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ABSTRACT. Three abstract boundary value problems are considered
in a Krein setting

1. INTRODUCTION

The abstract boundary value problems in Krein spaces which we study
in this note are inspired by the following example (see [2]). For 7 > 0, find a
function u(z,t) defined for € [a,0] =, a <0< band 0 <¢ <1 such that

ou 9%u

(1'1) (Sgﬂl”)\l“\TE(%t) = @(‘Tat) )

subject to the boundary conditions
(1.2)

where g4 and g_ are given functions defined on (0, ] and [a, 0), respectively.
If we define operators T' and B in the Hilbert space L?(f2) of functions on the
interval ) by

. f
(Tf)(z) = (sgna)le|" f(z), and (Bf)(z):=—-—-5(z), ze€,
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with the natural domain of B which is determined by the boundary conditions,
then the problem (1.1)-(1.2) can be written in the form

(1.3) chil_? = —Bu,
(1.4) Piu(0)+ P_u(l) =g,

where u : [0,1] — L2?(2), Py and P_ are spectral projections of T’ corre-
sponding to (0, +00) and (—o0, 0), respectively, and g is an arbitrary function
in L2(9Q).

Problems of the form (1.3)-(1.4) in an abstract Hilbert space (Ho, (-, - )o)
were considered in [2] under the conditions that T is an injective, selfadjoint,
bounded operator and B is a bounded (with exception of two special cases),
selfadjoint, nonnegative operator with closed range. Similar equations were
studied under different assumptions on 7" and B by several authors, see the
introduction and the references in [11]. In all of these papers B is either
assumed to be bounded or, if unbounded B is allowed, it is assumed that 0 is
its isolated eigenvalue.

In this note we give a Krein space approach to the abstract problem (1.3)-
(1.4). The assumptions that B has closed range and that it is bounded are
replaced by Krein space regularity conditions on the operator 7-'B. A result
from an earlier version of this note appeared in [8, Section 4.2, Remark 2]

Let T be an injective, selfadjoint, bounded operator in (Ho, (-, - )o)-
A convenient setting to study the problem (1.3)-(1.4) is the Hilbert space
(H,{-, -)) obtained by completing the original Hilbert space (Ho, (-, - )o)
with respect to the norm generated by the inner product (|T| -, -)o. The inner
product (-, -) is the continuous extension of (|T'| -, -)¢ onto H. The operators
Py and sgn(T) are densely defined bounded operators in H. Therefore we
can consider these operators to be defined on the entire space H. Denote by
[+, -] the continuous extension of the indefinite inner product (T'-, -}¢ onto
H. Then (H,[-,-]) is a Krein space. The subspaces K3 = PrH are mu-
tually orthogonal with respect to [-, -], the spaces (K4, %[, -]) are Hilbert
spaces, and the sum H = K, 4K _ is direct. Such a decomposition of a Krein
space is called a fundamental decomposition, Py are corresponding fundamen-
tal projections and the operator sgn(T) = P, — P_ is called a fundamental
symmetry. The fundamental symmetry establishes the following connection
between [-, -] and (-, ) : [z,y] = (sgn(T)z,y), x,y € H. If B in (1.3) is
an injective, selfadjoint, positive operator in (Ho, (-, - )o) such that the range
of T is contained in the range of B, then the operator B~!'T is bounded on

(Ho, (-, - o) and positive in (H,[-, -]). It follows from [1, Theorem 3.3.15]
that the densely defined operator B~!T is bounded in (H,[-, -]). Therefore,
the operator B~1T, and its densely defined inverse T~! B, are positive essen-
tially selfadjoint operators in the Krein space (H,[-, -]). Denote by A the

positive selfadjoint closure of T-!B in H. With this operator we can rewrite
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(1.3) as
du
A
dt "
and consider this equation in the Krein space (H,[-, -]).

The space H for (1.1)-(1.2) is the weighted Hilbert space L?(Q, ||™) and
the indefinite and definite inner products, respectively, are defined by

(15)  (fg)= [ S@F@ e and (f.9) = [ f@g@el do
Q Q

The corresponding fundamental symmetry is (Jf)(x) := (sgnx)f(z), x € Q.
The operator A is defined by
L d*f
(AP)(@) = ~(sgna)lel " T2 (@), 2 €0,
with the natural domain which is determined by the boundary conditions and
the smoothness of f.

