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Abstract. The spectral condition of a matrix H is the infimum
of the condition numbers κ(Z) = ‖Z‖‖Z−1‖, taken over all Z such that
Z−1HZ is diagonal. This number controls the sensitivity of the spectrum
of H under perturbations. A matrix is called J-Hermitian if H∗ = JHJ

for some J = J∗ = J−1. When diagonalizing J-Hermitian matrices it
is natural to look at J-unitary Z, that is, those that satisfy Z∗JZ = J .
Our first result is: if there is such J-unitary Z, then the infimum above is
taken on J-unitary Z, that is, the J unitary diagonalization is the most
stable of all. For the special case when J-Hermitian matrix has definite
spectrum, we give various upper bounds for the spectral condition, and
show that all J-unitaries Z which diagonalize such a matrix have the same
condition number. Our estimates are given in the spectral norm and the
Hilbert–Schmidt norm. Our results are, in fact, formulated and proved in a
general Hilbert space (under an appropriate generalization of the notion of
’diagonalising’) and they are applicable even to unbounded operators. We

apply our theory to the Klein–Gordon operator thus improving a previously
known bound.

1. Introduction and preliminaries

Let X be a Hilbert space over the real or complex field Φ with the scalar
product (x, y) linear in the second variable.1 All operators in X will be linear,
everywhere defined and bounded, if not specified otherwise. An operator in
X is called non-singular, if it has an everywhere defined and bounded inverse.
If X has a finite dimension n then X will be automatically identified with the
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standard Φn with (x, y) = x∗y and linear operators in X will be identified
with matrices of order n. An operator J in X is called fundamental symmetry
if

J = J∗ = J−1

holds. The operators

P+ = (I + J)/2 , P− = (I − J)/2

are the corresponding fundamental projections. A principal subject of our
considerations will be the so-called J-Hermitian operators, characterized by
the relation

H∗ = JHJ.

This just means that the operator

(1.1) G = JH

is Hermitian. Another important class of operators closely related to the
J-Hermitians are the J-unitary operators2, defined by

U∗JU = J and UJU∗ = J.

Obviously, all J-unitaries form a multiplicative group, which is non-bounded
for J indefinite. With H J-Hermitian and U J-unitary the similarity

H
′

= U−1HU

preserves the J-hermiticity and this is the basis of the use of the J-unitarity in
the spectral theory of J-Hermitian operators ([12, 6]) as well as in numerical
algorithms with such matrices ([18, 19, 20, 13]).

Let κ(H) = ‖H‖ ‖H−1‖ denote the condition number of a non-singular
operator H . If J is indefinite then the condition number of a J-unitary U ,
κ(U) = ‖U‖ ‖U−1‖ can be arbitrarily high, in fact, we have

κ(U) = ‖U‖ ‖JU∗J‖ = ‖U‖2.

Note that for a J-unitaryU the value κ(U) equals 1 if and only if UJ = JU
or, equivalently, U is both unitary and J-unitary. In want of a better term we
shall call such matrices and operators jointly unitary. Similarly, we call a J-
Hermitian commuting with J jointly Hermitian. Such operator is Hermitian
in the ordinary sense.

Suppose now that a matrix Z diagonalizes a J-HermitianH , that is, H
′

=
Z−1HZ is diagonal. In Numerical Linear Algebra this matrix is commonly
called ’the matrix of eigenvectors’ for H . The notion of ’diagonalization’ can
be given a natural meaning in an arbitrary, even infinite dimensional Hilbert
space: we just ask that Z−1HZ is Hermitian, and this is the way we state
and prove our theorems below. Indeed, once we have obtained a Hermitian
matrix Z−1HZ, it can further be diagonalized by a unitary similarity which

2For Φ = R the terms J-symmetric, J-orthogonal, respectively, are more common.
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does not change the condition number. From the numerical point of view we
are interested in the spectral condition of a J-Hermitian H , defined by

(1.2) inf κ(Z),

where the infimum is taken over all non-singular matrices diagonalizing H .
This number is known to control the sensitivity of the spectrum of H under
perturbations. Our article gives information on this quantity. Our results, as
well as the organization of the paper, can be summarized as follows:

• In Section 2 we first consider an important class of J-Hermitian oper-
ators H , namely those with “definite spectrum”. Such operators are
called strongly stable by Krein ([8]). We show that all J-unitary U
diagonalizing such an H have the same condition.

• In Section 3 we compare J-unitaries which diagonalize a J-Hermitian
H with other non-singulars that do the same. The answer is: J-
unitaries are always the best. This remains so even if we drop the
condition of definite spectrum and consider all similarities reducing
H to a given block-diagonal form. Thus, in addition to preserving
J-hermiticity, the J-unitary similarity is also the most stable one.

