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Abstract. Three abstract boundary value problems are considered
in a Krĕın setting

1. Introduction

The abstract boundary value problems in Krĕın spaces which we study
in this note are inspired by the following example (see [2]). For τ ≥ 0, find a
function u(x, t) defined for x ∈ [a, b] = Ω, a < 0 < b and 0 ≤ t ≤ 1 such that

(1.1) (sgnx)|x|τ ∂u
∂t

(x, t) =
∂2u

∂x2
(x, t) ,

subject to the boundary conditions

u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ 1 ,

u(x, 0) = g+(x), x > 0, u(x, 1) = g−(x), x < 0 ,
(1.2)

where g+ and g− are given functions defined on (0, b] and [a, 0), respectively.
If we define operators T and B in the Hilbert space L2(Ω) of functions on the
interval Ω by

(Tf)(x) := (sgnx)|x|τf(x), and (Bf)(x) := −d
2f

dx2
(x), x ∈ Ω ,
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with the natural domain of B which is determined by the boundary conditions,
then the problem (1.1)-(1.2) can be written in the form

T
du

dt
= −Bu ,(1.3)

P+u(0) + P−u(1) = g ,(1.4)

where u : [0, 1] → L2(Ω), P+ and P− are spectral projections of T corre-
sponding to (0,+∞) and (−∞, 0), respectively, and g is an arbitrary function
in L2(Ω).

Problems of the form (1.3)-(1.4) in an abstract Hilbert space (H0, 〈 · , · 〉0)
were considered in [2] under the conditions that T is an injective, selfadjoint,
bounded operator and B is a bounded (with exception of two special cases),
selfadjoint, nonnegative operator with closed range. Similar equations were
studied under different assumptions on T and B by several authors, see the
introduction and the references in [11]. In all of these papers B is either
assumed to be bounded or, if unbounded B is allowed, it is assumed that 0 is
its isolated eigenvalue.

In this note we give a Krĕın space approach to the abstract problem (1.3)-
(1.4). The assumptions that B has closed range and that it is bounded are
replaced by Krĕın space regularity conditions on the operator T−1B. A result
from an earlier version of this note appeared in [8, Section 4.2, Remark 2]

Let T be an injective, selfadjoint, bounded operator in (H0, 〈 · , · 〉0).
A convenient setting to study the problem (1.3)-(1.4) is the Hilbert space
(H, 〈 · , · 〉) obtained by completing the original Hilbert space (H0, 〈 · , · 〉0)
with respect to the norm generated by the inner product 〈|T | · , ·〉0. The inner
product 〈 · , · 〉 is the continuous extension of 〈|T | · , ·〉0 onto H. The operators
P± and sgn(T ) are densely defined bounded operators in H. Therefore we
can consider these operators to be defined on the entire space H. Denote by
[ · , · ] the continuous extension of the indefinite inner product 〈T · , ·〉0 onto
H. Then (H, [ · , · ]) is a Krĕın space. The subspaces K± = P±H are mu-
tually orthogonal with respect to [ · , · ], the spaces (K±,±[ · , · ]) are Hilbert
spaces, and the sum H = K++̇K− is direct. Such a decomposition of a Krĕın
space is called a fundamental decomposition, P± are corresponding fundamen-
tal projections and the operator sgn(T ) = P+ − P− is called a fundamental
symmetry. The fundamental symmetry establishes the following connection
between [ · , · ] and 〈 · , · 〉 : [x, y] = 〈sgn(T )x, y〉, x, y ∈ H. If B in (1.3) is
an injective, selfadjoint, positive operator in (H0, 〈 · , · 〉0) such that the range
of T is contained in the range of B, then the operator B−1T is bounded on
(H0, 〈 · , · 〉0) and positive in (H, [ · , · ]). It follows from [1, Theorem 3.3.15]
that the densely defined operator B−1T is bounded in (H, [ · , · ]). Therefore,
the operator B−1T , and its densely defined inverse T−1B, are positive essen-
tially selfadjoint operators in the Krĕın space (H, [ · , · ]). Denote by A the
positive selfadjoint closure of T−1B in H. With this operator we can rewrite
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(1.3) as

du

dt
= −Au

and consider this equation in the Krĕın space (H, [ · , · ]).
The space H for (1.1)-(1.2) is the weighted Hilbert space L2(Ω, |x|τ ) and

the indefinite and definite inner products, respectively, are defined by

(1.5) [f, g] :=

∫

Ω

f(x)g(x)xτ dx and (f, g) :=

∫

Ω

f(x)g(x)|x|τ dx .

