+1(x) = g∗kplk lk+1
(x), x ∈ R.
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Our choice of lk+1 guarantees that we may extend ĝk+1 to a map g̃k+1 :
S → |K|, where

S = R ∪H1
k+1.

From (10), Dk+1 ∩ S ⊂ Dk+1 ∩ R. Moreover, (9) shows that p−1
lk lk+1

(H1
k ) ⊂

H1
k+1, so C = Dk+1 ∩ S ⊂ P . On C, the map g̃k+1 is defined by g̃k+1(x) =

ĝk+1(x) = αk+1gk+1(x). We therefore extend g̃k+1 to a map g∗k+1 : Tk+1 →
|K| by setting g∗k+1(x) = αk+1gk+1(x), x ∈ Dk+1.

It is clear from the construction that g∗k+1 is an extension of αk+1gk+1

on Dk+1. We have to check (17), so let x ∈ R. By (22) we need only show
that g∗k+1(x) = ĝk+1(x). But for such x, ĝk+1(x) = g̃k+1(x), and g∗k+1 is an
extension of g̃k+1.

This concludes the inductive construction.
Now we shall use the preceding to show the existence of a map G : H →

|K| such that for each x ∈ ∂H , f0(x) and G(x) lie in a simplex of K. As we
mentioned at the outset, this will conclude our proof.

Let x ∈ H . We are going to show that there exists k ∈ N and a neigh-
borhood Q of xlk in Xlk which lies in the domain Tk of g∗k. We shall show,
moreover, that Q may be chosen so that if n > k, then

(23) p−1
lk ln

(Q) ⊂ Tn, and

(24) for any z ∈ p−1
lk ln

(Q), g∗n(z) = g∗k(plk ln(z)).

Assuming this for the moment, let k = k(x) be the minimal element of N

which admits such a Q. We then define G(x) = g∗k(xlk ). Property (24) shows
that if n > k, then g∗k(xlk ) = g∗n(xln). That G is continuous at x can be seen as

follows. We know that M = p−1
lk

(Q)∩H is a neighborhood of x in H . For any

y ∈M , it is clear that k(y) ≤ k(x). Hence g∗k(y)(ylk(y)
) = G(y) = g∗k(x)(ylk(x)

).

This implies that G|M = g∗k(x) ◦ plk(x)
|M .

To prove the statement above about x ∈ H and get (23) and (24), we
shall consider the two cases, x ∈ H and x ∈ ∂H .

First suppose that x ∈ H . An application of 2.6(c) shows that there is an

i such that x ∈ p−1
li

(Hli), so xli ∈ Hli . From (8), there is j with xlj ∈ intHj
i .

Using (7) and (9), one finds k ≥ i such that xlk ∈ p−1
li lk

(intHj
i ) ⊂ Q =

intH1
k ⊂ Tk. A recursive application of (9) and (17) shows that (23) and (24)

are satisfied.
The other possibility is that x ∈ ∂H . There exists a neighborhood Vx of x

in W1 and a finite subset Fx ⊂ Γ such that Vx ∩Wv 6= ∅ precisely for v ∈ Fx.
This of course shows that Fx is the vertex set of a simplex of K, and that
f0(x) lies in that simplex–we shall shortly need this information. We may as
well assume that Vx ⊂ Wv when v ∈ Fx. There exists i and a neighborhood
V i of xli in Xli such that x ∈ p−1

li
(V i) ⊂ Vx ⊂ Wv . Then for each v ∈ Fx,

xli ∈ V i ⊂ Uli,v = resp(Wv , pli) ⊂ Uli .



A STRONGER LIMIT THEOREM IN EXTENSION THEORY 103

Since xli ∈ Uli ∩ pli(∂H) ⊂ Uli ∩ Zli = Kli , (4) shows that for some j,

xli ∈ Kj
li

. Applying (5) there exists k ≥ i with xlk ∈ K1
lk

. Recall that Dk is

a neighborhood of K1
lk

in Xlk . Put Q = intDk. Then Q ⊂ Tk. One may use
(11) and (17) to get (23) and (24).

The final step is to consider x ∈ ∂H and show that f0(x), G(x) lie in a
simplex of K. To this end, let us maintain the notation we just produced for
such x. Then xlk ∈ Dk and since g∗k is an extension of αkgk on Dk, we see
that G(x) = αkgk(xlk ).

Let us observe that if xlk ∈ Ulk,v, then it has to be true that v ∈ Fx. To

see this, note that xlk ∈ p−1
li lk

(V i), and hence x ∈ p−1
lk
p−1

li lk
(V i) = p−1

li
(V i) ⊂

Vx. Moreover, xlk ∈ p−1
li lk

(V i) ∩ Ulk,v and since Ulk,v = resp(Wv , plk), then

x ∈ p−1
lk

(Ulk(x),v) ⊂Wv . Therefore x ∈ Vx ∩Wv, so v ∈ Fx as stated.

By (16), gk is an Ek-canonical map. So for some subset F̃ ⊂ Fx, gk(xlk )

lies in the simplex whose vertices are {Ek(x),v | v ∈ F̃}. The map αk (see its

definition) sends gk(xlk ) into the simplex of K having vertex set F̃ ⊂ Fx.
But we have observed already that the map f0 sends x into the simplex

of K having Fx as its set of vertices. Our proof is complete.
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