• In Section 4 we give a bound for κ(U) in the important special case
where G = JH is itself positive definite. The bound reads

κ(U) ≤ min
√
κ(D∗GD),

where the minimum is taken over all non-singular D which commute
with J . This result has applications in the perturbation and error
analysis in the standard Hermitian eigenvalue problem ([2, 18, 22, 13])
and it confirms a conjecture, obtained by numerical evidence, acquired
in [13]. This bound is attainable.

• In Section 5 we consider another, somewhat larger subclass with defi-
nite spectrum, characterized by

inf
‖x‖=1

(|(x,Gx)| + |(x, Jx)|) > 0,

(G from (1.1)) which is well-known to be equivalent to the existence
of a real µ such that J(H − µI) is positive definite. Such operators
will be called J-definite. In addition, H , or at least some part of it, is
supposed to be of trace class. We obtain an estimate for the Hilbert-
Schmidt distance of a diagonalizing U from a point from the (standard)
unit sphere.

• In Section 6 we apply our theory to the operators of the Klein-Gordon
type studied in [15], [16], [17] and improve a bound, obtained in [16].
The unboundedness of the operator involved is conveniently overcome
by a simple cut-off argument.
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A standard representation of the fundamental symmetry is given by

(1.3) J =

(
I 0
0 −I

)
.

Here the diagonal blocks need not have the same dimension and one of them
may be void. Other common forms of J are

(
0 I
I 0

)
or

(
0 iI

−iI 0

)
,

where the respective identities have necessarily the same size. For the block
form (1.3) a jointly unitary looks like

(
U1 0
0 U2

)
,

where U1 and U2 are unitary. Similarly, a jointly Hermitian looks like
(
H1 0
0 H2

)
,

where H1 and H2 are Hermitian. Of course, a jointly Hermitian H can be
diagonalized by a jointly unitary U . There is no loss of generality in repre-
senting a general J in the form (1.3) and we will often use it in our proofs.
On the other hand, in applications - be it for finite matrices or differential
operators - other forms of J may be more convenient.

2. Operators with definite spectrum

A J-Hermitian operator H is said to have a definite spectrum if its spec-
trum σ(H) can be divided into two disjoint parts σ+ and σ− with finite
distance such that the corresponding Dunford spectral projections Q+ and
Q− satisfy ±(x, JQ±x) ≥ 0. Krein ([8]) calls such operators strongly stable
because the reality of their spectrum and their diagonalizability survive small
J-Hermitian perturbations. Another characterization of these operators is the
existence of a real polynomial p such that Jp(H) is positive definite ([9], [10],
[11]). Obviously, J-definite operators have definite spectrum and in this case
we have

σ− < σ+.

Let H have definite spectrum and set

(2.1) K = Q+ −Q−.

Then K = f(H) where

(2.2) f(λ) =

{
+1, around σ+

−1, around σ−

We will call f the natural sign function of H . It is immediately seen that K
is J-Hermitian and that JK is positive definite.
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Theorem 2.1. Let H be J-Hermitian with definite spectrum. Then there
exists a unique U , which is simultaneously J-unitary and Hermitian positive
definite, such that

(2.3) H0 = U−1HU

is jointly Hermitian. Further, any J-unitary V for which H1 = V −1 HV is
jointly Hermitian has the form

V = UV0,

where V0 is jointly unitary. Also,

κ(V ) = κ(U) = ‖K‖,
where K is given by (2.1).

Proof. Set

U = (JK)−1/2.

Then it immediately follows

U∗JU = UJU = (JK)−1/2J(JK)−1/2 = (JK)−1/2J(KJ)1/2

= (JK)−1/2(JK)1/2J = J,

that is, U is J-unitary. Thus, H0 is J-Hermitian, which means that

JKH = H∗JK,

(note that H and K commute) or, equivalently

H0 = (JK)1/2H(JK)−1/2 = (JK)−1/2H∗(KJ)1/2 = H∗
0 .

Therefore, H0 is jointly Hermitian.
Let now V be any J-unitary such that

H1 = V −1HV

is jointly Hermitian. Then K1 = V −1KV is jointly Hermitian (note that
K1 = f(H1)). Also,

JK1 = JV −1KV = V ∗V −∗JV −1KV = V ∗JKV

is positive definite. This, together with

(JK1)
−1 = K1J = JK1

implies K1 = J . Thus, V −1KV = J and

U−1V J = U−1KV = U−1KUU−1V = JU−1V,

hence V0 = U−1V is jointly unitary. The equalities

‖V ‖ = ‖U‖ = ‖K‖1/2

are then immediate.
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It remains to prove the uniqueness of U . This follows from a simple
decomposition formula: any J-unitary U in the representation (1.3) can be
decomposed as

(2.4) U = U0Y (W ) = Y (W ′)U0,

where

U0 =

(
U+ 0
0 U−

)

with U+ and U− unitary,

Y (W ) =

( √
I +WW ∗ W
W ∗

√
I +W ∗W

)
,

and

W ′ = U+WU∗
− ,

in particular, Y (W )−1 = Y (−W ). The proof is straightforward and uses just
the block-wise written J-unitarity property (1.3) and the polar decomposition
of U .