The corresponding fundamental symmetry is (Jf)(x) := (sgnx)f(x), x ∈ Ω.
The operator A is defined by

(Af)(x) := −(sgnx)|x|−τ d
2f

dx2
(x), x ∈ Ω ,

with the natural domain which is determined by the boundary conditions and
the smoothness of f .

In this note we consider an abstract Krĕın space H, that is, a vector
space with an indefinite inner product [ · , · ] : H × H → C for which there
exist subspaces K+ and K− of H which are mutually orthogonal with respect
to [ · , · ] and such that (K±,±[ · , · ]) are Hilbert spaces. We write

(1.6) H = K+[+̇]K− ,

where [+̇] denotes the direct sum orthogonal with respect to the inner prod-
uct [ · , · ]. The decomposition (1.6) is called a fundamental decomposition of a
Krĕın space H. Let P+ and P− be the fundamental projections onto K+ and
K−, respectively, induced by (1.6). Then JK := P+ −P− is the corresponding
fundamental symmetry, the inner product 〈x, y〉 := [JKx, y], x, y ∈ H, is posi-
tive definite and (H, 〈 · , · 〉) is a Hilbert space. A fundamental decomposition
reduces an operator A in H if A commutes with the corresponding funda-
mental symmetry. Different fundamental decompositions generate different
positive definite inner products, but the corresponding norms are equivalent.
For this and other facts about Krĕın spaces and their operators see [1, 13]. For
the applications of the Krĕın space operator theory to differential operators
see [8], and the references quoted therein.

Let A be a closed, densely defined operator in H. We will consider three
abstract boundary value problems in the Krĕın space (H, [ · , · ]).

Problem 1.1. For a given g ∈ H, find a differentiable function u :
[0,+∞) → H satisfying

u′(t) = −Au(t) ,(1.7)

P+u(0) = P+g, and u(t), t ≥ 0, is bounded .(1.8)
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Problem 1.2. For a given g ∈ H, find a differentiable function u :
[0,+∞) → H satisfying (1.7) and the boundary conditions

(1.9) P+u(0) = P+g, and lim
t→+∞

u(t) = 0 .

Problem 1.3. For a given g ∈ H, find a differentiable function u :
[0, 1] → H satisfying

u′(t) = −Au(t) ,(1.10)

P+u(0) + P−u(1) = g .(1.11)

A useful tool for these problems is the theory of strongly continuous semi-
groups in a Hilbert space (H, 〈 · , · 〉). For basic definitions and properties of
strongly continuous semigroups see for example [12]. For results specific to
semigroups in Hilbert spaces see [17]. By R+ we denote the set of all non-
negative real numbers and by B(H) we denote the space of all bounded linear
operators on H. Recall that a semigroup T : R+ → B(H) is uniformly bounded
if ‖T (t)‖ ≤M for some real M and all t ∈ R+. If we can choose M = 1, then
semigroup T : R+ → B(H), is called a contraction semigroup. The connection
between a strongly continuous semigroup T : R+ → B(H), and the equation
(1.7) on R+ is given as: All the solutions of (1.7) defined on R+ are given by
u(t) := T (t)f, t ∈ R+, f ∈ D(A), if and only if the operator −A is the gener-
ator of the strongly continuous semigroup T . An operator −A is the generator
of a strongly continuous contraction semigroup if and only if Re〈Ax, x〉 ≥ 0
for every x ∈ D(A), and each negative number is in the resolvent set of A.
An operator A with the preceding property is said to be maximal accretive
operator in the Hilbert space (H, 〈 · , · 〉). Let (H, [ · , · ]) be a Krĕın space with
a fundamental symmetry J

