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Abstract. In this paper a version of the general theorem on ap-
proximate maximum likelihood estimation is proved. We assume that there
exists a log-likelihood function L(ϑ) and a sequence (Ln(ϑ)) of its estimates
defined on some statistical structure parameterized by ϑ from an open set
Θ ⊆ R

d, and dominated by a probability P. It is proved that if L(ϑ)
and Ln(ϑ) are random functions of class C2(Θ) such that there exists a

unique point ϑ̂ ∈ Θ of the global maximum of L(ϑ) and the first and sec-
ond derivatives of Ln(ϑ) with respect to ϑ converge to the corresponding
derivatives of L(ϑ) uniformly on compacts in Θ with the order O P(γn),
limn γn = 0, then there exists a sequence of Θ-valued random variables

ϑ̂n which converges to ϑ̂ with the order O P(γn) and such that ϑ̂n is a
stationary point of Ln(ϑ) in asymptotic sense. Moreover, we prove that
under two more assumption on L and Ln, such estimators could be chosen
to be measurable with respect to the σ-algebra generated by Ln(ϑ).

1. Introduction

This paper is concerned with a generalization of the so called general the-
orem on approximate maximum likelihood estimation given in [9] as Theorem
3. A general problem is as follows. Let L(ϑ) be a log-likelihood function
(or any contrast function) defined on some statistical structure parameter-
ized with ϑ and dominated by a probability measure P, and let (Ln(ϑ)) be
a sequence of its approximations. If we know that the maximum likelihood

estimator (MLE for short) ϑ̂ exists and that Ln(ϑ) converge to L(ϑ) uniformly
on compacts with known order, the problem is under what conditions there
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exists a sequence of estimators (ϑ̂n) which converges to ϑ̂ and such that ϑ̂n

is a stationary point of Ln(ϑ) in asymptotic sense. In addition, we are also

concerned with the problem when ϑ̂n could be chosen to be measurable with
respect to the σ-algebra generated by Ln(ϑ). For example, these problems
arise when only discrete time observations of a continuous time process are
available over bounded time interval (see for instance [6] or [7], and [9]).

Le Breton in [9] proved the theorem (Theorem 3 in [9]) of this kind and
applied it to the problem of estimation of the drift parameter in a linear sto-
chastic differential equation with constant coefficients. The main assumption
was that the unknown parameter could be any value from Rd. Moreover,
some of the conditions on L(ϑ) were that the second derivative of L with
respect to ϑ did not depend on ϑ (condition (A2) in [9] Theorem 3) and that

L has a unique stationary point ϑ̂ (condition (A3) in the same theorem).
These conditions together with the assumption about parameter space are
somewhat restrictive. For example, if the drift of a diffusion is nonlinear in its
parameters, then the second derivative of the log-likelihood function generally
depends on the parameters. In this paper we prove a version of Le Breton’s
theorem assuming that the parameter space is an open set Θ in the Euclidean
space Rd and omitting the restrictive condition (A2) from [9]. Moreover, we

weaken (A3) from [9] by assuming that ϑ̂ is a unique point of maximum of

L on Θ. To obtain appropriate measurability of ϑ̂n we have to impose some
additional conditions on L and Ln. Note that these considerations were not
present in Le Breton’s approach. In this sense generalized version of Le Bre-
ton’s theorem can be applied to more general diffusion models. For example
(see [6, 7]), let us consider the diffusion growth model defined by the Itô
stochastic differential equation

dXt = (α− βh(γ,Xt))Xt dt+ σXt dWt, X0 = x0 > 0,

where h(γ, x) = (xγ − 1)/γ if γ 6= 0 and h(γ, x) = logx if γ = 0 (γ ∈ R,
x > 0), σ > 0 being fixed and where ϑ = (α, β, γ) belongs to a relatively
compact parameter space Θ, a neighborhood of the true value of ϑ with the
specific property (see [7]) and such that

Θ ⊂ {(α, β, γ) ∈ R3 : β > 0, γ(α− σ2

2
) + β > 0}.

The log-likelihood function based on continuous observation X = (Xt, 0 ≤
t ≤ T ) for ϑ is

L(ϑ) =
1

σ2

∫ T

0

(α− βh(γ,Xt))
1

Xt
dXt −

1

2σ2

∫ T

0

(α− βh(γ,Xt))
2 dt.

Let us suppose that we observe X at time moments 0 = t0 < t1 < . . . < tn =
T , T being fixed, n ∈ N. For any such choice of time moments we approximate
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L(ϑ) with

Ln(ϑ) =
1

σ2

n∑

i=1

(
(α− βh(γ,Xti−1))

1

Xti−1

(Xti
−Xti−1)

− 1

2
(α − βh(γ,Xti−1))2(ti − ti−1)

)
.