Remark 2.2. The theorem above remains valid, if H is merely J-
Hermitian with an “abstract sign” operator K with the properties

(i) JK is Hermitian and positive.
(ii) K2 = I .
(iii) K bicommutes with H .

3. J-unitaries are the best

Now we would like to compare the conditions of all non-singular matrices
Z that diagonalize or block diagonalize a given J-Hermitian matrix H . Here,
too, definite spectrum will be particularly simple to handle. But even in the
general case we show that as far as the condition is concerned, the J-unitaries
are the best choice.

Theorem 3.1. Let H be J-Hermitian with definite spectrum. Let Z be
non-singular such that H1 = Z−1HZ is Hermitian. Then κ(Z) ≥ κ(U),
where U is the J-unitary from (2.3).

Proof. The operators H0 and H1 are selfadjoint and similar. Then, as
it is well known, they are unitarily similar, that is,

H1 = U−1
0 H0U0,

where H0 is from (2.3) and U0 is unitary. Now

H1 = U−1
0 H0U0 = Z−1UH0U

−1Z.
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By setting T = U−1ZU−1
0 we see that T (and also T ∗) commutes with H0

and also with J = f(H0), f from (2.2)3. Using this, the unitarity of U0 and
the J-unitarity of U we obtain

κ(Z)2 = κ(UT )2 = ‖T ∗U∗UT‖ ‖T−1U−1U−∗T−∗‖
= ‖(TT ∗)1/2U∗‖2‖T−1JU∗JJUJT−∗‖
= ‖U(TT ∗)1/2‖2‖(TT ∗)−1/2U∗‖2

≥ ‖U(TT ∗)1/2(TT ∗)−1/2U∗‖2

= ‖UU∗‖2 = κ(U)2.

We could pose the uniqueness question: if κ(Z) = κ(U) for some Z with
Z−1HZ Hermitian and U from (2.3), what can be said about Z? This does
not seem to have a simple answer. Anyhow, such Z need not be J-unitary as
is shown by the following example. Set

H =




cosh 2x − sinh 2x 0
sinh 2x − cosh 2x 0

0 0 −1


 ,

J =




1
−1

−1


 .

By H2 = I it follows that K = H and JH is positive definite. Set

Z =




2 coshx 2 sinhx 0
2 sinhx 2 coshx 0

0 0 3


 ,

U =




coshx sinhx 0
sinhx coshx 0

0 0 1


 .

Then

Z−1HZ = U−1HU = J,

U is J-unitary, and

‖Z‖ = max(3, 2e|x|), ‖Z−1‖ = max(1/3, e|x|/2), κ(U) = ‖U‖2 = e2|x|.

Now, for 2e2|x| > 3 we have

κ(Z) = 2e|x|
1

2
e|x| = κ(U)

and Z is not J-unitary.

3This follows from the fact that H0 is jointly Hermitian with definite spectrum.
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The situation is better if we take the Hilbert-Schmidt norm

‖Z‖HS = Tr(Z∗Z)1/2.

In this case, of course the dimension n of the space X has to be finite. The
corresponding condition κHS(Z) = ‖Z‖HS‖Z−1‖HS satisfies the inequality

κHS(Z) ≥ n,

where the equality holds if and only if Z is proportional to a unitary.

Theorem 3.2. Let H be J-Hermitian with definite spectrum. Let Z be
non-singular such that H1 = Z−1HZ is Hermitian. Then κHS(Z) ≥ κHS(U),
where U is the J-unitary from (2.3). Further, if the equality sign is attained,
then Z is proportional to UV0, where U is from (2.3) and V0 is unitary.

Proof. Taking Z, T and U as in the proof of Theorem 3.1 we obtain4

κHS(Z)2 = ‖U(TT ∗)1/2‖2
HS‖(TT ∗)−1/2U∗‖2

HS .

Let now V be a unitary matrix diagonalizing (TT ∗)1/2,

(3.1) V −1(TT ∗)1/2V = diag(ξ1, . . . , ξn).

Setting pi = [V −1U∗UV ]ii and using the Cauchy-Schwartz inequality we ob-
tain

κHS(Z)2 =

(
∑

i

piξ
2
i

)(
∑

i

pi/ξ
2
i

)
≥
(
∑

i

√
piξ2i

√
pi/ξ2i

)2

= (
∑

i

pi)
2

=
[
Tr(V −1U∗UV )

]2
= [Tr(U∗U)]2 = ‖U‖4

HS = κHS(U)2.

Conversely, κHS(Z) = κHS(U) turns the inequality above into an equality.
This means that the vectors

[
√
piξ2i ] and [

√
pi/ξ2i ]

are proportional, that is, ξi = α for all i. Then (3.1) gives

TT ∗ = α2I,

and

Z = UTU0 = αU
T

α
U0,

where V0 = T
αU0 is unitary.