K
. An operator A is maximal accretive in the Krĕın

space (H, [ · , · ]) if the operator JKA is maximal accretive in the Hilbert space
(H, [J

K
· , · ]). It follows from [1, Chapter II,§2] that this definition does not

depend on the choice of a fundamental symmetry J
K
. Note that A is maximal

accretive if and only if iA, where i =
√
−1, is maximal dissipative, and all the

results about maximal dissipative operators carry over to maximal accretive
operators.

2. Preliminaries

Let H = K+[+̇]K− and H = L+[+̇]L− be two fundamental decomposi-
tions of H. Denote by J

K
and J

L
the corresponding fundamental symmetries

and by

P± =
1

2
(I ± JK) and Q± =

1

2
(I ± JL)

the corresponding projections onto K± and L±, respectively. In the rest of the
note our notation will follow the pattern established in the previous sentence.
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Let 〈f |g〉
K

:= [J
K
f |g] and 〈f |g〉

L
:= [J

L
f |g], be the corresponding Hilbert

space inner products. Since

〈J
K
J
L
f |g〉

K
= [J

L
f |g] = 〈f |g〉

L

the operator JKJL is a uniformly positive bounded operator in the Hilbert
space (H, 〈 · , · 〉

K
). Analogously, the operator J

L
J
K

is a uniformly positive op-
erator in the Hilbert space (H, 〈 · , · 〉

L
). Since these two operators are inverses

of each other, each one is uniformly positive in each Hilbert space (H, 〈 · , · 〉K)
and (H, 〈 · , · 〉

L
). Put

(2.12) V := P+Q+ + P−Q− =
1

2
(I + J

K
J
L
) .

Lemma 2.1. The operator V is a uniformly positive bounded operator in
both Hilbert spaces (H, 〈 · , · 〉

K
) and (H, 〈 · , · 〉

L
). The operator I − V −1 is a

selfadjoint strict contraction in the Hilbert space (H, 〈 · , · 〉
L
), i.e.,

‖I − V −1‖L < 1.

Proof. The first claim follows from (2.12) and the previously proved
properties of JKJL . It follows that the spectrum of V is contained in the
interval (1/2, ‖V ‖]. Consequently, the spectrum of the operator I − V −1 is
contained in (−1, 1−‖V ‖−1]. The second statement follows from this and the
fact that I − V −1 is a selfadjoint operator in (H, 〈 · , · 〉L).

It follows from (2.12) that 2V − I = J
K
J
L
. Therefore, 2V − I is bounded and

boundedly invertible. Next we generalize this fact.

Lemma 2.2. Let V be as defined in (2.12) and let K be a contraction in
the Hilbert space (H, 〈 · , · 〉

L
), i.e., ‖K‖ ≤ 1. Then V − (V − I)K is a bounded

and boundedly invertible operator.

Proof. Since V andK are bounded operators, the operator V −(V −I)K
is bounded. By Lemma 2.1 the operator I − V −1 is a strict contraction. As
K is a contraction, the operator (I−V −1)K is a strict contraction. Therefore
I − (I − V −1)K has a bounded inverse. Since V also has a bounded inverse,
the equality

V − (V − I)K = V (I − (I − V −1)K)

yields that V − (V − I)K has a bounded inverse. The lemma is proved.

The following three statements collect few simple properties of bounded
semigroups in Banach spaces.