In this note we consider an abstract Krein space H, that is, a vector
space with an indefinite inner product [-, -] : H x H — C for which there
exist subspaces K4 and K_ of ‘H which are mutually orthogonal with respect
to [+, -] and such that (K, +£[-, -]) are Hilbert spaces. We write

(1.6) H=Ki[+HK-,

where [+] denotes the direct sum orthogonal with respect to the inner prod-
uct [+, -]. The decomposition (1.6) is called a fundamental decomposition of a
Krein space H. Let Py and P_ be the fundamental projections onto K4 and
K _, respectively, induced by (1.6). Then Jx := Py — P_ is the corresponding
fundamental symmetry, the inner product (x,y) := [Jcz,y], z,y € H, is posi-
tive definite and (H, (-, -)) is a Hilbert space. A fundamental decomposition
reduces an operator A in ‘H if A commutes with the corresponding funda-
mental symmetry. Different fundamental decompositions generate different
positive definite inner products, but the corresponding norms are equivalent.
For this and other facts about Krein spaces and their operators see [1, 13]. For
the applications of the Krein space operator theory to differential operators
see [8], and the references quoted therein.

Let A be a closed, densely defined operator in H. We will consider three
abstract boundary value problems in the Krein space (H,[-, -]).

PrROBLEM 1.1. For a given g € H, find a differentiable function u :
[0,4+00) — H satisfying
(1.7) o' (t) = —Au(t) ,
(1.8) Piu(0) = Pyg, and wu(t), t>0, isbounded .
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PROBLEM 1.2. For a given g € H, find a differentiable function u :
[0, +00) — H satisfying (1.7) and the boundary conditions

(1.9) Piu(0) = Prg, and . li_irp u(t) =0 .

PROBLEM 1.3. For a given g € H, find a differentiable function u :
[0,1] — H satisfying

(1.10) o' (t) = —Au(t) ,
(1.11) Pru(0) + Pou(l) = g .

A useful tool for these problems is the theory of strongly continuous semi-
groups in a Hilbert space (H, (-, -)). For basic definitions and properties of
strongly continuous semigroups see for example [12]. For results specific to
semigroups in Hilbert spaces see [17]. By R, we denote the set of all non-
negative real numbers and by B(H) we denote the space of all bounded linear
operators on H. Recall that a semigroup T : Ry — B(H) is uniformly bounded
if |T(t)|| < M for some real M and all ¢t € R,. If we can choose M = 1, then
semigroup T : Ry — B(H), is called a contraction semigroup. The connection
between a strongly continuous semigroup T : Ry — B(H), and the equation
(1.7) on Ry is given as: All the solutions of (1.7) defined on R are given by
u(t) :=T(@)f, t € Ry, f € D(A), if and only if the operator —A is the gener-
ator of the strongly continuous semigroup 7. An operator —A is the generator
of a strongly continuous contraction semigroup if and only if Re(Ax,x) > 0
for every x € D(A), and each negative number is in the resolvent set of A.
An operator A with the preceding property is said to be maximal accretive
operator in the Hilbert space (H, (-, -)). Let (H,[-, -]) be a Krein space with
a fundamental symmetry J_. An operator A is mazimal accretive in the Krein
space (H, [+, -]) if the operator Ji A is maximal accretive in the Hilbert space
(H,[J.-, -]). Tt follows from [1, Chapter II,§2] that this definition does not
depend on the choice of a fundamental symmetry J.. Note that A is maximal
accretive if and only if 1A, where i = v/—1, is maximal dissipative, and all the
results about maximal dissipative operators carry over to maximal accretive
operators.

2. PRELIMINARIES

Let H = K4 [+]K- and H = L4 [+]L£_ be two fundamental decomposi-
tions of H. Denote by J_ and J. the corresponding fundamental symmetries
and by

1 1
Py = §(Ii<];<) and Qi = §(I:t J.)
the corresponding projections onto K+ and L., respectively. In the rest of the
note our notation will follow the pattern established in the previous sentence.
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Let (flg)e = [J.flg] and (f|g). := [J.f|g], be the corresponding Hilbert
space inner products. Since

<J}C‘Igf|g>)c = [J£f|g] = <f|g>L

the operator J_J. is a uniformly positive bounded operator in the Hilbert
space (H, (-, - ). ). Analogously, the operator J.J. is a uniformly positive op-
erator in the Hilbert space (H, (-, -),). Since these two operators are inverses
of each other, each one is uniformly positive in each Hilbert space (H, (-, - ))
and (H, (-, -).). Put

(2.12) LM:HQ++RQ_:%u+4Ly

LEMMA 2.1. The operator V is a uniformly positive bounded operator in
both Hilbert spaces (H, (-, -).) and (H,{-,-).). The operator I — V=1 is a
selfadjoint strict contraction in the Hilbert space (H, (-, -),), t.e.,

1I-v, <1.

