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Vol. 35(55)(2000), 25 – 44

THE MINIMAL INDEX OF A SELF-ADJOINT PENCIL

Paul Binding and Branko Najman

University of Calgary, Canada, University of Zagreb, Croatia

Dedicated to my coauthor and great friend

Abstract. Let A and B be selfadjoint operators on a Hilbert space
H. We define the minimal index ν(A, B) = min{#negative eigenvalues of
A−λB}, we connect it with various ideas in the literature and we connect
it with formulae used in some recent variational principles.

1. Introduction

Let A and B be self adjoint operators on a Hilbert space H. For simplicity
we assume at present that A is bounded below with compact resolvent and
B is bounded, although more general situations will be treated (see Sections
3 and 4 for comments on this, and on application to matrix and boundary
value problems). It follows that the spectrum σ(A− λB) is discrete, so −µ ∈
σ(A− λB) if and only if

(1.1) (A− λB + µI)x = 0

for some nonzero x ∈ D(A) ∩D(B).
We say that λ is an eigenvalue of (A,B) if (1.1) holds with µ = 0, i.e.,

(1.2) Ax = λBx

for some 0 6= x ∈ D(A) ∩D(B).
Note that

σ(A,B) = {λ : 0 ∈ σ(A− λB)}
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can be the whole complex plane (e.g., if N(A) ∩ N(B) 6= 0) even though
σ(A − λB) is discrete. For this introduction, then, we assume that σ(A,B)
is nonempty and discrete, and hence consists of eigenvalues of (A,B) accu-
mulating at most at ±∞. Explicit assumptions on A and B will be given in
Sections 2 and 3, including the possibility of essential spectrum.

We define the (negative) index ν(A) of A to be the number of neg-
ative eigenvalues of A, counted by multiplicity. For λ ∈ R we write
ν(λ) = ν(A − λB) : this is evidently the number of positive values of µ
(counted by multiplicity) satisfying (1.1). For any eigenvalue λ of (A,B), we
call ν(λ) the index of λ. In the case of a Sturm-Liouville (SL) equation (1.2)
of the form lx := −(px′)′ + qx = λrx with separated end conditions on [a, b],
this is the “oscillation count” of the eigenfunction x, i.e., the number of zeros
of x in ]a, b[. In this case, H = L2(a, b), A is a differential operator generated
by l and the boundary conditions, and B is the operator of multiplication by
r.

We are mainly interested in the minimal index of (A,B), which we
define as

(1.3) ν(A,B) = min{ν(λ) : λ ∈ R}.
This quantity has appeared implicitly and explicitly in various contexts but
does not seem to have been studied in its own right. In 1.1 and 1.2 we shall
connect ν(A,B) with (a) the minimal “oscillation count” in the case when
(1.2) is a SL equation, and (b) bounds on the numbers and multiplicities
of eigenvalues of (A,B) which are, say, nonreal or have specified index. In
Sections 2 and 3 we equate ν(A,B) with an explicit formula involving cer-
tain spectral information (independent of minimisation) of the pencil, and we
discuss what happens to it under perturbation. Section 2 contains the finite
dimensional case, while Section 3 covers certain infinite dimensional cases with
both discrete and continuous spectra. Section 4 contains applications to the
“index shift” in certain variational principles for the eigenvalues of (A,B), and
to finiteness of certain variational quantities associated with the pair (A,B),
thus leading to numerical estimation of ν(A,B).

1.1. Minimal oscillation count. To our knowledge, ν(A,B) first appeared in
the published literature implicitly, in Richardson’s analysis [28] of two pa-
rameter SL equations. Such equations led Richardson to study problems of
the form (1.2) with neither A nor B definite, and for which the “oscillation
theorem” (that there was an eigenfunction x for any given oscillation count)
could fail. Richardson defined a minimal oscillation count (over all possible
eigenfunctions) for (1.2), but it was the subsequent work of Haupt [17] on this
subject which gave an explicit definition of ν(A,B), via the embedding (1.1).

We remark that the minimal oscillation count is actually the minimal
eigenvalue index, i.e., min{ν(λ) : λ ∈ σ(A,B)}, and this appears to depend
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on solving (1.2). Fortunately, equality with ν(A,B) follows easily, e.g., from
continuity of the (variational) eigencurves i.e., the set of (λ, µ) satisfying
(1.1) and such that ν(A− λB + µI) is fixed, cf. [5]. We remark that much of
Richardson’s reasoning is also based explicitly on eigencurve arguments.

Minimal oscillation counts have been discussed in more modern settings
in [3, 6] in connection with the embedding (1.1).

1.2. Spectral bounds. In the “left definite” case, i.e., when A > 0, the spectral
theory of (1.2) is equivalent to that of the compact symmetric operator A−1B
on the Hilbert space HA defined as the completion of D(A) under the inner
product given by (x, y)A = (x,Ay). It can be shown (cf. Section 3) that HA

coincides with the form domain D(a) = D(A1/2). If A is not definite but
is (boundedly) invertible then HA becomes a Pontryagin space of (negative)
index ν(A). This provides bounds for various quantities such as the number
of nonreal (conjugate) eigenvalue pairs, the total length of all Jordan chains,
etc., cf. [12]. In the SL context, such ideas are developed in [15, 24]. In
Section 3 we shall develop the Pontryagin space setting for a fairly general
class of pairs (A,B).

Since the complexity of such a theory depends on the index of HA, it is
of importance to reduce that index as far as possible. This can be achieved
by translating the eigenparameter λ, by λ0 say, thus replacing A by A−λ0B.
The “optimal” λ0 leads to a Pontryagin space of index ν(A,B), at least if
A−λ0B is invertible. Bounds (as above) were already given for SL problems
in [17], and more recently in [24]; cf. [20] for a pde context. A variety of
such bounds, involving the number ni of eigenvalues of (A,B) of index i, and
related quantities, can be found in [5]. In this work, ν(A,B) is interpreted as
the number of eigencurves lying above the λ-axis.