If we drop the condition of definite spectrum then a J-Hermitian need not
be J-unitarily diagonalizable or even reducible even in the finite dimensional
space. This is shown by the trivial example

H =

(
1 1

−1 −1

)
, J =

(
1 0
0 −1

)
.

4Here, too, we could continue by ≥ ‖UU∗‖2
HS but this expression can be less than

‖U‖4.
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However, if a J-Hermitian H is reducible, that is, if Z−1HZ is, say, block-
diagonal, then we can consider all non-singular Z which do the same reduction
and ask for their conditions. We give now a precise definition of the reducibil-
ity which will be basic for our main theorem. We say that a J-Hermitian H
is reducible, if there exists a J-Hermitian decomposition of the identity

Q1, . . . , Qp

such that all Qi commute with H . Note that Qi may or may not be Dunford
spectral projections. In this case there exists a J-unitary U such that

(3.2) Pi = U−1QiU, i = 1, . . . , p

commute with J (and are therefore jointly Hermitian)5. Obviously, if H is a
finite matrix, then the way from U−1HU to a really block diagonal matrix
goes via another unitary similarity which does not change the condition. This
definition of the reducibility is obviously the most general while still admitting
J-unitary similarities. In the case

H =

(
0 1

−1 0

)
, J =

(
1 0
0 −1

)

there is no J-unitary reducibility, that is, H is not reducible according to our
definition above although H is normal and therefore unitarily diagonalizable.
Our theory gives, of course, no results on such cases.

Theorem 3.3. Let Q1, . . . , Qp be a J-Hermitian decomposition of the
identity and let Z−1QiZ be Hermitian for all i. Then there exists a J-unitary
V such that V −1QiV is Hermitian for all i and

κ(V ) ≤ κ(Z).

Proof. Take U and Pi from (3.2). Then there is a unitary U0 such that
U−1

0 Z−1QiZU0 = Pi for all i. Setting Z1 = ZU0 we have

Z1PiZ
−1
1 = UPiU

−1, i = 1, . . . , p,

which means that T = U−1Z1 commutes with all Pi. We have

κ(Z)2 = κ(Z1)
2 = spr(U∗UTT ∗) spr(J(TT ∗)−1JU∗U).

Until now the proof is quite similar to that of Theorem 3.1; the main difference
is that here T need not commute with J .

Since JJTT ∗ = TT ∗ is positive definite, the operator JTT ∗ has definite
spectrum. By Theorem 2.1 there is a J-unitary V0 such that

G0 = V −1
0 JTT ∗V0

5The proof of this fact for finite matrices is straightforward, a proof in a general Hilbert
space was provided by P. Jonas, Berlin (private communication).
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is jointly Hermitian and that V0 commutes with all Pi. The latter follows
from the fact that JTT ∗ commutes with all Pi. Then

G = G0J = JG0 = V ∗
0 TT

∗V0

is jointly Hermitian and positive definite. Moreover,

J(TT ∗)−1J = J(V −∗
0 GV −1

0 )−1J = JV0G
−1V ∗

0 J = V −∗
0 G−1V −1

0 .

Now

κ(Z)2 = spr(U∗UV −∗
0 GV −1

0 ) spr(V −∗
0 G−1V −1

0 U∗U)

= ‖UV −∗
0 G1/2‖2‖G−1/2V −1

0 U∗‖2

≥ ‖UV −∗
0 V −1

0 U∗‖2 = ‖V ‖4 = κ(V )2,

where V = UV −∗
0 is J-unitary and

V −1QiV = V ∗
0 PiV

−∗
0 , i = 1, . . . , p,

since, as we know, V0 commutes with all Pi.

Theorem 3.4. Theorem 3.1 above remains true, if κ is substituted by
κHS (dimX = n <∞).

The proof just combines the ideas of the proofs of Theorems 3.1 and 3.3
and is omitted.

4. J-positive case

In this section we consider a very special case of definite spectrum namely
that of

H = JG

with G positive definite. The eigenvalue problem forH is obviously equivalent
to the one of the Hermitian matrix S = G1/2JG1/2. It is an amazing and
non-trivial fact that the eigenvalue problem for a given Hermitian matrix S
has, in a sense, a more convenient perturbation and error analysis if handled
through H above with J from (1.3) (see [22, 13]).

Theorem 4.1. Let H be such that G = JH is Hermitian and positive
definite. Then any J-unitary U with U−1HU jointly Hermitian satisfies

(4.1) κ(U) ≤ min
√
κ(D∗GD),

where the minimum is taken over all non-singular D which commute with J .