PROOF. The first claim follows from (2.12) and the previously proved
properties of J_J.. It follows that the spectrum of V is contained in the
interval (1/2,]|V]|]. Consequently, the spectrum of the operator I — V=1 is
contained in (—1,1 — ||V||~1]. The second statement follows from this and the
fact that I — V! is a selfadjoint operator in (H, (-, - ).). O

It follows from (2.12) that 2V — I = J_J.. Therefore, 2V — I is bounded and
boundedly invertible. Next we generalize this fact.

LEMMA 2.2. Let V be as defined in (2.12) and let K be a contraction in
the Hilbert space (H, (-, -).), i.e., |K|| < 1. Then V —(V —I)K is a bounded
and boundedly invertible operator.

PROOF. Since V and K are bounded operators, the operator V—(V—1I)K
is bounded. By Lemma 2.1 the operator I — V! is a strict contraction. As
K is a contraction, the operator (I —V 1)K is a strict contraction. Therefore
I — (I — VYK has a bounded inverse. Since V also has a bounded inverse,
the equality

V-V-DK=V(I-(I-VYHK)
yields that V — (V — I) K has a bounded inverse. The lemma is proved. O

The following three statements collect few simple properties of bounded
semigroups in Banach spaces.

LEMMA 2.3. Let A be an operator in a Banach space (H, || - ||) which is
the generator of a strongly continuous semigroup T : Ry — B(H) and let
u: Ry — H be a solution of the initial value problem

(2.13) u'(t) = —Au(t), teR4, u(0)=f,
with f € D(A). Then T(t)u(t) = f for allt € Ry.
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Proor. It follows from the Uniform Boundedness Theorem and the
Triangle Inequality that if a function F' : [0,7) — B(H) has the strong
limit Fy := s — limy)o F'(t) and a function ¢ : [0,y) — H has the limit
¢o := limy o ¢(t), then limg o F(£)$(t) = Fogo. A consequence of this fact is
that the function ¢(t) := T'(t)u(t), t € Ry is differentiable. Indeed, let t € Ry
and h € R be such that ¢t +h € Ry. Then

RN =90 _ (714 myute + h) ~ T

h
- T(t)% (T(yu(t + h) = T(hyu(t) + T(Ryue) — u(r))
)T (R u(t + hf)b — u(t) LT T(h)u(ib) — u(t) .
Since
. u(t+h) — u(t) , . T(h)u(t) — u(t)
}lzlg}) T(h)f =u'(t) and %12%) — = Au(t) ,

it follows that

lim

g(t+h) —g(t)
(2.14) 70 h

=T(t)u'(t) + T(t)Au(t)
= —T(t)Au(t) + T(t)Au(t) = 0 .

Thus the function g : Ry — H is constant, that is, g(t) = g(0) = f, t € Ry.
This completes the proof of the lemma. O

In the next two corollaries we assume that A satisfies the assumptions of
Lemma 2.3.

COROLLARY 2.4. Assume that at least one of the operators T(t), t €
R, is a strict contraction. Then all the solutions of (2.13) with f # 0 are
unbounded.

PRrROOF. Let s > 0 be such that ||T'(s)|| = r < 1. Then
(2.15) 0 <[[fl = lgns)l < T (ns)l[[[u(ns)[| <r"[lu(ns)ll, neN.

Since r < 1, the inequality (2.15) implies that the function ¢ — u(t), ¢t € Ry,
is unbounded. O

COROLLARY 2.5. Assume that all the operators T(t), t € Ry, are injec-
tive. Then the initial value problem (2.13) has a unique solution.