2. The finite dimensional case

Throughout we assume that the N ×N matrices A and B form a “non-
singular” pair, i.e., that some linear combination of A and B is nonsingular.
Then the canonical form (see [26]) shows that, for some nonsingular matrix
T,

(2.1) T ∗AT = diag(A∞, AF ) , T ∗BT = diag(B∞, BF )

where the partitioned blocks are of sizes N∞ and NF respectively. The N∞

zero eigenvalues of the pair (B∞, A∞) correspond to the so-called infinite
eigenvalues of (A,B), i.e., the zero eigenvalues of (B,A). The span of the
corresponding (algebraic) eigenspaces is denoted by X∞, and the dimension
of a maximal subspace of X∞ on which A∞ is negative definite is denoted by
N−

∞. The span of the eigenspaces corresponding to (A,B) is denoted by XF .
Since T merely amounts to a change of coordinates in the quadratic forms of
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A and B, we shall suppress it in what follows. This simplifies the proofs, but
does not affect the results.

Initially we shall also assume that each eigenvalue of (A,B) is semisim-
ple. (Actually it makes no difference whether the nonreal eigenvalues are
semisimple or not). The canonical form (loc. cit.) then gives

(2.2) A∞ = diag(I,−I), B∞ = 0,

(2.3) AF = diag(D+, D−, An) , BF = diag(I,−I, Bn)

where D± are diagonal matrices with diagonal entries λ±j , 1 ≤ j ≤ N±
F . These

are the finite real eigenvalues of (A,B), and since the sign depends on B, we
call λ+

j a B−positive eigenvalue: it admits an eigenvector x+
j such that

(x+
j , Bx

+
j ) > 0. Similarly for the B-negative eigenvalues λ−j . The matrices An

and Bn are 2Nn × 2Nn matrices corresponding to the nonreal eigenvalues of
(A,B). It is well known that the latter occur in conjugate pairs, so Nn is the
number of such pairs.

We now apply the cancellation algorithm of [11] to the finite real eigenval-
ues. We start by “cancelling” c pairs of the form λ+

j < λ−k with no eigenvalues

in between. (This operation is recursive, and stops when there are no more
pairs to cancel: see [11] for details). The remaining real eigenvalues can then
be relabelled in the order

(2.4) ρ−n− ≤ ... ≤ ρ−1 ≤ ρ+
1 ≤ ... ≤ ρ+

n+ .

Note that c+ n+ is the number of B-positive eigenvalues.
The main result of this section expresses ν(A,B) in terms of the above

quantities.

Theorem 2.1.

(2.5) ν(A,B) = Nn + c+N−
∞.

Remark 2.2. It is possible to extend the cancellation to include the
(negative type) infinite eigenvalues, viewed as +∞. Then (2.5) continues to
hold provided we interpret N−

∞ as the number of such eigenvalues that were
not cancelled.

2.1. Proof of Theorem 2.1 in the semisimple case.

Proof. Noting the evident relation ν(A∞ − λB∞) = N−
∞ and the fact

[11, Lemma 2.4] that ν(An − λBn) = Nn for all λ, we shall assume without
loss of generality that Nn = N∞ = 0. For the purposes of this proof, we list
the eigenvalues of (A,B) in ascending order (and counted by multiplicity):

λ1 ≤ λ2 ≤ · · · ≤ λN ,
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and we replace ν(A,B) by d. We proceed by induction on the size N of A and
B to prove both equation (2.5) and the formula λ0 = ρ−1 or (if ρ−1 does not
exist) λ0 = λ1 for the minimiser λ0 of (1.3).

First note that if (λ±, e±) are ±B-positive eigenpairs of (A,B), then

(2.6) (e+, (A− λB)e+) = λ+ − λ and (e−, (A− λB)e−) = λ− λ− .

It follows that

(2.7) ν(λ) jumps by ± 1 as λ increases across λ± .

Hence we can (and will) choose λ0 so that λ0 ∈ [λ1, λN ] .
If N = 1, then we set λ0 = λ1, c = d = 0. For the inductive step (from N,

with c, d, etc. distinguished by carets, to N + 1), we need to consider three
cases:

Case 1: Suppose λN+1 is B-positive. Then c = ĉ and (2.6) shows that

ν(λ) = ν̂(λ) if λ ≤ λN+1. Therefore we can take λ0 = λ̂0(= ρ−1 or λ1) and

d = d̂.
Case 2: Suppose λN+1 is B-negative but is not cancelled by a B-positive

eigenvalue. Then c = ĉ. Also

(2.8) ν(λ) = ν̂(λ) + 1 for λ < λN+1 and ν(λN+1) = ν̂(λN+1).

Further, since neither ρ−1 nor λN+1 are cancelled, the numbers of B-positive
and B-negative eigenvalues in ]ρ−1 , λN+1[ are equal. A similar argument holds

for [λ1, λN+1[ if λ = λ1. Hence by (2.7) it follows that ν(λ̂0) = ν̂(λN+1)
and ν(λ) = d + 1 for λ < λN+1. Thus taking λ0 = λN+1 (=ρ−1 ), we have

ν(λ) = d = d̂.
Case 3: Suppose λN+1 is b-negative and is cancelled by a B-positive eigen-

value, say λ+. Then c = ĉ+ 1 and (2.8) holds. It follows from (2.7) that

ν(λN+1) = ν̂(λN+1) ≥ ν̂(λ+) + 1,

since there are no eigenvalues in (λ+, λN+1). From the definition of ν̂m,

ν̂(λ+) ≥ ν̂(λ̂0) = d̂,

so we conclude that ν(λN+1) ≥ d̂ + 1. It follows from (2.8) that we can take

λ0 = λ̂0 (=ρ−1 or λ1), and then d = d̂+ 1.