Proof. We shall prove the bound (4.1) for κ(U) in two stages: we shall
first analyze the case when the bound is an equality, and then prove the bound
itself. Our proof is modeled after the one for finite matrices, given in [14].
The only difference is with two steps, which are more technical in an infinite
dimensional space. Represent J by (1.3); then any operator commuting with
J is just block diagonal.

To prove our results we need the following lemma.
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Lemma 4.2. Let

(4.2) G =

(
I Ψ

Ψ∗ I

)

be positive definite, that is, ‖Ψ‖ < 1. Then

κ(G) = minκ(D∗GD),

where the minimum is taken over all non-singular D which commute with J .

This lemma was proved in [4] (see also [3]) for finite matrices. Our proof
is modified to accommodate infinite dimensionality.

Proof of Lemma 4.2. We first prove the identity

(4.3) κ(G) =
1 + ‖Ψ‖
1 − ‖Ψ‖ = spr(JG−1JG) = ‖JG−1JG‖

Indeed, writing G = I +G0 we obviously have

JG0J = −G0 , JGJ = I −G0,

so σ(G) lies symmetrically with respect to 1 with

0 < minσ(G) = 1 − ‖Ψ‖ < maxσ(G) = 1 + ‖Ψ‖ < 2.

Thus,

κ(G) =
1 + ‖Ψ‖
1 − ‖Ψ‖ .

Set

∆ = ∆(Ψ) =

(
I − ΨΨ∗ 0

0 I − Ψ∗Ψ

)
.

The following properties are immediately seen

• ∆ is Hermitian and non-singular;
• ∆ commutes with G and J ;
• G−1 is given by

G−1 = ∆−1JGJ = JGJ∆−1.

Thus,

JG−1JG = J∆−1JGJ2G = G∆−1G,

hence JG−1JG is Hermitian and positive definite.
As it is known (see e.g. [23]), a point λ belongs to the spectrum of a

Hermitian operator A if and only if there is a sequence of vectors zk not
converging to zero, such that

Azk − λzk → 0.

Such zk is called a singular sequence. So take any singular sequence zk with

(4.4) Gzk − λzk → 0.
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This is equivalent to
JGJJzk − λJzk → 0.

or, by JGJ = I −G0 = 2I −G, to

(4.5) G−1Jzk − Jzk

2 − λ
→ 0.

Using (4.4) and (4.5) for λ = 1 + ‖Ψ‖ we obtain

JG−1JGzk − 1 + ‖Ψ‖
1 − ‖Ψ‖zk → 0,

that is, κ(G) belongs to the spectrum of JG−1JG. Hence

‖JG−1JG‖ = spr(JG−1JG) ≥ κ(G).

Conversely, since J is unitary we have

‖JG−1JG‖ ≤ κ(G)

and (4.3) follows. Now, as in [4], for any non-singular D which commutes
with J we have

κ(G) = spr(JG−1JG) = spr(D−1JG−1JGD) ≤ ‖D−1JG−1JGD‖
= ‖JD−1JG−1D−∗JD∗GD‖ ≤ ‖(D∗GD)−1‖ ‖D∗GD‖
= κ(D∗GD).

The following lemma shows that the bound (4.1) becomes an equality for
matrices of the form (4.2).

Lemma 4.3. Let J and G be given by (1.3) and (4.2), respectively. Let U
be J-unitary such that U∗GU is jointly Hermitian. Then

(4.6) κ(U) =
√
κ(G) =

√
minκ(D∗GD),

where the minimum is taken over all non-singular D which commute with J .

Proof of Lemma 4.3. The second equality in (4.6) follows from Lemma
4.2. We take V in the form

(4.7) V = V (T ) = MW = WM,

with

M =

(
(I − TT ∗)−1/2 0

0 (I − T ∗T )−1/2

)
and W =

(
I T
T ∗ I

)
,

where ‖T‖ < 1.6 The commutativity of the product in (4.7) follows from the
identity

T (I − T ∗T )−1/2 = (I − TT ∗)−1/2T,

which, in turn, follows from a more general identity

Af(BA) = f(AB)A

6Obviously, V (T ) may be identified with Y (W ) from (2.4) with W = T (I +T ∗T )−1/2.
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for any operator function f . This identity is often used in our proofs. The
operator V is obviously J-unitary, Hermitian and positive definite. The same
is obviously the case for V 1/2, its positive definite square root. Also obvious
is the relation

V (T )−1 = V (−T ) = JV (T )J.

Now take

U =
√
V (−Ψ)

with Ψ as in Lemma 4.2. Then U obviously commutes with G and

(4.8) S = U∗GU = UGU = V G =

( √
I − ΨΨ∗ 0

0
√
I − Ψ∗Ψ

)
.

We have to determine the norm of U or, equivalently, that of V . First,

‖V ‖ ≤ ‖M‖‖W‖ = (1 + ‖T‖) · 1√
1 − ‖T‖2

=

√
1 + ‖T‖
1 − ‖T‖ .