PrROOF. Lemma 2.3 implies that f = T(t)u(t), t € Ri. Injectivity of
T(t), t € Ry, yields u(t) =T(t)"1f, t € Ry. O

REMARK 2.6. Let —A be a normal accretive operator in a Hilbert space
(H,{-, -)). Then —A is maximal accretive and the operator A is the generator
of a strongly continuous contraction semigroup T : Ry — B(H). It follows
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from the Spectral Theorem for normal operators that this semigroup satisfies
the assumption of Corollary 2.5.

PROPOSITION 2.7. Let A be a maximal accretive operator in a Hilbert
space (H,{-, -)) such that the intersection of the spectrum of A and the imag-
inary axes is countable and contains no eigenvalues. Then:

(a) All the solutions of the initial value problem

(2.16) W(t) = —Au(t), teRy, u(0)=f, feD(4),
have the property
lim w(t)=0.
t——+o00

(b) All the solutions of the initial value problem
(217) ()= Au(t), t€R,, uw(0)=f#0, feDA),
are unbounded.

PROOF. This proof uses the terminology of and results from [17]. Let
U= (A-I)(A+1I)"! be the Cayley transform of A. Then U is a contraction
defined on H. The function z — (z —1)/(z + 1), z € C\ {—1} maps the
spectrum of A onto o(U) \ {1}. The number 1 is not an eigenvalue of U.
Thus, the intersection of the spectrum of U and the unit circle in C contains
no eigenvalues and it is a countable set. By [17, Theorem 1.3.2] there exists an
orthogonal decomposition H = Ho(+)H; which reduces U, such that U[H,
is unitary on Hp, and U|H; is completely non-unitary on H;. The above
description of the intersection of the spectrum of U and the unit circle in C
implies that the spectrum of the unitary operator U|H is at most countable
and contains no eigenvalues. Since each countable closed set in C has an
isolated point, this is possible only if Hy = {0}. Thus, U is a completely non-
unitary contraction. Let T : Ry — B(H) be a strongly continuous semigroup
whose generator is —A. The cogenerator of T is U. Since the intersection of
the spectrum of U and the unit circle is countable, [17, Proposition I1.6.7 and
Proposition 111.9.1] imply that

(2.18) tligrn T(t)f =0 and . ligl Tt)*f=0 forall feH.

Here * denotes the adjoint in (H, (-, -)). This proves (a).

Let u : Ry — D(A) be a solution of (2.17). By Lemma 2.3 we have
T(t)u(t) = u(0) = f for all t € Ry. Assuming that ||u(t)|| < M for all t € Ry,
we get

0< (1) = lim_ |(T@u(®).0)] = lim_|(u@), 700" )

< i fll =
<M Jim |T(0)" ] =0.

This proves (b). O
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REMARK 2.8. If A is an arbitrary maximal accretive operator in a Hilbert
space (H, (-, -)), it follows from accretivity that for each solution of the initial
value problem

W'(t) = Au(t), teRy, u(0)=f, feDA),

the derivative of the function ¢ — (u(t),u(t)), t € Ry, is nonnegative and
therefore this function is nondecreasing, but it could be bounded.

3. SOLUTIONS OF BOUNDARY VALUE PROBLEMS

In this section we use the notation introduced in Section 2 and we give
solutions to the problems stated in Section 1. If B is the generator of a
continuous semigroup in a Hilbert space (H, (-, -)), then the operator values
in B(H) of this unique semigroup are denoted by e, t € R,

THEOREM 3.1. Let A be a maximal accretive operator in a Krein space
(H,[-, -]). Assume that there exists a fundamental symmetry J, = Q4+ — Q_
in (H,[-, -]) which commutes with A. Let H = L[+]L_ be the corresponding
fundamental decomposition. Assume that the intersection of the spectrum of
A|L_ and the imaginary azes is countable and that it contains no eigenvalues.
Then Problem 1.1 has a solution for each g € H, such that Prg € VD(A).

All such solutions are given by

(3.19) u(t) =e M Q VIPig+u_(t), teRy,
where v_ : Ry — L_ is a bounded solution of the initial value problem
(3.20) V' (t) = —(A|E,)v(t)7 teRy, v(0)=0.

The solution (3.19) is unique if the problem (3.20) has a unique solution in
(E_,—[-, ])

PROOF. Since A is maximal accretive in (H,[-, -]) and since A com-
mutes with J., the operator A|L is a maximal accretive in the Hilbert space
(L4+,[+, -]). Therefore the function in (3.19) is a solution of Problem 1.1.