2.2. The infinite semisimple case. We now admit, in addition to the situation
of Subsection 2.1, the possibility that any finite eigenvalue can be nonsemisim-
ple. We note, however, that BF of (2.1) remains invertible since σ(AF , BF )
consists entirely of finite eigenvalues.

We need a Lemma which expresses the dependence of d = ν(A,B) on
small perturbations of A.

Lemma 2.3. Let P be a nonnegative definite N ×N matrix and let d(µ)
= ν(A+µP,B). Then, under the above assumptions, there exists µo > 0 such
that d(µ) = ν(A,B), for all µ ∈]0, µo[.
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Proof. As in the proof of Subsection 2.1, we can assume that there
are neither nonreal nor infinite eigenvalues so (A,B) = (AF , BF ). Evidently
d(µ) ≤ ν(A,B) for any µ > 0, so assume

(2.9) d(µn) < ν(A,B)

for some sequence µn ↘ 0. Let λn be a minimiser for ν(A,B) in (1.3) with
A replaced by A + µnP. Then λ−1

n (A + µnP )xn = Bxn for some xn of unit
norm. If λn are unbounded, we pass to a subsequence of xn with limit x,
and we obtain Bx = 0, contradicting invertibility of B(= BF ). Thus λn are
bounded, and we pass to a subsequence of λn with limit λ. Now continuity of
the eigenvalues under perturbation shows that, for large enough n,

d(µn) = ν(A + µnP − λnB) ≥ ν(A− λB) ≥ ν(A,B),

contradicting (2.9).

Remark 2.4. If µ < 0, the result need not hold. For example, if C =[
0 0
0 1

]
, D =

[
0 1
1 0

]
and P = I, then ν(C,D) = 0 but d(µ) = 1 for

small µ < 0.

Remark 2.5. Note by [18, p. 64] that the eigenvalues of (A+ µI,B) are
all semisimple for small enough µ 6= 0. Thus if we choose P = I, and if c is
defined as lim

µ↘0
c(µ), the limit from above of c for (1.1), then (2.5) continues to

hold.

Remark 2.6. The perturbation of A does not have to be by µI in Remark
2.3. According to the canonical form (see [26]), our assumptions imply that
(2.3) is replaced by

AF = diag(A1, · · · , Aq, An), BF = diag(B1, · · · , Bq, Bn)

where Ak, Bk, etc., involve certain (symmetrized) Jordan-like blocks. For
example, if (A1, B1) correspond to eigenvalue λ1, then
(2.10)

A1 = ε




0 · · · 0 λ1

· · · · λ1 1
· · · · 1 0
· · · · · ·
0 λ1 1 · · ·
λ1 1 0 · · 0



, B1 = ε




0 · · · 0 1
· · · 0 1 0
· · · · 0 ·
· 0 · · · ·
0 1 0 · · ·
1 0 · · · 0



,

where ε = ±1. Then the multiple eigenvalue of (Ak, Bk) can be split by any
nonnegative definite matrix µQ (of the right size), provided q11 6= 0. This can
be shown by direct calculation of det(Ak +µQ−λBk) and a Newton diagram
argument.
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2.3. The general case. We now allow nonsemisimple infinite eigenvalues as
well, so (A,B) is an arbitrary nonsingular pair. We reduce this case to those
already considered above, perturbing A this time by a negative semidefinite
matrix acting on X∞.

Lemma 2.7. Let P = diag(P∞, 0) where P∞ is a positive semidefinite
N∞ ×N∞ matrix. If d(µ) = ν(A+ µP,B), then there exists µo < 0 such that
for µ ∈]µo, 0[,

(2.11) d(µ) = ν(A,B).

Proof. Since (A∞, B∞) has no finite eigenvalues, det(A∞ − λB∞) 6= 0,
so ν(A∞ − λB∞) is independent of λ, and therefore

(2.12) ν(A,B) = ν(A∞ − λ0B∞) + ν(AF − λ0BF ),

where λ0 is the minimiser in (1.3). Further

(2.13) d(µ) ≤ ν(A+ µP − λ0B) = ν(A∞ + µP∞ − λ0B∞) + ν(AF − λ0BF ).

Since ν(A∞ −λ0B∞) is invertible, we have ν(A∞ +µP∞ −λ0B∞) = ν(A∞ −
λ0B∞) for sufficiently small µ, so it follows from (2.12) and (2.13) that

(2.14) d(µ) ≤ ν(A,B).

The reverse inequality follows immediately from µ < 0.

Remark 2.8. Lemma 2.7 can fail if the sign of µ is changed. For example,
with C, D and P from Remark 2.2, ν(D,C) = 1 but d(µ) = 0 for small µ > 0.

Remark 2.9. As in Remark 2.3, we may split the infinite eigenvalues with
P∞ = I∞, thus producing a problem of the type considered in 2.2. We omit
the details, since a more general case will be treated by a different method in
Section 3.

Together with Remark 2.3, this completes the proof of Theorem 2.1 in
the general case.

Remark 2.10. The perturbation µI∞ of Remark 2.6 may be generalised
as in Remark 2.4. Instead of (2.3) the canonical form now gives

A∞ = diag(A−r, . . . , A−1), B∞ = diag(B−r, . . . , B−1)

where A−j and B−j are again symmetrized Jordan-like blocks. Then the in-
finite eigenvalue of (A−j , B−j) can be split by a nonpositive perturbation µP
where p11 6= 0.

Remark 2.11. It is possible to combine the above perturbations (acting
on X∞) with those of 2.2 (but acting on XF ). The details will be left to the
reader.
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3. Quasi-uniformly positive operators

We now consider a pair (A,B) of self adjoint operators on a Hilbert space
H. Since we shall not assume discreteness of the spectrum, we define ν(A) as
the dimension of a maximal subspace on which A is negative definite, with
ν(λ) = ν(A− λB), etc., defined consequently as in Section 1.