L(ϑ) and Ln(ϑ), n ∈ N, with γn = max1≤i≤n(ti−ti−1)→ 0, satisfy the condi-
tions of the theorem (see Section 3) in the sense described in [7]. This model
can be used in e.g. modeling growth of tumor spheroids where it is not possible
for an individual spheroid to be observed arbitrarily long, but, theoretically,
it is possible to observe it at every time moments in some bounded time in-
terval (see [6]). It should be stressed that the asymptotic concept considered
here and in [9] (i.e. where we discretely observe trajectories at n distinct time
moments over the same bounded time interval in a way that the maximum of
the times between successive observations ∆n tends to zero), is different of the
concept used by many other authors since in many other applications it is not
possible to take observations at any time moment, but it is possible to take
it arbitrarily long. For example, Yosida in [10] and Florens-Zmirnou in [5]
proved that the estimators based on an approximation to the continuous-time
likelihood function of an ergodic diffusion, obtained by replacing Lebesgue
integrals and Itô integrals by Riemann-Itô sums as in the above example, are
consistent and asymptotically efficient when n∆n → +∞ for equidistant time
points such that ∆n → 0. If ∆n = ∆ > 0 is a constant, then the estima-
tors are not consistent (see [2]). On the other hand, Dacunha-Castelle and
Florens-Zmirou in [3] proved that for equidistant time points, the condition
n∆n → +∞ is sufficient (and necessary) for the discrete-time MLE of the
drift parameters being consistent and asymptotically efficient. Since the tran-
sition densities cannot be obtained explicitly in many examples, some authors
proposed other methods of estimations and proved the same good asymptotic
properties of the obtained estimators under assumption that ∆n = ∆ > 0 is
constant (for example see [1],[8] and [2]).

The paper is organized in the following way. Next section contains the
definitions and notation used throughout in the paper. The generalized ver-
sion of Le Breton’s theorem is stated in Section 3 and the proofs are in Section
4.

2. Notation

We denote by 〈·|·〉 the scalar product in d-dimensional Euclidean space
Rd and by | · | the induced norm.

If x 7→ f(x) is a real-valued function defined on an open subset of Rd,
then we will denote by Df(x), D2f(x) its first and second derivatives with
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respect to x respectively. The notation D2f(x) < 0 means that the Hessian
D2f(x) is a negatively definite matrix.

Let U and Θ be open sets in Rd and U ⊂ Θ. The closure of U will be
denoted by C`(U) and the σ-algebra of Borel subsets of Θ by B(Θ). We will
say that U is a relatively compact set in Θ if U is an open set such that C`(U)
is compact in Θ. If ε > 0 is a real number then U + ε stands for the set
{x ∈ Rd : (∃y ∈ U) |x− y| < ε}. Moreover, K(x0, ε) denotes the open ball in
Rd with the center x0 and radius ε.

Let (γn, n ∈ N) be a sequence of positive numbers and let X = (Xn, n ∈
N) be a sequence of random variables on a probability space (Ω,F , P). We
will say that X is O P(γn), n ∈ N, and write Xn = O P(γn), n ∈ N, if the
sequence (Xn/γn, n ∈ N) is bounded in probability, i.e. if

lim
A→+∞

lim
n

P{γ−1
n |Xn| > A} = 0.

Generally, if A ⊂ Ω and B ⊂ Rd then Ac and Bc stand for the complement
sets Ω \A and Rd \B respectively.

3. The result

Let Θ be an open subset of the Euclidean space Rd, let (Ω,F , P) be
a probability space, and let (Fn, n ∈ N) be a family of sub-σ-algebras of
F . Moreover, let (γn;n ∈ N) be a sequence of positive numbers such that
limn γn = 0, and let L,Ln : Ω × Θ → R, n ∈ N, be functions satisfying the
following assumptions.

(A1): For all ϑ ∈ Θ, ω 7→ L(ω, ϑ) is F-measurable and ω 7→ Ln(ω, ϑ) is
Fn-measurable, n ∈ N. For all ω ∈ Ω, ϑ 7→ L(ϑ) ≡ L(ω, ϑ) and ϑ 7→ Ln(ϑ) ≡
Ln(ω, ϑ), n ∈ N, are of class C2(Θ).

(A2): For all ω ∈ Ω, the function ϑ 7→ L(ϑ) ≡ L(ω, ϑ) has a unique point

of global maximum ϑ̂ ≡ ϑ̂(ω) in Θ, and D2L(ϑ̂) < 0.

(A3): For any relatively compact set K ⊂ Θ,

sup
ϑ∈K
|DlLn(ϑ)−DlL(ϑ)| = O P(γn), n ∈ N, l = 1, 2.

To obtain Fn-measurability of the estimators, we need a few more as-
sumptions.

(A4): For all ω ∈ Ω and r > 0, L(ω, ϑ̂(ω)) > sup|x|≥r L(ω, ϑ̂(ω) + x);

(A5): supϑ∈Θ |Ln(ϑ)− L(ϑ)| P→ 0, n→∞.

Note that the measurability of the suprema in (A3-5) follows from (A1).