Let u : Ry — H be a solution of Problem 1.1. Then the function Q1 u is
a solution of the initial value problem

o'(t) = —(AlLy)o(t), teRy, 0(0)=Q1u(0).
As the operator A|L; is maximal accretive in the Hilbert space (L4,[-, -]),
—A|L; is the generator of a contraction semigroup. Therefore, @ u(t) =
e 49+ Q u(0), t € R,. Similarly, the function Q_u is a bounded solution
of the initial value problem

V'(t) = —(A|L-)o(t), teR4, v(0)=Q_u(0).

The operator —A|L_ is maximal accretive in the Hilbert space (£L_,—[-, -]),
and it satisfies the assumptions of Proposition 2.7. Since the function Q_u
is bounded, it follows that @Q_u(0) = 0. Consequently the general bounded
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solution of (1.7) is given by u(t) = e *9+Q, f +v_(t), t € Ry, where
Q+f € D(A) and v_ is a bounded solution of (3.20). In order to match the
first condition in (1.8) we need P Q4 f = Pyg, or, equivalently, VQ, f = P, g.
By Lemma 2.1 V is invertible. Therefore each solution of Problem 1.1 is given
by (3.19). The theorem is proved. O

REMARK 3.2. Sufficient conditions for the uniqueness of the solution of
(3.20) are given in Corollary 2.5 and Remark 2.6. Other sufficient conditions
can, for example, be found in [18, Chapter 3].

THEOREM 3.3. Let A be a maximal accretive operator in a Krein space
(H,[-, -]). Assume that there exists a fundamental symmetry J, = Q4+ — Q—
in (H,[-, -]) which commutes with A. Assume that the intersection of the
spectrum of A and the imaginary axes is countable and that it contains no
eigenvalues. Then Problem 1.2 has a unique solution for each g € H, such
that Pyg € VD(A). This solution is given by

(321) U(t) = e_tAQ+Q+V_1P+g, te R+ .

PROOF. As before, the operator A|L is maximal accretive in the Hilbert
space (L4,[-, -]). Since the intersection of the spectrum of A|L; with the
imaginary axes is countable, Proposition 2.7(a) implies that
(3.22) Jlim e MR+ Q VTP g=0.

Hence, the function in (3.21) is a solution of Problem 1.2. Let u : Ry — H
be an arbitrary solution of Problem 1.2. By Theorem 3.1, u is given by
(3.19). The assumption that lim;, . u(t) = 0 and (3.22) imply that
lim; 0o v_(t) = 0. On the other hand, the function v_ is a solution of
(3.20) with the operator —A|L_ being maximal accretive in the Hilbert space

(L_,—[,-]). By Remark 2.8 the function t — —[v_(t),v_(¢)],t € Ry, is

nondecreasing and has value 0 at ¢ = 0. Hence, v_(t) = 0 for all t € R,.

Thus, (3.21) gives all solutions of Problem 1.2. O
THEOREM 3.4. Let A be a mazimal accretive operator in a Krein space

(H,[-, -]). Assume that there exists a fundamental symmetry J, = Q4 — Q—

in (H,[-, -]) which commutes with A. Let

(3.23) W=V—(V-D)(e19Q, +e19-Q_) .

Then Problem 1.3 has a unique solution for each g € WD(A). This solution
is given by

(3.24) ult) = (e*tAQ+Q+ +e(1DAQ- Q,) Wlg, 0<t<1.

PROOF. Let Q+H = L4. The operator A|L, is maximal accretive in
the Hilbert space (L4,[-, -]) and the operator —A|L_ is maximal accretive
in the Hilbert space (£L_,—[-, -]). It follows from the basic properties of the
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semigroups generated by the operators —A|L, and A|L_ in the corresponding
Hilbert spaces that (3.24) is a solution of Problem 1.3.

Let u : [0,1] — H be an arbitrary solution of Problem 1.3. Then the
function Q4 u is also a solution of

V() = —(AlLp)o(t), 0<t<1.