We need three assumptions, the first being on A alone. Recall that a self
adjoint operator U in a Hilbert space is called uniformly positive (up) if
inf σ(U) > 0, so U is positive definite with bounded inverse.

Assumption A1. A is quasi-uniformly positive (qup), i.e., inf σe(A) > 0.
Here σe denotes essential spectrum. Thus A is qup means that

(3.1) U = A+ C

is up for some (compact symmetric) operator C of finite rank. Indeed, if A
has positive (resp. nonpositive) spectral subspace P (resp. N ), then we may
take U = A |P , C = I |N . See [4], [13] for further properties of qup operators.

Our second assumption ensures that A dominates B in a suitable sense.

Assumption A2. D(a) ⊂ D(B)

Here D(a) = D(U1/2) = D(|A|1/2
) is the domain of the form a which

may be defined by

(3.2)
a(x, y) = (U1/2x, U1/2y) − (Cx, y)

= (Ax, y) if x ∈ D(A).

Similarly the form b corresponding to B may be defined on D(a) by virtue of
A2. Indeed instead of (1.2) we could consider the “weak” eigenvalue problem

(3.3) a(x, z) = λb(x, z)

for 0 6= x, z ∈ D(a) ∩ D(b) under weaker assumptions. We shall however
continue with the operator framework and the (rather strong) relative bound-
edness assumption A2 for simplicity and because it uses constructions based
on the original data (A,B). An approach using extensions (and different as-
sumptions) will be described in 3.4.

Our third assumption extends the previous one of nonsingularity to infi-
nite dimensions.

Assumption A3. (A,B) is nonsingular, i.e., σ(A,B) 6= C.
Note that A3 requires A − λB to be invertible for some λ ∈ C. The

first step in our analysis allows us to choose λ ∈ R, so we can preserve self
adjointness after an eigenvalue shift.

Lemma 3.1. There exists λ ∈ R such that the operator A−λB is bound-
edly invertible and qup.

Proof. It follows from (A2) that D(A) ⊂ D(B) so T (λ) = A− λB is a
holomorphic family of type (A) in the sense of [18, p. 375]. Therefore if 0 ∈
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σ(A), by [18, p.386] either 0 ∈ σ(A−λB) for all λ ∈ C or there exist analytic
functions µj(λ) such that µj(0) = 0, µj 6= 0 for all j. Since the first alternative
contradicts (A3), it follows that 0 ∈ ρ(A−λB) for λ 6= 0, |λ| sufficiently small.
Moreover, if |λ| is sufficiently small, then U−λB is uniformly positive definite,
and so A− λB is qup for such λ.

In what follows we shall assume (without loss of generality, by Lemma
3.1) that A is boundedly invertible and qup. Before proceeding we note the
following consequence of our assumptions.

Lemma 3.2. If xn ∈ D(a) and a(xn) → 0 then Bxn → 0.

Proof. Writing A′ = |A|−1/2sgnA, we note that B is closed in, and A′

is bounded on, H so A2 and the closed graph theorem show that

(3.4) S = BA′ is bounded on H.

Thus if a(xn) → 0 then yn = (|A|1/2sgnA)xn → 0 and so Bxn = Syn → 0.

3.1. Pontryagin space setting. Our aim, roughly, is to split σ(A,B) into “fi-
nite” and “infinite” parts corresponding to XF and X∞ in Section 2. To make
this precise, we shall use the indefinite space Π = D(a) with inner product
given by (x, y)a := a(x, y) of (3.2). By our assumptions, Π is a Pontryagin
space and we define Q = A−1B |Π .

Lemma 3.3. Q is a bounded self adjoint operator on Π.

Proof. Q is obviously symmetric and by (A2) Q is everywhere defined.
The conclusion now follows from [12, Theorem VI.2.8]

For any subspace Σ of Π we denote by ν(Σ) the dimension of a maximal
subspace of Σ on which a is negative definite. In particular, ν(Π) = ν(A) and
ν(Σ) = 0 ⇐⇒ a is nonnegative definite on Σ. By known results (cf. [22]) Q
has a spectral function E, say, with a finite set of real critical points which
satisfy the condition that

c is critical ⇐⇒ E(∆c) has indefinite range,

for any open interval ∆c containing c. Abbreviating ν(E(∆)Π) to ν(∆), we
see that if c ∈ ∆c and if ∆ ⊂ ∆c is sufficiently small then ν(∆) = 0 if c /∈ ∆,
ν(∆) = ν(∆c) > 0 if c ∈ ∆. Let

e− = minσe(Q) , e+ = maxσe(Q).

Note that σe(Q) ⊆ [e−, e+], but the inclusion may be strict.
We denote the set of nonreal eigenvalues of Q by Ωn. It is well known that

the corresponding root subspaces span a finite dimensional subspace, say Πn,
and we write Qn = Q |Πn .
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Definition 3.4. A real number ξ ≥ e+ is a-positive for Q if ξ admits
no a-nonpositive root vector, i.e., if ξ is either an a-positive eigenvalue, or
else not an eigenvalue, of Q.

The following lemma is a key to the connection between Q and the for-
mulae for ν(A,B) in 3.2. By νQ(ξ) we mean the dimension of a maximal
subspace on which ξI − Q is negative definite in Π, i.e., νQ(ξ) = ν(ξa − b).
In parts (c) and (d) below, we choose positive η+ ∈ ρ(Q) such that η+ > e+
and ν(∆) = 0 whenever ∆̄ ⊂ Γ := ]e+, η+[ (i.e., Γ contains only a-positive
points). This is always possible by finiteness of ν(Π) = ν(A).

Lemma 3.5. (a) If ξ < e+ then νQ(ξ) = ∞.