Lemma 2.3. Let A be an operator in a Banach space (H, ‖ · ‖) which is
the generator of a strongly continuous semigroup T : R+ → B(H) and let
u : R+ → H be a solution of the initial value problem

(2.13) u′(t) = −Au(t), t ∈ R+, u(0) = f,

with f ∈ D(A). Then T (t)u(t) = f for all t ∈ R+.
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Proof. It follows from the Uniform Boundedness Theorem and the
Triangle Inequality that if a function F : [0, γ) → B(H) has the strong
limit F0 := s − limt↓0 F (t) and a function φ : [0, γ) → H has the limit
φ0 := limt↓0 φ(t), then limt↓0 F (t)φ(t) = F0φ0. A consequence of this fact is
that the function g(t) := T (t)u(t), t ∈ R+ is differentiable. Indeed, let t ∈ R+

and h ∈ R be such that t+ h ∈ R+. Then

g(t+ h) − g(t)

h
=

1

h

(
T (t+ h)u(t+ h) − T (t)u(t)

)

= T (t)
1

h

(
T (h)u(t+ h) − T (h)u(t) + T (h)u(t) − u(t)

)

= T (t)T (h)
u(t+ h) − u(t)

h
+ T (t)

T (h)u(t) − u(t)

h
.

Since

lim
h→0

T (h)
u(t+ h) − u(t)

h
= u′(t) and lim

h→0

T (h)u(t) − u(t)

h
= Au(t) ,

it follows that

lim
h→0

g(t+ h) − g(t)

h
= T (t)u′(t) + T (t)Au(t)

= −T (t)Au(t) + T (t)Au(t) = 0 .
(2.14)

Thus the function g : R+ → H is constant, that is, g(t) = g(0) = f, t ∈ R+.
This completes the proof of the lemma.

In the next two corollaries we assume that A satisfies the assumptions of
Lemma 2.3.

Corollary 2.4. Assume that at least one of the operators T (t), t ∈
R+, is a strict contraction. Then all the solutions of (2.13) with f 6= 0 are
unbounded.

Proof. Let s > 0 be such that ‖T (s)‖ = r < 1. Then

(2.15) 0 < ‖f‖ = ‖g(ns)‖ ≤ ‖T (ns)‖‖u(ns)‖ ≤ rn‖u(ns)‖, n ∈ N .

Since r < 1, the inequality (2.15) implies that the function t 7→ u(t), t ∈ R+,
is unbounded.

Corollary 2.5. Assume that all the operators T (t), t ∈ R+, are injec-
tive. Then the initial value problem (2.13) has a unique solution.

Proof. Lemma 2.3 implies that f = T (t)u(t), t ∈ R+. Injectivity of
T (t), t ∈ R+, yields u(t) = T (t)−1f, t ∈ R+.

Remark 2.6. Let −A be a normal accretive operator in a Hilbert space
(H, 〈 · , · 〉). Then −A is maximal accretive and the operator A is the generator
of a strongly continuous contraction semigroup T : R+ → B(H). It follows
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from the Spectral Theorem for normal operators that this semigroup satisfies
the assumption of Corollary 2.5.

Proposition 2.7. Let A be a maximal accretive operator in a Hilbert
space (H, 〈 · , · 〉) such that the intersection of the spectrum of A and the imag-
inary axes is countable and contains no eigenvalues. Then:

(a) All the solutions of the initial value problem

(2.16) u′(t) = −Au(t), t ∈ R+, u(0) = f, f ∈ D(A) ,

have the property

lim
t→+∞

u(t) = 0 .

(b) All the solutions of the initial value problem

(2.17) u′(t) = Au(t), t ∈ R+, u(0) = f 6= 0, f ∈ D(A) ,

are unbounded.