Further, V −1M = W−1 so

1

1 − ‖T‖ = ‖W−1‖ ≤ ‖V −1‖‖M‖ = ‖V ‖‖M‖ ≤ ‖V ‖ 1√
1 − ‖T‖2

.

Thus,

‖V ‖ =

√
1 + ‖T‖
1 − ‖T‖ ,

and the statement follows from (4.3).
We now turn back to the proof of Theorem 4.1. For G positive definite

and J as in (1.3) we may write

G =

(
G11 G12

G∗
12 G22

)
.

By taking

D0 =

(
G

−1/2
11 0

0 G
−1/2
22

)
.

we have JD0 = D0J and

Ĝ = D0GD0

is of the form (4.2). Let Û be the J-unitary from Lemma 4.3, that is, Û is
also Hermitian and positive definite and

Ŝ = ÛĜÛ = ĜÛ2

is as in (4.8). Now, according to Theorem 2.1 there is a J-unitary U such
that

U∗GU = ∆
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is jointly Hermitian, that is, block-diagonal. Set

Z = D−1
0 Û Ŝ−1/2.

Obviously, Z∗GZ = I and, thus,

Z = U∆−1/2Q∗,

with Q unitary and

(4.9) Z∗JZ = QJ∆−1Q∗.

By κ(U) = ‖UU∗‖ we have

(4.10) κ(U) = spr(ZQ∆Q∗Z∗).

Inverting (4.9) gives

Z−1JZ−∗ = Q∆JQ∗ = Q∆Q∗QJQ∗,

which, inserted in (4.10), gives

κ(U) = spr(ZZ−1JZ−∗QJQ∗Z∗) = spr(QJQ∗Z∗JZ−∗).

Furthermore,

Z∗JZ−∗ = Ŝ−1/2ÛD−1
0 JD0Û

−1Ŝ1/2 = Û2J.

Here we have used the following facts:

• Û is J-unitary and Hermitian;
• D0 and Ŝ commute with J ;
• Ŝ and Û commute.

The last fact is an immediate consequence of the construction of Ŝ and Û in
Lemma 4.3. Altogether we have

κ(U) = spr(QJQ∗Û2J) ≤ ‖QJQ∗Û2J‖ ≤ ‖Û2‖ = ‖Û‖2 = κ(Û) =

√
κ(Ĝ),

where we have used Lemma 4.3 as well as the fact that both QJQ∗ and J are
unitary.

5. Trace estimates

In the finite dimensional case it is known ([20]) that the transformation
(2.3) is trace reducing in the sense that Tr(JH) − Tr(JH0) ≥ 0, the equality
taking place if and only if H itself is already Hermitian. Moreover, this trace
difference controls the corresponding transformation U . We prove here a
corresponding result under milder conditions on H , namely, that H −H0 or,
better still, only some parts of JH − JH0, be of trace class.

Theorem 5.1. Let H be J-definite, let U and H0 be as in Theorem 2.1
and f be the natural sign function from (2.2). Then

(i) P+(f(H) − J)P+ ≥ 0 , P−(f(H) − J)P− ≤ 0, and the following are
equivalent
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• any of the inequalities above becomes an equality
• H is jointly Hermitian7;

(ii) furthermore, the properties
• U − I is Hilbert-Schmidt,
• any of the four operators P±(H −H0)P±, P±(f(H) − J)P± is

of trace class
are equivalent;

(iii) in the latter case we have

(5.1) ‖U − I‖2
HS ≤ TrP+(H −H0)P+ − TrP−(H −H0)P−

d
,

where d is the distance between σ− and σ+.

Before starting the proof we note that (5.1) simplifies if H−H0 is of trace
class (this is always true for finite matrices); in this case we have

(5.2) ‖U − I‖2
HS ≤ Tr(JH − JH0)

d
.

Proof. We use again the representation (1.3) with

P+ =

(
I 0
0 0

)
, P− =

(
0 0
0 I

)
.

Since U is Hermitian and positive definite, in its representation (2.4) we have
U0 = I and

H = UH0U
−1 = Y (W )H0Y (−W )

with

H0 =

(
Λ+ 0
0 Λ−

)
,

where Λ± is Hermitian with the spectrum σ±. Now,

(5.3) H = Y (W )

(
Λ+ 0
0 Λ−

)
Y (−W ) =

( √
I +WW ∗Λ+

√
I +WW ∗ −WΛ−W

∗

W ∗Λ+

√
I +WW ∗ −

√
I +W ∗WΛ−W

∗

−
√
I +WW ∗Λ+W +WΛ−

√
I +W ∗W√

I +W ∗WΛ−

√
I +W ∗W −W ∗Λ+W

)

Also,

f(H0) = U−1f(H)U = J

7Here and in the following “≤” is the standard sesquilinear form ordering of Hermitian
operators. Note that the involved operators are, in fact, jointly Hermitian.
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and

f(H) = Y (W )JY (−W ) =

(
I + 2WW ∗ ∗

∗ −I − 2W ∗W

)
.