(b) If e+ is the limit of eigenvalues from the right, then νQ(e+) = ∞.

(c) If Ω is a real interval in ρ(Q) then νQ(ξ) is constant for ξ ∈ Ω.

(d) νQ is nonincreasing on ]e+, η+[.

(e) If e+ is a-positive for Q, then νQ is nonincreasing on ] −∞, η+[.

Proof. (a) Suppose there exists a closed interval Ω1 ⊂]ξ, e+[ so that dim
Π1 = ∞ and ν(Π1) = 0, where Π1 is the range of E(Ω1). Then for all nonzero
x ∈ Π1,

(3.5) ((ξI −Q)x, x)a =

∫

Ω1

(ξ − θ)(dE(θ)x, x)a < 0.

Suppose such an interval Ω1 does not exist. It follows that e+ is a limit
from the right of (a−positive) eigenvalues ξj , say. If ej are the corresponding
eigenvectors and x = Σjxjej , then

((ξI −Q)x, x)a = Σj(ξ − ξj)|xj |2(ej , ej)a < 0.

(b) Set ξ = e+ above.
(c) This is a consequence of [14, Lemma 2.4].
(d) Choose θ ∈]e+, ξ[ and write Ω1 =]−∞, θ] and Ω2 =]θ,∞[. Let Πj be the
range of E(Ωj) and write Qj = Q |Πj , j = 1, 2. Then νQ1 is constant near ξ
by (c), and νQ2 is nonincreasing near ξ by (2.6). By (c), νQn is constant over
R, so the result follows from νQ = νQn + νQ1 + νQ2 .
(e) If e+ is a limit of eigenvalues from the right, then an argument as for (3.5)
shows that νQ(e+) = ∞, and the finite dimensional theory (2.6) shows that
νQ is nonincreasing on a right neighbourhood of e+. The result then follows
from (a).

If ]e+, θ] contains no eigenvalues for some θ > e+, we define Qj as in the
proof of (d). Since Q1 has no eigenvalues greater than e+, νQ1(ξ) = 0 for
ξ ≥ e+. Since νQ2 is constant on [e+, θ[ by (c), it follows that νQ is also
constant on this interval, and the result now follows from (c).
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We shall also need a dual result, involving the dimension πQ(ξ) of a
maximal subspace on which ξI − Q is positive definite. The proof is similar
and will be omitted.

Corollary 3.6. πQ is constant on ρ(Q), is infinite for ξ > e− and
even for ξ ≥ e− if e− is a limit from the left of a sequence of eigenvalues.
If e− > η− ∈ ρ(Q) and ]η−, e−[ contains only a-positive points, then π is
nondecreasing on ]η−, e−[. If in addition e− is a−positive then π is also non-
decreasing at e−.

3.2. Formulae for ν(a, b). The next step is to relate the above properties of
Q to the form pencil a− λb. We let (an, bn) be the restriction of (a, b) to Πn,
and with ν(a) defined as for ν(A) we write νn(λ) = ν(an − λbn) and νn =
min {νn(λ) : λ ∈ R} . (Simpler constructions will be given in 3.3 below). We
discuss ν(a, b) in three separate cases.
3.2.1. e− > 0, i.e., Q is qup.
In this case we choose η+ as for Lemma 3.5 and we set Jf =]−∞, η−1

+ [, Je =

[η−1
+ ,∞[. Note that 0 < η−1

+ < e−1
+ , Jf corresponds to a finite set of eigenval-

ues, and Je contains the essential spectrum {λ : λ−1 ∈ σe(Q)}. We use the
notation Ωf = {ξ : ξ−1 ∈ Jf} ∩ σ(Q), Qf = Q |Πf

where Πf is the range of
E(Ωf ) and similarly for Qe. We define corresponding af = a |Πf

, ae etc., and
we write νf = min{νf (λ) : λ ∈ R} with λf as the corresponding minimizer,
and similarly for νe. Finally we write

δ = ν(e+) − νf .

Theorem 3.7. With the above notation λf ∈ Jf and ν(λf ) = νn+νf +νe.
If δ ≥ 0, then ν(a, b) = ν(λf ) and if δ < 0, then ν(a, b) = ν(λf ) + δ.

Proof. Since ν(a− λb) = ν(
1

λ
a− b) for λ > 0, we obtain

(3.6) ν(a− λb) = νQ(λ−1) if λ > 0

with similar equations for the restrictions Qn to Πn, etc. Replacing Q by Qf

and applying Lemma 3.5(c), we see that λf ∈ Jf . Replacing Q by Qn instead,
we see that νn(λ) is a constant (νn) for all (real) λ. Applying Lemma 3.5 (a)
to Qe, we see that νe(λ), and hence ν(λ), is infinite for λ > e−1

+ , so it suffices

to consider λ ≤ e−1
+ .

By definition and Lemma 3.5(c), νf is minimized at λf ∈ Jf and is

constant on [η−1, e−1
+ ]. By Lemma 3.5(c) and (d), νe is constant on Jf and is

nondecreasing on [η−1, e−1
+ [. Thus

(3.7) ν(λ) = νn(λ) + νf (λ) + νe(λ)

has a minimizer at either λf or e−1
+ . If δ ≥ 0, λf is a minimizer, and if δ < 0

then we must use e−1
+ .
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Corollary 3.8. If e+ is either
(i) a-positive (see Definition 3.2), or
(ii) a limit from the right of eigenvalues of Q
then δ ≥ 0 and ν(a, b) = νn + νf + νe.

Proof. In case (i), Lemma 3.5(e) shows that νe is nondecreasing at e−1
+ ,

and in case (ii), νe(e+) = ∞ by Lemma 3.5(b). Thus the previous proof shows
that λf must be a minimizer of ν. This also implies δ ≥ 0.