Theorem 3.1. Let (A1-3) hold. Then there exists a sequence (ϑ̂n, n ∈ N)
of Θ-valued random variables such that
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(i) limn P{DLn(ϑ̂n) = 0} = 1;

(ii) ϑ̂n
P→ ϑ̂, n→ +∞;

(iii) If (ϑ̃n;n ∈ N) is any other sequence of random variables which satisfies

(i) and (ii), then limn P{ϑ̃n = ϑ̂n} = 1;

(iv) The sequence γ−1
n (ϑ̂n − ϑ̂), n ∈ N, is bounded in probability.

If in addition (A4-5) hold, then ϑ̂n could be chosen to be Fn-measurable,
n ∈ N.

We conclude this section with another result about the existence of the
Fn-measurable estimators having the properties (i-iv) from the theorem. This
result refers to the functions Ln, n ∈ N, with very specific property and is
based only on the assumptions (A1-3).

Corollary 3.2. Let (A1-3) hold. If for all n ∈ N and ω ∈ Ω, the

function ϑ 7→ Ln(ω, ϑ) has a unique point ϑ̃n(ω) of local maximum in Θ

which is a point of global maximum as well, then random variable (ϑ̃n, n ∈ N)

is a sequence of Θ-valued random variables such that for all n ∈ N, ϑ̃n is a
Fn-measurable and (i-iv) from the theorem hold.

4. Proofs

We need the following lemmas. Some of them can be considered as stan-
dard but since we have not found them in literature as stated here, we provide
proofs for readers’ convenience.

Lemma 4.1. Let G be a σ-algebra on Ω and let G : Ω × Θ → R be a
function such that for all ω ∈ Ω, ϑ 7→ G(ω, ϑ) is continuous in Θ, and for all
ϑ ∈ Θ, ω 7→ G(ω, ϑ) is G-measurable. Then

(i) G is a G ⊗ B(Θ)-measurable function;

(ii) If for all ω ∈ Ω, ϑ 7→ G(ω, ϑ) has a unique point ϑ̂(ω) of global maxi-

mum in Θ, then ω 7→ ϑ̂(ω) is a G-measurable mapping.

Proof. Let (Θn, n ∈ N) be a sequence of relatively compact sets in Θ
such that Θ = ∪n∈NΘn and for all n ∈ N, C`(Θn) ⊂ Θn+1. Let n ∈ N be
fixed. Since C`(Θn) is a compact set, there exist a finite number of points

(ϑ
(n)
i , 1 ≤ i ≤ kn) such that

Θn ⊂ C`(Θn) ⊆
kn⋃

i=1

K(ϑ
(n)
i ,

1

n
).
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Let us define a sequence (G(n), n ∈ N) of simple functions in Ω×Θ by

G(n)(ω, ϑ) :=

kn∑

i=1

G(ω, ϑ
(n)
i ) · 1

K(ϑ
(n)
i

, 1
n

)
(ϑ)− 1

2

∑

1≤i<j≤kn

(
G(ω, ϑ

(n)
i )+

G(ω, ϑ
(n)
j )
)
· 1

K(ϑ
(n)
i

, 1
n

)∩K(ϑ
(n)
j

, 1
n

)
(ϑ) + · · ·+ (−1)kn

1

kn
(G(ω, ϑ

(n)
i1

)+

· · ·+G(ω, ϑ
(n)
ikn

)) · 1
K(ϑ

(n)
i1

, 1
n

)∩···∩K(ϑ
(n)
ikn

, 1
n

)
(ϑ).

Trivially, the functions G(n) (n ∈ N) are G ⊗ B(Θ)-measurable and for all
(ω, ϑ) ∈ Ω × Θ, G(ω, ϑ) = limnG

(n)(ω, ϑ) by continuity of ϑ 7→ G(ω, ϑ).
Hence (i) follows.

Let K ⊂ Θ be an open ball. Since Θ is an open set in Rd and ϑ 7→ G(ω, ϑ)
is a continuous function for any ω ∈ Ω,

{ω ∈ Ω : ϑ̂(ω) ∈ Kc} = {ω ∈ Ω : ∀ϑ ∈ K, ∃ϑ′ ∈ Kc, G(ω, ϑ) < G(ω, ϑ′)}
=

⋂

ϑ∈K∩Qd

⋃

ϑ′∈Kc∩Qd

{ω ∈ Ω : G(ω, ϑ) < G(ω, ϑ′)} ∈ G,

which proves (ii).

Lemma 4.2. Let (A1) hold. Then for a positive random variable ε and a

Θ-valued random variable ϑ̃, the functions δ(j)(ϑ̃, ε), j = 1, 2, defined by

δ(1)(ϑ̃, ε) := sup{δ > 0 : ∀x ∈ Rd, |x| ≤ δ ⇒ |D2L(ϑ̃+ x)−D2L(ϑ̃)| ≤ ε},
δ(2)(ϑ̃, ε) := sup{δ > 0 : ∀x ∈ Rd, |x| ≤ δ ⇒

|DL(ϑ̃+ x)−DL(ϑ̃)−D2L(ϑ̃)x| ≤ ε|x|},
are positive not necessarily finite random variables.