Here the diagonal blocks of f(H) − J are positive and negative, respectively,
and they vanish, if and only if W = 0. This proves (i). Furthermore, these
blocks are of trace class if and only if WW ∗ (and then also W ∗W ) is of trace
class, that is, if W is a Hilbert-Schmidt operator. Moreover, this operator is
positive and it vanishes if and only if H itself is jointly Hermitian. If W is
Hilbert-Schmidt, by writing

√
1 + a = 1 + a(

√
1 + a+ 1)−1 we have

√
I +WW ∗Λ+

√
I +WW ∗ − Λ+ =

WW ∗(
√
I +WW ∗ + I)−1Λ+

√
I +WW ∗ + Λ+WW ∗(

√
I +WW ∗ + I)−1,

which is certainly of trace class, and its trace equals

Tr(Λ+WW ∗(
√
I +WW ∗ + I)−1(

√
I +WW ∗ + I)) = Tr(W ∗Λ+W ).

Altogether

TrP+(H −H0)P+ = Tr(W ∗Λ+W ) − Tr(WΛ−W
∗) ≥

minσ+ Tr(W ∗W ) − maxσ− Tr(WW ∗) = d‖W‖2
HS

(and similarly with P−). The estimate (5.1) now follows from

‖Y (W ) − I‖2
HS ≤ 2‖W‖2

HS,

which is directly verified. The only thing which remains to be proved is that
the trace-class property of P±(H − H0)P± implies the same for WW ∗ (or
W ∗W ). We have

P+(H −H0)P+ =

(
S 0
0 0

)
,

S =
√
I +WW ∗Λ+

√
I +WW ∗ −WΛ−W

∗ − Λ+,

and thus the trace class property of P+(H −H0)P+ is equivalent to the same
for S. Without loss of generality we assume that ±Λ± is positive definite. To
get rid of matrix square roots we use a transformation introduced in [21]. We
set

ν = (I +
√
I +WW ∗)−1W .

Then

W = 2(I − νν∗)−1ν, ‖ν‖ < 1,
√
I +WW ∗ = (I + νν∗)(I − νν∗)−1,

and hence

(5.4) 2νν∗Λ+ + 2Λ+νν
∗ − 4νν∗Λ−νν

∗ = (I + νν∗)S(I + νν∗),

where the right hand side is again of trace class. We need the following
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Lemma 5.2. Let

Z = BA+AB + C

be of trace class, A,B,C Hermitian, A, C positive and B positive definite.
Then A and C are of trace class also.

Proof. The equation

BA+AB = Z − C

with the unknown A has the unique solution

A =

∫ ∞

0

e−Bt(Z − C)e−Btdt ,

where the integral is absolutely convergent in the operator norm due to the
positive definiteness of B. This may be written as

(5.5) A+

∫ ∞

0

e−BtCe−Btdt+

∫ ∞

0

e−BtZ−e
−Btdt =

∫ ∞

0

e−BtZ+e
−Btdt ,

where Z± is the positive and negative part of Z, respectively. Both Z+ and
Z− are again Hermitian, positive and of trace class. Here the right hand
side is positive and of trace class since the function under the integral sign is
obviously continuous and exponentially bounded in the trace norm. Since all
terms on the left hand side of (5.5) are positive, we conclude that all of them
and, in particular, A, must be of trace class. The same property for C is now
obvious.

We apply the above lemma to the formula (5.4) and obtain the trace class
property of νν∗ or, equivalently, of WW ∗. The case with P− is analogous.

This result is applicable to operators with discrete spectrum. In this case
U−1HU has an orthonormal eigenbasis ek and fk = ek + (U − I)ek is an
eigenbasis of H . Now, fk is more than just Riesz basis, it is ’quadratically
close to orthogonal’ in the sense that

∑
k ‖fk − ek‖2 is finite and bounded by

(5.1) (such bases are considered in [5], Ch. VI).

6. Klein-Gordon operators

A Klein-Gordon operator is given formally as

H =

(
ε1/2V ε−1/2 ε

ε ε−1/2V ε1/2

)
,

where V is symmetric and ε is selfadjoint and positive definite (both V and ε
may be unbounded). We assume that D(V ) ⊇ D(ε) and

(6.1) ‖A‖ < 1 for A = V ε−1.
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Typically, the underlying space will be L2(Rn)2, ε2 will be the selfadjoint
realisation of 1 − ∆ and V will be a potential ([17]). The formal expression
above is given a rigorous meaning as a product

H =

(
ε1/2 0
0 ε1/2

)(
A I
I A∗

)(
ε1/2 0
0 ε1/2

)

(this definition is equivalent with the pseudo-Friedrichs construction from
[16]). Here every factor has a bounded inverse and thus

H−1 =

(
ε−1/2 0

0 ε−1/2

)(
−A∗ I
I −A

)
·

(
(I −AA∗)−1 0

0 (I −A∗A)−1

)(
ε−1/2 0

0 ε−1/2

)
.