Proof. This proof uses the terminology of and results from [17]. Let
U = (A− I)(A+ I)−1 be the Cayley transform of A. Then U is a contraction
defined on H. The function z 7→ (z − 1)/(z + 1), z ∈ C \ {−1} maps the
spectrum of A onto σ(U) \ {1}. The number 1 is not an eigenvalue of U .
Thus, the intersection of the spectrum of U and the unit circle in C contains
no eigenvalues and it is a countable set. By [17, Theorem I.3.2] there exists an
orthogonal decomposition H = H0〈+̇〉H1 which reduces U , such that U |H0

is unitary on H0, and U |H1 is completely non-unitary on H1. The above
description of the intersection of the spectrum of U and the unit circle in C

implies that the spectrum of the unitary operator U |H0 is at most countable
and contains no eigenvalues. Since each countable closed set in C has an
isolated point, this is possible only if H0 = {0}. Thus, U is a completely non-
unitary contraction. Let T : R+ → B(H) be a strongly continuous semigroup
whose generator is −A. The cogenerator of T is U . Since the intersection of
the spectrum of U and the unit circle is countable, [17, Proposition II.6.7 and
Proposition III.9.1] imply that

(2.18) lim
t→+∞

T (t)f = 0 and lim
t→+∞

T (t)∗f = 0 for all f ∈ H .

Here ∗ denotes the adjoint in (H, 〈 · , · 〉). This proves (a).
Let u : R+ → D(A) be a solution of (2.17). By Lemma 2.3 we have

T (t)u(t) = u(0) = f for all t ∈ R+. Assuming that ‖u(t)‖ ≤M for all t ∈ R+,
we get

0 ≤ |〈f, f〉| = lim
t→+∞

|〈T (t)u(t), f〉| = lim
t→+∞

|〈u(t), T (t)∗f〉|
≤M lim

t→+∞
‖T (t)∗f‖ = 0 .

This proves (b).
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Remark 2.8. If A is an arbitrary maximal accretive operator in a Hilbert
space (H, 〈 · , · 〉), it follows from accretivity that for each solution of the initial
value problem

u′(t) = Au(t), t ∈ R+, u(0) = f, f ∈ D(A) ,

the derivative of the function t 7→ 〈u(t), u(t)〉, t ∈ R+, is nonnegative and
therefore this function is nondecreasing, but it could be bounded.

3. Solutions of boundary value problems

In this section we use the notation introduced in Section 2 and we give
solutions to the problems stated in Section 1. If B is the generator of a
continuous semigroup in a Hilbert space (H, 〈 · , · 〉), then the operator values

in B(H) of this unique semigroup are denoted by etB , t ∈ R+.

Theorem 3.1. Let A be a maximal accretive operator in a Krĕın space
(H, [ · , · ]). Assume that there exists a fundamental symmetry J

L
= Q+ −Q−

in (H, [ · , · ]) which commutes with A. Let H = L+[+̇]L− be the corresponding
fundamental decomposition. Assume that the intersection of the spectrum of
A|L− and the imaginary axes is countable and that it contains no eigenvalues.
Then Problem 1.1 has a solution for each g ∈ H, such that P+g ∈ VD(A).
All such solutions are given by

(3.19) u(t) = e−tAQ+Q+V
−1P+g + v

−
(t), t ∈ R+ ,

where v
−

: R+ → L− is a bounded solution of the initial value problem

(3.20) v′(t) = −
(
A|L−

)
v(t), t ∈ R+, v(0) = 0 .

The solution (3.19) is unique if the problem (3.20) has a unique solution in
(L−,−[ · , · ]).

Proof. Since A is maximal accretive in (H, [ · , · ]) and since A com-
mutes with JL, the operator A|L+ is a maximal accretive in the Hilbert space
(L+, [ · , · ]). Therefore the function in (3.19) is a solution of Problem 1.1.

Let u : R+ → H be a solution of Problem 1.1. Then the function Q+u is
a solution of the initial value problem

v′(t) = −
(
A|L+

)
v(t), t ∈ R+, v(0) = Q+u(0) .

As the operator A|L+ is maximal accretive in the Hilbert space (L+, [ · , · ]),
−A|L+ is the generator of a contraction semigroup. Therefore, Q+u(t) =
e−tAQ+Q+u(0), t ∈ R+. Similarly, the function Q−u is a bounded solution
of the initial value problem

v′(t) = −
(
A|L−

)
v(t), t ∈ R+, v(0) = Q−u(0) .