Proof. (A1) implies δ(j) > 0, j = 1, 2. Moreover, (A1) and Lemma
4.1 imply that the functions (ω, ϑ) 7→ DlL(ω, ϑ), l = 1, 2, are F ⊗ B(Θ)-

measurable, and ω 7→ ϑ̃(ω) is a F-measurable mapping, by the assumption.

Hence, ω 7→ DlL(ϑ̃) ≡ DlL(ω, ϑ̃(ω)), l = 1, 2, are F-measurable mappings.
Let h > 0 be an arbitrary number. Then

{ω ∈ Ω : δ(1)(ω) ≥ h} = {ω ∈ Ω : ∀x ∈ Rd, |x| ≤ h⇒
|D2L(ω, ϑ̃(ω) + x)−D2L(ω, ϑ̃(ω))| ≤ ε(ω)}.

Because Qd is a dense set in Rd, and because for all ω ∈ Ω, the function
ϑ 7→ D2L(ω, ϑ) is continuous, the set on the right side of the above equation
is equal to the set

⋂

x∈Qd, |x|≤h

{ω ∈ Ω : |D2L(ω, ϑ̃(ω) + x)−D2L(ω, ϑ̃(ω))| ≤ ε(ω)}
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which is in F . Hence, δ(1) is a random variable. The proof of the F-
measurability of δ(2) goes in a similar way.

The following topological result is needed for proving the existence of the
estimators.

Lemma 4.3. Let K(0, r) (r > 0) be an open ball in Rd, and let F :
C`(K(0, r))→ Rd be a continuous function. If for all x ∈ Rd such that |x| = r,
〈x|F (x)〉 < 0, then there exists a point x∗ ∈ K(0, r) such that F (x∗) = 0.

Proof. Let us assume that the assertion of the lemma is false, i.e. for all
x ∈ K(0, r), F (x) 6= 0. Then the function x 7→ 1

|F (x)|〈x|F (x)〉 is a well-defined

continuous function. Hence, there exists a number ε > 0 such that

(4.1) r − ε ≤ |x| ≤ r ⇒ 1

|F (x)| 〈x|F (x)〉 ≤ −ε.

Namely, if this is not true then there exists a sequence (xn;n ∈ N) in
C`(K(0, r)) such that

r − 1

n
≤ |xn| ≤ r &

1

|F (xn)| 〈xn|F (xn)〉 > − 1

n
, n ∈ N.

Since (xn;n ∈ N) is bounded, there exists a convergent subsequence (xnk
; k ∈

N), limk xnk
= x′. From the above conditions and the continuity, it follows

that

|x′| = r &
1

|F (x′)| 〈x
′|F (x′)〉 ≥ 0 ⇒ |x′| = r & 〈x′|F (x′)〉 ≥ 0,

which contradicts the assumption of the lemma. Hence, there exists ε > 0
such that (4.1) holds. For such ε, x 7→ G(x) := x+εF (x)/|F (x)| is a Rd-valued
continuous function on C`(K(0, r)) too. If |x| < r−ε then |G(x)| ≤ ε+|x| ≤ r,
and if r − ε ≤ |x| ≤ r then

|G(x)|2 = ε2 + 2
ε

|F (x)| 〈x|F (x)〉 + |x|2 ≤ r2 − ε2 ≤ r2,

i.e. |G(x)| ≤ r. Hence, G maps C`(K(0, r)) into C`(K(0, r)). By the Brower
fixed point theorem (see e.g. [4], p. 144), there exists x0 ∈ K(0, r) such that
G(x0) = x0. This implies F (x0) = 0 which is in contradiction with the
assumption.

The last lemma is used in the proof of the Fn-measurability of the esti-

mators ϑ̂n, n ∈ N.

Lemma 4.4. Let (A1-2) and (A4) hold.
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(i) There exists a positive and finite random variable Q such that

(∀x ∈ Rd) |x| < Q ⇒ ϑ̂+ x ∈ Θ and D2L(ϑ̂+ x) < 0.

(ii) For any random variable ε such that 0 < ε ≤ Q, there exists a
random variable s(ε) such that 0 < s(ε) < ε and

inf
|x|≤s(ε)

L(ϑ̂+ x) > sup
|x|≥ε

L(ϑ̂+ x).

Moreover, ∆(ε) := inf |x|≤s(ε) L(ϑ̂+x)−sup|x|≥ε L(ϑ̂+x) is a positive random
variable.

Proof. For fixed n ∈ N, let

Qn := sup{r > 0 : K(ϑ̂, r) ⊆ Θ & sup
ϑ∈K(ϑ̂,r)

sup
|η|=1

〈D2L(ϑ)η|η〉 ≤ − 1

n
}.