Since the operator —A|L, is the generator of a contraction semigroup in
(‘CJrv [ ’ ]) we have

Qiu(t) = e M+ Q u(0), 0<t<1.
Similarly, the function @ _u is a solution of
(3.25) V'(t) = — (AL )o(t), 0<t<1.

and the operator A|L£_ is the generator of a contraction semigroup in the
Hilbert space (£L_,—[-, -]). A change of variable in (3.25) yields

Q_u(t)=e1794C-Q y(1), 0<t<1.
Consequently, with f = Q+u(0) + Q_u(1) € D(A),
u(t) = (e*tAQ+Q+ + e<1*t)AQ*Q,) f, 0<t<1.
Note that
u(0) = (Q4 +e*®-Q_) f and u(l)= (e Qs +Q-)f.

In order to match the condition (1.11) we need P4 (Q+ + eAQ*Q_) f=Pig
and P_ (e 49+Q1 + Q_) f = P_g. Therefore

(V+PQ et Q +P Qe Q) f =g

Noting that PLQ_ + P_Q4+ =1 —V we get
(3.26) (V= (V=D (A9 Q +e9 Q) ) f =g

It follows from the theorem’s assumptions that e49-Q_ + e~ 49+Q, is a
contraction in the Hilbert space (H, (-, -).). Thus, Lemma 2.2 implies that
the operator

W=V-(V-I) (e Q- +e *9Qy)

has a bounded inverse. Therefore Problem 1.3 has a unique solution for all
g € WD(A) and that solution is given by (3.24). O

Note that W defined by (3.23) has the property W(£1) = K.
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4. REMARKS AND EXAMPLES

In this section we give classes of differential operators satisfying the as-
sumptions of the theorems in Section 3. All differential operators in these
examples have nonempty resolvent sets and are nonnegative in their Krein
spaces.

REMARK 4.1. The spectrum of a nonnegative operator A with the
nonempty resolvent set in a Krein space (H,[-, -]) is real. Such an operator
has a projector valued spectral function analogous to the spectral function
for selfadjoint operators in a Hilbert space; the only exception being that this
spectral function might be unbounded in a neighborhoods of 0 and oco. If
the spectral function is unbounded in neighborhood of a point (0 or co), that
point is said to be a singular critical point of A. If neither 0 nor oo is a singular
critical point of A and if ker(A?) = ker(A), then the spectral function can be
used for the construction of a fundamental symmetry which commutes with
A. Thus, such an operator A satisfies the assumptions of Theorem 3.4. If, in
addition, ker(A) C L4, then A satisfies the assumptions of Theorem 3.1, and
if ker(A) = {0}, A satisfies the assumptions of Theorem 3.3. For more details
about the spectral theory of nonnegative operators in Krein spaces see [13, 1].

REMARK 4.2. If A = 25, where z € C, Rez > 0, and S is a positive
operator in a Krein space with nonempty resolvent set and such that 0 and
oo are not singular critical points of S, then A satisfies the assumptions of
Theorem 3.4.

REMARK 4.3. The following perturbation result is proved in [11] using a
perturbation theorem for bisemigroups: Let A be a uniformly positive oper-
ator in a Krein space (H,[-, -]) such that oo is not a singular critical point
of A. Let S be an accretive operator in (H, |-, -]) such that A=1S is a trace
class operator in H. Let A; be the closure of the operator A + 5. Assume
that ker(A;) = ker(A; + A7) = {0}. Then A; is a maximal accretive operator
in (H,[-, -]) and there exists a fundamental symmetry in H which commutes
with Al.

Next we give several examples of specific operators T and B in (1.3)-(1.4)
for which the corresponding operator A satisfies the assumptions of theorems
in Section 3.

EXAMPLE 4.4. Let Q C R be a bounded or unbounded interval. Let
w : 2 — R be a locally integrable function which changes sign on 2. Assume
that w has only finitely many turning points at which it satisfies the “turning
point condition” of Beals, see [3, Definition 3.1], and [9, Chapter 3]. For
more general conditions on w near its turning points see [16]. Let H be
a weighted Hilbert space L*(Q, |w|) and let [f,g] = [, fgw. Let B be a
uniformly positive selfadjoint differential operator in Ho = L?(f2) associated
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with a quasi-differential expression of even order

(4.27) €(f) = (=1)™ (pof ™)™ 4 (=1)™ Y (py fr=D)mD) 4y f
defined on €. Assume that the coefficients pg, p1, ..., pm are real measurable
functions and we assume that the functions —,pi,...,p,, are locally inte-

grable over 2, see [14, Chapter V]. Note thatothe uniform positivity of B
imposes additional restrictions on the coefficients. Let T be the operator of
multiplication by the function w. Then A is a uniformly positive operator in
the Krein space (H, |-, -]) and oo is not a singular critical point of A, see [3]
and [9] for the case m = 1.