3.2.2. e+ < 0, i.e., −Q is qup.
In this case we define η− as for Corollary 3.6, with Je =] − ∞, η−1

− ] and

Jf =]η−1
− ,∞[. The remaining notation is then as before except that

δ = ν(e−) − νf .

For λ < 0, from ν(a− λb) = ν(− 1

λ
a+ b) = π(

1

λ
a− b) it follows that

ν(a− λb) = πQ(λ−1) if λ < 0

and using this and Corollary 3.6 instead of (3.9) and Lemma 3.5 we obtain

Theorem 3.9. Theorem 3.7 holds in the above notation, and if e− is
a-positive or is a limit from the left of eigenvalues for Q then δ ≥ 0.

3.2.3. e− ≤ 0 ≤ e+.
This case includes the possibility that Q is compact, which is satisfied in
many applications. Note that then e− = e+ = 0 is a limit of eigenvalues
for Q, except in finite dimensions. We choose η± as before and we define
Jf =]η−1

− , η−1
+ [ and Je = [−∞, η−1

− ] ∪ [η−1
+ ,∞]. The remaining notation is as

before, except that we set

(3.8) δ = min{δ−, δ+}, where δ± = ν(e±) − νf .

Theorem 3.10. Theorem 3.7 remains valid, and if either of e± is a-
positive (or a limit of eigenvalues from the appropriate side) for Q, then the
corresponding δ± ≥ 0.

Proof. The proof is similar to that of Theorem 3.7, except that now Jf ,
on which νe(λ) is constant, has two finite endpoints e±, so both they and λf

are now potential minimizers of ν. If δ ≥ 0, then λf is a minimizer. If δ−(resp.
δ+) = δ < 0, then e−(resp. e+) is a minimizer.

3.3. Calculation of ν(A,B). We now carry the analysis over to the original
(A,B) setting. We note that

(3.9) (1.2) is equivalent to Qx = λ−1x,

(if we allow λ−1 = 0, so λ = ∞).
Our next aim is to calculate the quantities in Theorem 3.7, in terms of

the partition of σ(A,B) used in 3.2. We start with the sum Σn of the root
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subspaces for (A,B) corresponding to eigenvalues in Jn, and we denote the
dimension of Σn by 2Nn. We denote by Ne the sum of the dimensions of
maximal A-nonpositive subspaces of the root subspaces corresponding to Je.
Note that ∞ is included if B is not 1-1. Finally we denote by c the number
of real (λ+

j , λ
−
k ) pairs cancelled from Jf (we extend the definition according

to Remark 2.3 if necessary). Note that c depends on the choice of Jf , i.e. of
η±. The number δ is defined by (3.8).

Theorem 3.11. If δ ≥ 0, then

(3.10) ν(A,B) = Nn + c+Ne.

Proof. By (3.9) and Section 2, νn = Nn and νf = c. Note that σ(A,B)∩
Jf consists of eigenvalues of finite (algebraic) multiplicity and

(3.11) 0 ∈ Jf ,

since Ωf is bounded. Since νe(λ) is constant for λ ∈ Jf , we can evaluate it
at λ = 0 by (3.11), so νe = ν(Πe). Now any contribution to ν(Πe) must come
from a critical point (necessarily an eigenvalue) for Q, or from a negative
type eigenvalue. By (3.9) and Pontryagin’s invariant subspace theorem, such
contributions are precisely those counted in Ne. The result now follows from
Theorem 3.7.

Remark. The Ne term includes the contribution N−
∞ from the root sub-

space at ∞ (as in Section 2). Indeed Ne reduces to N−
∞ in the finite dimen-

sional case, and in general Ne can be regarded as the contribution from a
neighbourhood of ∞.

Alternatively, one could view the contributions from the other root sub-
spaces corresponding to Je in the same way as those corresponding to the
(finite) eigenvalues in 2.1 and 2.2, i.e., via the quadratic form b (see also The-
orem 3.14 below). Explicit calculations can be carried out using the blocks
(2.10) of the canonical form.

Corollary 3.12. If Q is compact, then

ν(A,B) = Nn + c+N−
∞,

where N−
∞ is the maximal dimension of a−negative subspaces of the root sub-

space at ∞. In particular, this holds if A has compact resolvent.

Proof. It follows from Theorem 3.10 that in this case δ ≥ 0, hence by
Theorem 3.11 and Ne = N−

∞ the first conclusion follows.
For the final contention, we assume via (3.4) that S = BA′ is bounded

on H, where A′ = |A|−1/2sgnA. Moreover T = A′B|Π is defined on all of Π
by A2 and

(3.12) ‖Tx‖a ≤ ‖S‖ ‖x‖a .
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Finally if xn converges weakly to zero in Π then by compactness of |A|−1/2,
xn → 0 in H , i.e., |A|−1/2xn → 0 in Π, and so |A|−1/2|Π is a compact operator
on Π. With (3.12) this shows that Q is compact.

We now consider the case δ < 0. In fact we assume δ+ = δ < 0, (the
case δ− = δ < 0 being analogous). We also assume that the root subspace
R+ at e−1

+ is a-nondegenerate (i.e., e+ is not a singular critical point for Q,
cf. [8, Theorem 3.1]. This last assumption will be examined in the remarks
after Theorem 3.13 below). In particular, there is a nondegenerate span Σ of
Jordan chains in R+ whose a-orthocomplement is a-positive (cf. [8, Theorem
3.2]).

At this point it is convenient to replace the decomposition Π⊥
n = Πf ⊕aΠe

by Π⊥
n = Π′

f ⊕a Π′
e where Π′

f = Πf ⊕a Σ, Π′
f = Πf 	a Σ.

Let J be an interval containing finitely many eigenvalues. As before, π(J)
(ν(J), resp.) denotes the dimension of a maximal a−positive (a−negative,
resp.) subspace of the sum of the corresponding algebraic eigenspaces.