Since ϑ 7→ D2L(ϑ) is continuous and Qd is dense in Rd, for all r > 0,

{Qn < r} =
⋃

ϑ∈Qd∩Θ{|ϑ− ϑ̂| < r, sup|η|=1〈D2L(ϑ)η|η〉 > − 1
n}∪

∪⋃y∈Qd\Θ{|y − ϑ̂| < r} ∈ F .
Hence, for all n ∈ N, Qn is a random variable. Let M > 0 be an arbitrary real
number and Q = supnQn∧M . Then Q is a finite random variable, and Q > 0
by (A2). Moreover, let x ∈ Rd be such that |x| < Q. For ε = Q − |x| > 0

there exists n ∈ N such that |x| = Q− ε < Qn, which implies that ϑ̂+ x ∈ Θ

and sup|η|=1〈D2L(ϑ̂+ x)η|η〉 ≤ − 1
n < 0 by the definition of Qn. This proves

(i).

Let ε be a random variable such that 0 < ε ≤ Q. Note that sup|x|≥ε L(ϑ̂+

x) is a finite random variable since for all r ∈ R,

{ sup
|x|≥ε

L(ϑ̂+ x) > r} =
⋃

ϑ∈Qd∩Θ

{|ϑ− ϑ̂| ≥ ε, L(ϑ) > r} ∈ F

and (A2) holds. Let

Sε := sup{0 < r ≤ ε/2 : inf
|x|≤r

L(ϑ̂+ x) ≥ sup
|x|≥ε

L(ϑ̂+ x)}.

(A4) implies Sε > 0. Moreover, for all r > 0,

{Sε ≥ r} = { inf
|x|≤r

L(ϑ̂+ x) ≥ sup
|x|≥ε

L(ϑ̂+ x)} ∈ F

by (A1). Hence, Sε is a random variable. Let s(ε) := Sε/2. Then s(ε) is a
random variable such that 0 < s(ε) ≤ ε/4 < ε and

inf
|x|≤s(ε)

L(ϑ̂+ x) ≥ inf
|x|≤Sε

L(ϑ̂+ x) ≥ sup
|x|≥ε

L(ϑ̂+ x)
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by the definition. To prove that inf |x|≤s(ε) L(ϑ̂ + x) > sup|x|≥ε L(ϑ̂+ x) it is

sufficient to show that inf |x|≤s(ε) L(ϑ̂+x) > inf |x|≤Sε
L(ϑ̂+x). Let us suppose

that this is not true, i.e. inf |x|≤Sε/2 L(ϑ̂+ x) = inf |x|≤Sε
L(ϑ̂+ x). Since

inf
|x|≤Sε/2

L(ϑ̂+ x) ≥ inf
|x|≤3Sε/4

L(ϑ̂+ x) ≥ inf
|x|≤Sε

L(ϑ̂+ x),

inf |x|≤Sε/2 L(ϑ̂ + x) = inf |x|≤3Sε/4 L(ϑ̂ + x). These minima are obtained at
points in K(0, ε). Since K(0, ε) ⊆ K(0, Q) and x = 0 is a unique stationary

point and a point of maximum of x 7→ L(ϑ̂+x) inK(0, ε), the points of minima
have to be in spheres {x : |x| = Sε/2} and {x : |x| = 3Sε/4} respectively.

Let x∗ be a point of the minimum of the function x 7→ L(ϑ̂ + x) defined
in the set {x : |x| ≤ Sε/2}. Then |x∗| = Sε/2 and x∗ is a point of the
minimum of the same function but defined in {x : |x| ≤ 3Sε/4}. Hence, x∗ is

another stationary point of the function x 7→ L(ϑ̂ + x) in K(0, ε), which is a
contradiction.

Finally, it follows easily that ∆(ε) is a positive random variable.

Proof of the theorem. Let {Km;m ∈ N} be a family of relatively
compact sets and (εm;m ∈ N) be a sequence of positive numbers such that

(∀m ∈ N) C`(Km) ⊂ C`(Km + εm) ⊂ Km+1 and
⋃∞

m=1Km = Θ,
(∀m ∈ N) εm > εm+1 and limm εm = 0,

and let

Ωnm := {ϑ̂ ∈ Km, sup
|x|=εm

〈DLn(ϑ̂+x)|x〉 < 0, sup
|x|≤εm

sup
|ξ|=1

〈D2Ln(ϑ̂+x)ξ|ξ〉 < 0}.