The operator −A|L− is maximal accretive in the Hilbert space (L−,−[ · , · ]),
and it satisfies the assumptions of Proposition 2.7. Since the function Q−u
is bounded, it follows that Q−u(0) = 0. Consequently the general bounded
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solution of (1.7) is given by u(t) = e−tAQ+Q+f + v
−
(t), t ∈ R+, where

Q+f ∈ D(A) and v− is a bounded solution of (3.20). In order to match the
first condition in (1.8) we need P+Q+f = P+g, or, equivalently, V Q+f = P+g.
By Lemma 2.1 V is invertible. Therefore each solution of Problem 1.1 is given
by (3.19). The theorem is proved.

Remark 3.2. Sufficient conditions for the uniqueness of the solution of
(3.20) are given in Corollary 2.5 and Remark 2.6. Other sufficient conditions
can, for example, be found in [18, Chapter 3].

Theorem 3.3. Let A be a maximal accretive operator in a Krĕın space
(H, [ · , · ]). Assume that there exists a fundamental symmetry JL = Q+ −Q−

in (H, [ · , · ]) which commutes with A. Assume that the intersection of the
spectrum of A and the imaginary axes is countable and that it contains no
eigenvalues. Then Problem 1.2 has a unique solution for each g ∈ H, such
that P+g ∈ VD(A). This solution is given by

(3.21) u(t) = e−tAQ+Q+V
−1P+g, t ∈ R+ .

Proof. As before, the operator A|L+ is maximal accretive in the Hilbert
space (L+, [ · , · ]). Since the intersection of the spectrum of A|L+ with the
imaginary axes is countable, Proposition 2.7(a) implies that

(3.22) lim
t→+∞

e−tAQ+Q+V
−1P+g = 0 .

Hence, the function in (3.21) is a solution of Problem 1.2. Let u : R+ → H
be an arbitrary solution of Problem 1.2. By Theorem 3.1, u is given by
(3.19). The assumption that limt→+∞ u(t) = 0 and (3.22) imply that
limt→+∞ v−(t) = 0. On the other hand, the function v− is a solution of
(3.20) with the operator −A|L− being maximal accretive in the Hilbert space
(L−,−[ · , · ]). By Remark 2.8 the function t 7→ −[v

−
(t), v

−
(t)], t ∈ R+, is

nondecreasing and has value 0 at t = 0. Hence, v−(t) = 0 for all t ∈ R+.
Thus, (3.21) gives all solutions of Problem 1.2.

Theorem 3.4. Let A be a maximal accretive operator in a Krĕın space
(H, [ · , · ]). Assume that there exists a fundamental symmetry J

L
= Q+ −Q−

in (H, [ · , · ]) which commutes with A. Let

(3.23) W = V − (V − I)(e−AQ+Q+ + eAQ−Q−) .

Then Problem 1.3 has a unique solution for each g ∈ WD(A). This solution
is given by

(3.24) u(t) =
(
e−tAQ+Q+ + e(1−t)AQ−Q−

)
W−1g , 0 ≤ t ≤ 1 .

Proof. Let Q±H = L±. The operator A|L+ is maximal accretive in
the Hilbert space (L+, [ · , · ]) and the operator −A|L− is maximal accretive
in the Hilbert space (L−,−[ · , · ]). It follows from the basic properties of the
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semigroups generated by the operators −A|L+ and A|L− in the corresponding
Hilbert spaces that (3.24) is a solution of Problem 1.3.

Let u : [0, 1] → H be an arbitrary solution of Problem 1.3. Then the
function Q+u is also a solution of

v′(t) = −
(
A|L+

)
v(t), 0 ≤ t ≤ 1 .

Since the operator −A|L+ is the generator of a contraction semigroup in
(L+, [ · , · ]) we have

Q+u(t) = e−tAQ+Q+u(0), 0 ≤ t ≤ 1 .