Setting

(6.2) J =

(
0 I
I 0

)
, G = JH,

the operator G, given formally as

G =

(
ε ε−1/2V ε1/2

ε1/2V ε−1/2 ε

)
,

is obviously selfadjoint and positive definite.8 Ignoring the unboundedness of
the operators involved, according to Theorem 4.1 we would take

D =

(
ε−1/2 0

0 ε−1/2

)
,

thus obtaining

Ĝ = DGD =

(
I A∗

A I

)

with the condition number 1+‖A‖
1−‖A‖ . Thus, the condition number of a J-unitary

U , with U−1HU jointly selfadjoint9 would be bounded as

(6.3) κ(U) ≤
√

1 + ‖A‖
1 − ‖A‖ =

√
1 + ‖V ε−1‖
1 − ‖V ε−1‖ ,

8A formulation of the Klein-Gordon operator using J of the form (1.3) leads to more
complicated expressions ([15]). The underlying Hilbert space topology is not uniquely
defined by the formal Klein-Gordon differential equation and this may lead to different
predictions. Our present definition is based on the so-called number norm, which is natural
for quantum mechanical interpretation ([17]).

9In accordance with our current terminology jointly selfadjoint means selfadjoint and
commuting with J .



ON SPECTRAL CONDITION OF J-HERMITIAN OPERATORS 21

thus improving the estimate

κ(U) ≤ 1

1 − ‖V ε−1‖
from [16]. The improvement is particularly strong when the denominators
above approach zero.10

The plausibility of our argument comes from the fact that the key estimate
(4.1) allows D’s with arbitrary norms. This suggests a rigorous proof via a
regularization step. For any d > 0 we approximate H by

Hd =

(
ε
1/2
d Vdε

−1/2
d εd

εd ε
−1/2
d V ∗

d ε
1/2
d

)

=

(
ε
1/2
d 0

0 ε
1/2
d

)(
A I
I A∗

)(
ε
1/2
d 0

0 ε
1/2
d

)
,

εd = fd(ε) , fd(t) =

{
t, t ≤ d,
d, t > d,

Vd = V ε−1εd.

Now everything is bounded, our theory applies and the estimates above be-
come rigorous (the fact that Vd is not symmetric makes no difficulty). The
following facts are obvious

• Hd, H
−1
d , Gd = JHd, G

−1
d are bounded and Gd is Hermitian and

positive definite.
• Vdε

−1
d = V ε−1.

• H−1
d → H−1 , d→ ∞.

• The J-unitary Ud making Hd jointly Hermitian is bounded as

κ(Ud) = ‖ signHd‖ ≤
√

1 + ‖A‖
1 − ‖A‖ .

Here the symbol ’→’ means the strong convergence of bounded operators. By
the uniform bound above any spectral projection Ed(∆) (∆ a Borel set) of
H−1

d is bounded as

‖Ed(∆)‖ ≤
√

1 + ‖A‖
1 − ‖A‖ .

Now we are in a position to use classical result of Bade ([1], Th. 2.6), ap-
plied to H−1

d (H−1
d and Hd have the same spectral projections). Accordingly,

H−1 (and therefore H) is scalar type operator and

signHd → signH−1 = signH ,

10The fact that the condition number may grow as the reciprocal of the square root
of the distance to the ’non-definite’ operators was observed in [20].
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due to the fact that zero is not an eigenvalue of H−1. Furthermore,
J signH−1

d = J signHd is positive definite and this remains valid for the
strong limit J signH−1 (note that both J and signH−1 are non-singular).
So, according to Theorem 2.1 and Remark 2.2

U = (J signH−1)1/2

is J-unitary and U−1H−1U is jointly Hermitian, and therefore the inverse
U−1HU is jointly selfadjoint. We summarize:

Theorem 6.1. Let H be a Klein-Gordon operator satisfying (6.1). Then
there exists a J-unitary U , satisfying (6.3) and such that U−1HU is jointly
selfadjoint (J is defined by (6.2)).

Note that the theorem above also gives the existence of U and the proof
is independent of the one in [16].

Remark 6.2. The estimate (6.3) can be strengthened by replacing the
expression ‖V ε−1‖ by

β = inf
α real

‖(V − αI)ε−1‖ .

This is immediately seen from the formal expression

H = αI +

(
ε1/2(V − αI)ε−1/2 ε

ε ε−1/2(V − αI)ε1/2

)
.

Thus, in our theorem above the condition in (6.1) can be replaced by the
weaker one

β < 1 .

The same approximation works with the trace results from Section 5 under
the assumption that ε−1V ε−1 be of trace class. We omit the details.
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