By Lemma 4.3 there exists a point ϑ̂nm ∈ K(ϑ̂, εm) such that DLn(ϑ̂nm) = 0

on the event Ωnm. On the same event, ϑ̂nm is a unique stationary point
and so a unique point of the maximum of the function ϑ 7→ Ln(ϑ) resticted

to K(ϑ̂, εm) since this function is strictly concave (see [9]). By Lemma 4.1

(ii) ω 7→ ϑ̂nm(ω) is a F ∩ Ωnm-measurable random variable. By the same
lemma, part (i), Ωnm ∈ F . Moreover, if ω ∈ Ωnm ∩ Ωnm′ for some m,m′ ∈ N

such that, say, m < m′, then ϑ̂nm, ϑ̂nm′ ∈ K(ϑ̂, εm) and ϑ̂nm = ϑ̂nm′ by the

uniqueness. Hence, the function ω 7→ ϑ̂n(ω) defined by

ϑ̂n(ω) :=

{
ϑ̂nm(ω) if (∃m ∈ N) ω ∈ Ωnm

ϑ̂(ω) if (∀m ∈ N) ω /∈ Ωnm,

is a Θ-valued random variable. From the discussion given above it follows
that for any n ∈ N and η > 0,

Ωnm ⊆ {DLn(ϑ̂n) = 0}, m ∈ N and

Ωnm ⊆ {|ϑ̂n − ϑ̂| < εm} ⊆ {|ϑ̂n − ϑ̂| < η}, m ≥ m0,
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where m0 ∈ N is such that η ≥ εm0 . If

(4.2) lim
m

lim
n

P(Ωc
nm) = 0

holds, then (i) and (ii) from the theorem follow. Moreover, let (ϑ̃n;n ∈ N) be
any other sequence of Θ-valued random variables. By the same uniqueness
argument it follows that

Ωnm ∩ {|ϑ̃n − ϑ̂| < εm} ∩ {DLn(ϑ̃n) = 0} ⊆ {ϑ̃n = ϑ̂n}
⇒ P{ϑ̃n 6= ϑ̂n} ≤ P(Ωc

nm) + P{|ϑ̃n − ϑ̂| ≥ εm}+ P{DLn(ϑ̃n) 6= 0}.
If ϑ̃n, n ∈ N, satisfy (i) and (ii) from the theorem, and if (4.2) holds, then

limn P{ϑ̃n = ϑ̂n} = 1. Hence to prove the statements (i-iii) from the theorem
it is sufficient to prove (4.2).

(A1-2) and the continuity of the quadratic form ξ 7→ 〈D2L(ϑ̂)ξ|ξ〉 imply

that ω 7→ q(ω) := −max|ξ|=1〈D2L(ω, ϑ̂(ω))ξ|ξ〉 is a positive random variable.

By definition, for all x ∈ Rd,

(4.3) 〈D2L(ϑ̂)x|x〉 ≤ −q|x|2.
For ω ∈ Ω and x ∈ Rd, let φ ≡ φω,x : [0, 1]→ R be the function defined by

φ(t) := 〈DLn(ϑ̂+ tx)|x〉.
(A1) implies that the mean value theorem could be applied on φ. Hence, there
exists a number λ ≡ λ(ω, x) ∈ 〈0, 1〉 such that

φ(1)− φ(0) = φ′(λ)

⇒ 〈DLn(ϑ̂+ x)|x〉 − 〈DLn(ϑ̂)|x〉 = 〈D2Ln(ϑ̄(x))x|x〉,
⇒ 〈DLn(ϑ̂+ x)|x〉 = 〈D2L(ϑ̂)x|x〉 + 〈DLn(ϑ̂)|x〉+

+〈(D2L(ϑ̄(x)) −D2L(ϑ̂))x|x〉+
+〈(D2Ln(ϑ̄(x)) −D2L(ϑ̄(x)))x|x〉.

(4.4)

where ϑ̄(x) = ϑ̂+ λx.
Let Cnm be the event defined by the following inequalities:

sup
ϑ∈Km

|DLn(ϑ)−DL(ϑ)| <
εm

2
q(4.5)

sup
ϑ∈Km+1

|D2Ln(ϑ) −D2L(ϑ)| <
1

6
q(4.6)

ϑ̂ ∈ Km(4.7)

δ(1)(ϑ̂,
1

6
q) ≥ εm(4.8)

where δ(1) is the random function from Lemma 4.2. Let x ∈ Rd be such that
|x| ≤ εm and let ϑ̄(x) be from (4.4).
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On the event Cnm, ϑ̄(x) ∈ Km+1. Moreover, (4.5) and (4.7) imply

(4.9) |DLn(ϑ̂)| < εm

2
q.

Since |ϑ̄(x)− ϑ̂| = |λx| ≤ |x| ≤ εm, (4.8) implies

(4.10) sup
|x|≤εm

|D2L(ϑ̄(x)) −D2L(ϑ̂)| ≤ 1

6
q

by the definition of the random function δ(1), and (4.6) implies

(4.11) sup
|x|≤εm

|D2Ln(ϑ̄(x)) −D2L(ϑ̄(x))| ≤ 1

6
q.