Theorem 3.13. Under the above assumptions, ν(A,B) = Nn + c+Ne +
π([λf , e

−1
+ [) − ν(]λf , e

−1
+ ]).

Remark. The final term includes the contribution from Σ, which we may
assume has been absorbed into Πf as above.

Proof. By Theorem 3.7, ν(A,B) = ν(λf ) + δ, so by Theorem 3.11, it
is enough to show that the π(·) and ν(·) terms in the statement make up δ.
Since νn(λ) is constant, δ may be split into δf + δe where

δg = νg(e
−1
+ ) − νg(λf )

and g = f or e. An easy application of (2.7) shows that δf = π([λf , e
−1
+ [) −

ν(]λf , e
−1
+ [) (recall that there are no a-negative eigenvalues in ]η−1, e−1

+ [).
Similarly (using the above absorption to apply (2.7) again) δe = −ν(Σ) =
−ν({e−1

+ }) according to our convention.

Remark. If the minimizer e± is a singular critical point, from δ+ < 0 we
have ν(A,B) = ν(e−1

± ); for nontriviality we assume that this index is finite.
Using (3.9) we see that it is enough to calculate νQ(e±). For this we use a
nonnegative perturbation as in [23], so that the new Q has no singular critical
points. If the perturbation is small enough, then νQ(e±) is unchanged, so we
may perform the calculation as before.

Remark. In [14, Section 4] it is shown how to calculate νQ(λ) when λ is
a regular critical point, but in the singular case only an inequality is given.
Thus the methods here appear to improve on [14] in this respect.
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3.4. Krein space setting. If we assume
A0. B is 1-1,
then an alternative approach is possible, avoiding the reciprocals used in the
previous constructions. We indicate the main steps as follows.

(i) We continue to assume A1 and we replace A2 by
A2′. D(A) ⊂ D(B) and Axn → 0 implies Bxn → 0 for all xn ∈ D(A).

It follows from A0, A1 and A2′ that A has a bounded inverse on H.
Arguing as for (3.4), we see that BA−1 is bounded, say ‖Bx‖ ≤ c ‖Ax‖ for
all x ∈ D(A). By Heinz’s inequality, b(x) ≤ c1/2a(x) and we deduce (cf. [18,
p.572])
A2′′. D(a) ⊂ D(b) and a(xn) → 0 implies b(xn) → 0 for all xn ∈ D(a).

Here D(a) is as before and similarly D(b) = D(|B|1/2).
(ii) Arguing again as for (3.4), we see from A2′′ that V = |B|1/2A′ is

bounded on H , where A′ = |A|−1/2sgnA. Thus

(3.13)
∥∥A−1Bx

∥∥
b
≤ ‖V ‖2 ‖x‖b , for all x ∈ D(B).

We write (x, y)b = b(x, y), ‖x‖b =
∥∥∥|B|1/2

x
∥∥∥ etc., and we complete

(D(b), ‖.‖b) to a Krein space K. Evidently A−1B is symmetric on the dense
subspace D(B) of K. Thus by (3.13), A−1B extends to a bounded symmetric
operator Q̄ on K. Moreover by construction of K, Q̄ is 1-1.

(iii) From the above considerations, R := Q̄−1 is self adjoint and bound-
edly invertible in K. Moreover the range of Q̄ is dense, and since it is contained
in the closure of the range of A−1B, we see that R is an extension of B−1A
which is densely defined in K. Noting that D(B−1A) ⊂ D(A) ⊂ D(B), we
have

(3.14) ((A− λB)x, x) = b((R− λI)x, x)

for all x ∈ D(B−1A), which enables us to connect ν(A,B) with νb(R − λI).
(iv) Setting λ = 0 in (3.14), we have

b(y, Q̄y) = (AQ̄y, Q̄y) = (By,A−1By)

for all y = B−1Ax, and using boundedness of Q̄ we see that

ν(R) = ν(Q̄) = ν(A−1) = ν(A).

In particular, R is qup in K, and, being invertible, is definitizable, cf. [13].
Thus the total algebraic multiplicity corresponding to the nonreal eigenvalues
of R is finite, the sets σ+(R) ∩ R− and σ−(R) ∩ R+ consist of finitely many
isolated eigenvalues of finite total multiplicity and all finite critical points of R
are of finite index. Moreover R has a spectral function F with critical points,
see [22].

(v) Let Jf be the interval defined in Subsection 3.3. Then Jf does not
intersect the essential spectrum of R. Define

m = inf Jf , M = sup Jf .
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The number c was defined in Subsection 3.3 using b−signs of eigenvectors
(and the perturbations of Section 2 if necessary). Since the inner product in
K is generated by b, an analogue of c can be defined for the eigenvalues of
R. Similarly an analogue of Nn gives the sum of dimensions of the algebraic
eigenspaces of the nonreal eigenvalues of R with positive imaginary parts.

Since R is qup, there are finitely many positive (negative, resp.) points
λ such that for all intervals J containing λ, and not having critical points of
R as one of its endpoints, the space F (J)K has a maximal negative (positive,
resp.) subspace of finite dimension, say κ−(J) (κ+(J)), resp.). Let κ−(λ)
(resp. κ+(λ)) be the minimum of all the numbers κ−(J) (resp. κ+(J))) when
J varies over such intervals J.

We can now reformulate Theorem 3.11 for the present situation.

Theorem 3.14. If B is 1-1 then

(3.15) min νb(R− λI) = Nn + c+
∑

λ<0

κ+(λ) +
∑

λ>0

κ−(λ) .

If m = −∞, then the first sum on the right-hand side is absent; if M = ∞,
then the second sum on the right-hand side is absent.

Proof. The proof is similar to the proof Theorem 3.11, using R and F
instead of Q and E: the details will be omitted.

Remarks.