ExAMPLE 4.5. Let Q C R™ and w : 2 — R be a measurable function
which changes sign in © and such that 0 < ¢ < |w| < C for some numbers ¢
and C. Assume that the sets

Ot ={zeR":w(x) >0} and Q ={zeR":w(x) <0}

are unions of finitely many domains with sufficiently smooth boundaries. Let
T be the bounded and boundedly invertible operator of multiplication by the
function w. Let Ho = H = L*(R"™), let [f,g] = [ fgw, and B = —A+1. The
operator A in this case is A = 1 (—=A+1), with domain D(A) = H*(R"). The
operator A is a uniformly positive operator in the Krein space (L?(Q),][-, -])
and oo is not its singular critical point, see [4].

The operator —A+1 may be replaced by a symmetric elliptic operator L of
order 2m defined on a different domain 2 C R™. In this case the Dirichlet form
of L needs to be defined on a closed subspace of H™(2) specified by boundary
conditions in the usual way and this Dirichlet form must be uniformly positive
on its domain. For more details see [4, 15].

EXAMPLE 4.6. Let Q = R. Let w(x) = (sgnx)|z|™,z € R, where 7 > —1.
Let ‘H be a weighted Hilbert space L?(€, |z|7), and let

B=-—.
dx?
Then B is a positive differential operator in Ho = L?(R) and the range of B
is dense in L?(R). Let T be the operator of multiplication by the function w.

Let
2

(Af)(z) == —(sgnx)|x|7"%(:c),:c eR.

It was proved in [10, Theorem 2.7] (see also [5]), that 0 and co are not singular
critical points of A. For more general operators B see [6].

EXAMPLE 4.7. Let Q@ = R™ and w(z) = sgn(z,), x € R™, where z,, is the
n-th component of z € R™. Let Hy = H = L*(R™) and let [f,g] = [ fgw.
Let B = —A. The operator A in this case is A = —(sgnz,)A, with domain
D(A) = H?(R"™). The operator A is a positive selfadjoint operator in the
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Krein space (L?(R™), [+, -]) and by [7, Theorem 4.6(b)] points 0 and co are not
singular critical points of A. In fact [7, Theorem 4.6(b)] relates to more general
positive symmetric partial differential operators with constant coeflicients.

EXAMPLE 4.8. Let Q = [—1,1] and w(x) = sgn(z),x € Q. Let Ho = H =
L*(Q) and let [f,g] = [, fgw. Denote by AC(Q) the set of all absolutely
continuous functions on Q. Let (Af)(z) := —(sgnz)f'(z),x € Q, with the
domain

D(A) ={feH:feACQ), f(-1) =f1)}.
The operator A is antiselfadjoint in the Krein space (L%(Q),[-, -]). Consider
Problem 1.3 for this operator. Let G : [0,2] — C be an absolutely continuous
function. The general solution of the equation (1.10) in this case is given by

() = {G(t—x), -1< <0,

4.28
(4.28) Git+z), 0<z<1.

Clearly u(t) € D(A) for all 0 < ¢ < 1. Therefore, Problem 1.3 has a solution
if and only if the function

(4.29) - g(x), -1<z<0,
' g(1—x), 0<zx<1.

is absolutely continuous on . If the condition (4.29) is satisfied, the solution
of Problem 1.3 is given by (4.28) with

a8, 0<¢<1,
G(":)"{g(l—@, 1<e<2.

It is interesting to note that this solution is not of the form (3.24). Namely,
the solution (3.24) has the property that if we choose g € WL, C D(A) then
the solution given by (3.24) stays in the uniformly positive subspace L for
all 0 < ¢ < 1. This is not the case for the solution here since for arbitrary
G and 0 < ¢t < 1 the solution (4.28) is an even function of x and therefore
it is a neutral vector in the Krein space (L?(Q),[-, -]). Since the operator
A satisfies all the assumptions of Theorem 3.4 except the condition about
the existence of a commuting fundamental symmetry, we conclude that there
exists no fundamental symmetry in (L?(2),[-, -]) which commutes with A.
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