For all x ∈ Rd such that |x| = εm, (4.9-4.11), (4.4) and (4.3) imply

(4.12) 〈x|DLn(ϑ̂+ x)〉 < −ε
2
m

6
q < 0

on Cnm. Moreover, (4.6) and (4.8) imply

|D2Ln(ϑ̂+ x)−D2L(ϑ̂)| < 1

3
q,

and this and (4.3) imply that D2Ln(ϑ̂ + x) < 0 for all x ∈ Rd such that
|x| ≤ εm. Hence Cnm ⊆ Ωnm and

P(Ωc
nm) ≤ P{supϑ∈Km

|DLn(ϑ)−DL(ϑ)| ≥ εm

4 q}+
+ P{supϑ∈Km+1

|D2Ln(ϑ) −D2L(ϑ)| ≥ 1
6q}+

+ P{ϑ̂ ∈ Kc
m}+ P{δ(1)(ϑ̂, 1

6q) < εm}.

which implies (4.2), since ϑ̂ ∈ Θ, δ(1)(ϑ̂, 1
6q) > 0 and (A3) holds.

Let us prove the statement (iv). Let n,m ∈ N, A > 0 and K > 0 be
arbitrary numbers, and let δ(2) be the random function from Lemma 4.2. On
the event

B = { |(D2L(ϑ̂))−1| ≤ K, δ(2)(ϑ̂, 1
2K ) ≥ εm, DLn(ϑ̂n) = 0,

ϑ̂ ∈ Km, |ϑ̂n − ϑ̂| ≤ εm, supϑ∈Km+1
|DLn(ϑ)−DL(ϑ)| ≤ 1

2KAγn },

ϑ̂n ∈ Km+1 and

|ϑ̂n − ϑ̂| ≤ |(D2L(ϑ̂))−1| · |D2L(ϑ̂)(ϑ̂n − ϑ̂)| ≤
≤ |(D2L(ϑ̂))−1| · |DL(ϑ̂n)−DL(ϑ̂)−D2L(ϑ̂)(ϑ̂n − ϑ̂)|+

+|(D2L(ϑ̂))−1| · |DLn(ϑ̂n)−DL(ϑ̂n)| ≤
≤ K 1

2K |ϑ̂n − ϑ̂|+K 1
2K γnA ≤

≤ 1
2 |ϑ̂n − ϑ̂|+ 1

2γnA

⇒ |ϑ̂n − ϑ̂| ≤ γnA.
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Hence, B ⊆ {γ−1
n |ϑ̂n − ϑ̂| ≤ A}. This implies

P{γ−1
n |ϑ̂n − ϑ̂| > A} ≤ P{|(D2L(ϑ̂))−1| > K}+

+ P{δ(2)(ϑ̂, 1
2K ) < εm}+ P{ϑ̂ ∈ Kc

m}+
+ P{|ϑ̂n − ϑ̂| > εm}+ P{DLn(ϑ̂n) 6= 0}+
+ P{supϑ∈Km+1

|DLn(ϑ)−DL(ϑ)| > 1
2K γnA}.

Since (A3), (i) and (ii) hold,

limA→+∞ limn P{γ−1
n |ϑ̂n − ϑ̂| > A} ≤

≤ P{|(D2L(ϑ̂))−1| > K}+ P{δ(2)(ϑ̂, 1
2K ) < εm}+ P{ϑ̂ ∈ Kc

m}.

Letting first m→ +∞ and then K → +∞,

lim
A→+∞

lim
n

Pθ0{γ−1
n |ϑ̂n − ϑ̂| > A} = 0

which proves (iv).
Finally, let us prove the last statement of the theorem about the existence

of a Fn-measurable version of the estimators. Assume that (A4) and (A5)
hold. Let Km, εm, m ∈ N, be as above. For n,m ∈ N, the event

Ω̃nm :=
⋃

ϑ∈Km∩Qd

⋃

η∈〈0,εm〉∩Q

({ sup
|x|=η

〈DLn(ϑ+ x)|x〉 < 0} ∪

∪{ sup
|x|≤εm

sup
|ξ|=1

〈D2Ln(ϑ+ x)ξ|ξ〉 < 0} ∪

∪{ inf
|x|≤η

Ln(ϑ+ x) > sup
|x|≥εm

Ln(ϑ+ x)})

is in Fn. By the similar arguments to those used for ϑ̂n, there exists a unique

point ϑ̂′nm ∈ Θ of global maximum of the function ϑ 7→ Ln(ϑ), Ln : Θ → R,

on the event Ω̃nm. Hence ω 7→ ϑ̂′nm(ω) is a Fn-measurable random variable

on Ω̃nm by Lemma 4.1 (ii), and ϑ̂′n : Ω→ Θ defined by

ϑ̂′n(ω) :=

{
ϑ̂′nm(ω) if (∃m ∈ N) ω ∈ Ω̃nm

ϑ∗ if (∀m ∈ N) ω /∈ Ω̃nm

is Fn-measurable random variable. Here, ϑ∗ is an arbitrary fixed point in Θ.
Since (A4) holds, Lemma 4.4 could be applied. Let Q, s(εm ∧ Q) and