1. This approach offers advantages of directness. For example, no recip-
rocals are involved, and the underlying space is based on the form b, which in
typical appliications is easier to evaluate then a. On the other hand, B must
be 1-1 and it may be difficult to relate R to the original data (A,B).

2. In view of Lemma 3.2, A1-A3 imply A2′. Thus if A0 holds then
the assumptions of 3.3 are stronger than those of 3.4, and these are in turn
stronger than A2′′, which would be appropriate for the setting of (3.3).

4. Application to variational problems

In this section we shall relate the minimal index to several formulae in
the literature, mostly from the last decade, characterizing eigenvalues varia-
tionally, but with “index shifts”. We start by defining the B-positive mul-
tiplicity of a semisimple eigenvalue λ of (A,B) is defined as the dimension of
a maximal B-positive subspace of N(A − λB). Let λ+

j (resp. λ−j ) be the jth

eigenvalue of (A,B), listed in nondecreasing order and counted by B-positive
(resp. negative) multiplicity. Next let

σ+
j = sup{inf{(x,Ax) : (x,Bx) = 1, x ∈ S ∩D(A)} : codim S = j − 1}

where we interpret inf ∅ as −∞. A classical variational formula gives λ+
j = σ+

j

(with sup and inf attained) in the “right definite” case B > 0, and this (with
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sup attained) turns out to hold also in the left definite case. In recursive form,
this dates back to Richardson [27], but in max-inf form it seems quite recent:
cf. [21] for matrices and [7, 10] for operators. Earlier related work can also
be found in [19, 29].

4.1. Cancellation. The “cancellation” procedure of [11] is quite recent, and
arose out of attempts to characterize eigenvalues λ+

j of (A,B) in the case

(which cannot occur in the above situations) where λ−k exist greater than λ+
j .

In the case where a sequence of c eigenvalues λ−k is preceded by c eigenvalues

λ+
l , a variational principle of the form

(4.1) λ+
j = σ+

j+c

is established in [10] for certain matrix and qup operator pencils. This formula
is extended to the general matrix pencil with semisimple real eigenvalues and
B invertible in [11]. In these cases, n = N−

∞ = 0 so Corollary 3.12 gives
ν(A,B) = c. In other words, ν(A,B) is the index shift in (4.1).

4.2. The case B≥ 0. An early explicit variational principle with shifted index
was given by Allegretto [1]. He considered (1.2) in the form

(4.2) (−∆ + q)u = λwu

with Dirichlet boundary conditions on a smooth domain Ω and a weight func-
tion w ≥ 0 where w−1(0) was a smooth subdomain of Ω. It is easy to see that
in this case all eigenvalues are real and B-positive, so n = c = 0. Moreover
Allegretto obtains

(4.3) λ+
j = σ+

j+d

where d is the number of nonpositive eigenvalues of −∆ + q on w−1(0). From
this one can deduce that d = N−

∞ and so by Corollary 3.12 the index shift in
(4.3) is again ν(A,B). Actually, related versions of this result can be found in
[16] for the minimal oscillation number of a right semidefinite Sturm-Liouville
problem and in [6] for asymptotes of two parameter eigencurves for certain
self adjoint operator pencils, cf. 4.4 below.

4.3. Maximal definite subspaces. In a recent paper [7] the authors gave a
variational principle of the form (4.3) with d = κ+(F ) where F is a particular
subspace of the Krein space K (see 3.4). In fact F is the span of certain root
subspaces, and κ+(F ) can be evaluated via matrices of the form B1 in (2.10).
Using [11, Lemmas 2.3 and 2.4], one can show that κ+(F ) = n+ c, and since
in this case B is 1-1 so N−

∞ = 0, we obtain d = ν(A,B) for the index shift.
Other authors have considered special cases from different viewpoints.

For sufficiently large λ+
j and finite dimensional H , Najman and Ye [25] give

an expression for d based directly on the sum of the κ+ for each individual
block in (2.10). Again for sufficiently large λ+

j , Allegretto and Mingarelli [2]
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study (4.2) and and give d = k − j in (4.3) where k is the eigencurve index
for λ+

j (so A−λ+
j B has k nonpositive eigenvalues). The equivalence between

this and d = n + c is discussed in [7, Subsection 4.3], but we add here that
the “analysis of the eigencurves” mentioned there may be carried out by first
replacing A by A+ µI and then decreasing µ continuously to zero (cf. [5] for
this technique).

Recently cases with B noninvertible have been studied for dimH < ∞.
See [26] for an extension of [25], d = κ+(F ) now including a term equivalent
to N−

∞ by a sum over blocks of the form A1 in (2.10) (cf. Remark 2.7). In [9]
more eigenvalues are characterized, and d = n+ c+ N−

∞ is derived explicitly
using the results of Section 2.

4.4. Minimal variational index. In the case B ≥ 0, the eigencurves are graphs
of nondecreasing functions, cf. [5]. A certain number (say ν0) of the eigen-
curves lies entirely above the λ-axis, so the (νo + 1)th eigencurve cuts the
λ-axis at the minimal eigenvalue λ0. Since this is also the eigenvalue of min-
imal index, we see that ν0 = ν(A,B). An explicit formula for the minimal
oscillation count ν0 in the SL case (with nonnegative weight) was given in
[16], and this was motivation for Allegretto’s analysis [1] mentioned above -
see also [6] where a formula for ν0 can be found, including that of [16], and
describing eigencurve asymptotes.

An important feature of Allegretto’s analysis is that it also gives the
“missing” σ+

j (1 ≤ j ≤ ν0) as −∞. Thus if we define the minimal variational

index jm as the minimal j so that σ+
j is finite then

jm = ν(A,B) + 1

at least if B ≥ 0. It turns out, however, that this relation also holds in other
cases with B indefinite [9, 11], so we obtain a new way of estimating ν(A,B),
directly from approximations to the variational quantities σ+

j .
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