∆(εm ∧ Q) be random variables from that lemma. Obviously, ϑ̂′n = ϑ̂n on

Ωnm ∩ Ω̃nm ∩ {inf |x|≤s(εm∧Q) Ln(ϑ̂ + x) > sup|x|≥εm∧Q Ln(ϑ̂ + x)} for any

n,m ∈ N. Therefore, to prove that ϑ̂′n, n ∈ N, satisfies (i-iv) it is sufficient to
prove that
(4.13)

lim
m

lim
n

P(Ω̃c
nm) = lim

m
lim
n

P{ inf
|x|≤s(εm∧Q)

Ln(ϑ̂+x) ≤ sup
|x|≥εm∧Q

Ln(ϑ̂+x)} = 0.
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Let η > 0 be a rational number, and let C ′
nmη be the event defined by (4.5)

with εm being replaced with η, (4.6-4.8) and

s(εm ∧Q) ≥ η(4.14)

Q ≥ εm(4.15)

sup
ϑ∈Θ
|Ln(ϑ)− L(ϑ)| ≤ ∆(εm ∧Q)

4
.(4.16)

By using the same arguments as in the proof of (4.12) we conclude that

sup
|x|=η

〈x|DLn(ϑ̂+ x)〉 < −η
2

6
q < 0

on the event C ′
nmη . Moreover, since (4.3), (4.6) and (4.8) hold,

sup
|x|≤εm

sup
|ξ|=1

〈D2Ln(ϑ̂+ x)ξ|ξ〉 < 0

on C ′
nmη too. Finally, let x, y ∈ Rd be such that |x| ≤ η, |y| ≥ εm and ϑ̂+ x,

ϑ̂ + y ∈ Θ. Since 0 < η ≤ s(εm ∧ Q) = s(εm) < εm ≤ Q by (4.14-4.15) and
Lemma 4.4 (ii),

Ln(ϑ̂+ x) = Ln(ϑ̂+ x)− L(ϑ̂+ x) + +L(ϑ̂+ x)− L(ϑ̂+ y)+

+L(ϑ̂+ y)− Ln(ϑ̂+ y) + Ln(ϑ̂+ y)

(4.16)

≥ −∆(εn)

4
+ inf

|x|≤η
L(ϑ̂+ x)− sup

|y|≥εm

L(ϑ̂+ y)

− ∆(εm)

4
+ Ln(ϑ̂+ y)

≥ ∆(εm)

2
+ Ln(ϑ̂+ y)

which implies

inf
|x|≤η

Ln(ϑ̂+ x) ≥ ∆(εm)

2
+ sup

|x|≥εm

Ln(ϑ̂+ x)

on C ′
nmη . In particular,

inf
|x|≤s(εm∧Q)

Ln(ϑ̂+ x) ≥ ∆(εm ∧Q)

2
+ sup

|x|≥εm∧Q

Ln(ϑ̂+ x)

holds on C ′
nmη for η = s(εm ∧Q). Since the functions ϑ 7→ sup|x|=η〈DLn(ϑ+

x)|x〉, sup|x|≤εm
sup|ξ|=1〈D2Ln(ϑ+x)ξ|ξ〉, inf |x|≤η Ln(ϑ+x)−sup|x|≥εm

Ln(ϑ+

x) are continuous at ϑ = ϑ̂, C ′
nmη ⊆ Ω̃nm. Because Q > 0, s(εm ∧ Q) > 0

and ∆(εm ∧ Q) > 0 by Lemma 4.4, and δ(1)(ϑ̂, 1
6q) > 0 by Lemma 4.2, and
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because (A3) and (A5) hold,

lim
m

lim
η→0

lim
n

P(C
′c
nmη) = 0 and

lim
m

lim
n

P{ inf
|x|≤s(εm∧Q)

Ln(ϑ̂+ x) ≤ sup
|x|≥εm∧Q

Ln = (ϑ̂+ x)} = 0

which implies (4.13).

Proof of the corollary. Let n ∈ N. Since ϑ̃n is a unique point
of global maximum of Fn-measurable function Ln, ϑ̃n is an Fn-measurable
random variable by Lemma 4.1 (ii). Moreover, on the events Ωnm, m ∈ N,

ϑ̃n coincides with the estimator ϑ̂n defined in the first part of the proof of
Theorem 3.1 since ϑ̃n is a unique point of local maximum too. From this,
(i-iv) follow just as in the proof of the theorem.

Remark 4.5. Note that the same assertion as in the corollary holds under
the following weaker condition: (A1-3) hold and for any n ∈ N, there exists a
sequence (Anm;m ∈ N) of events in Fn such that (i) limm limn P(Ac

nm) = 0,

(ii) on Anm, there exists a unique point of global maximum ϑ̃n of Ln(ϑ),

ϑ ∈ Θ, and (iii) on Anm, there exists an open ball Um ⊆ Θ with center in ϑ̂,

such that ϑ̃n ∈ Um and ϑ̃n is a unique stationary point of Ln on Um.
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