Similarly, the function Q−u is a solution of

(3.25) v′(t) = −
(
A|L−

)
v(t), 0 ≤ t ≤ 1 .

and the operator A|L− is the generator of a contraction semigroup in the
Hilbert space (L−,−[ · , · ]). A change of variable in (3.25) yields

Q−u(t) = e(1−t)AQ−Q−u(1), 0 ≤ t ≤ 1 .

Consequently, with f = Q+u(0) +Q−u(1) ∈ D(A),

u(t) =
(
e−tAQ+Q+ + e(1−t)AQ−Q−

)
f, 0 ≤ t ≤ 1 .

Note that

u(0) =
(
Q+ + eAQ−Q−

)
f and u(1) =

(
e−AQ+Q+ +Q−

)
f .

In order to match the condition (1.11) we need P+

(
Q+ + eAQ−Q−

)
f = P+g

and P−

(
e−AQ+Q+ +Q−

)
f = P−g. Therefore

(
V + P+Q−e

AQ−Q− + P−Q+e
−AQ+Q+

)
f = g

Noting that P+Q− + P−Q+ = I − V we get

(3.26)
(
V − (V − I)

(
eAQ−Q− + e−AQ+Q+

))
f = g .

It follows from the theorem’s assumptions that eAQ−Q− + e−AQ+Q+ is a
contraction in the Hilbert space (H, 〈 · , · 〉

L
). Thus, Lemma 2.2 implies that

the operator

W = V − (V − I)
(
eAQ−Q− + e−AQ+Q+

)

has a bounded inverse. Therefore Problem 1.3 has a unique solution for all
g ∈WD(A) and that solution is given by (3.24).

Note that W defined by (3.23) has the property W (L±) = K±.
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4. Remarks and examples

In this section we give classes of differential operators satisfying the as-
sumptions of the theorems in Section 3. All differential operators in these
examples have nonempty resolvent sets and are nonnegative in their Krĕın
spaces.

Remark 4.1. The spectrum of a nonnegative operator A with the
nonempty resolvent set in a Krĕın space (H, [ · , · ]) is real. Such an operator
has a projector valued spectral function analogous to the spectral function
for selfadjoint operators in a Hilbert space; the only exception being that this
spectral function might be unbounded in a neighborhoods of 0 and ∞. If
the spectral function is unbounded in neighborhood of a point (0 or ∞), that
point is said to be a singular critical point of A. If neither 0 nor ∞ is a singular
critical point of A and if ker(A2) = ker(A), then the spectral function can be
used for the construction of a fundamental symmetry which commutes with
A. Thus, such an operator A satisfies the assumptions of Theorem 3.4. If, in
addition, ker(A) ⊂ L+, then A satisfies the assumptions of Theorem 3.1, and
if ker(A) = {0}, A satisfies the assumptions of Theorem 3.3. For more details
about the spectral theory of nonnegative operators in Krĕın spaces see [13, 1].

Remark 4.2. If A = zS, where z ∈ C, Re z ≥ 0, and S is a positive
operator in a Krĕın space with nonempty resolvent set and such that 0 and
∞ are not singular critical points of S, then A satisfies the assumptions of
Theorem 3.4.

Remark 4.3. The following perturbation result is proved in [11] using a
perturbation theorem for bisemigroups: Let A be a uniformly positive oper-
ator in a Krein space (H, [ · , · ]) such that ∞ is not a singular critical point
of A. Let S be an accretive operator in (H, [ · , · ]) such that A−1S is a trace
class operator in H. Let A1 be the closure of the operator A + S. Assume
that ker(A1) = ker(A1 +A+

1 ) = {0}. Then A1 is a maximal accretive operator
in (H, [ · , · ]) and there exists a fundamental symmetry in H which commutes
with A1.

Next we give several examples of specific operators T and B in (1.3)-(1.4)
for which the corresponding operator A satisfies the assumptions of theorems
in Section 3.

Example 4.4. Let Ω ⊆ R be a bounded or unbounded interval. Let
w : Ω → R be a locally integrable function which changes sign on Ω. Assume
that w has only finitely many turning points at which it satisfies the “turning
point condition” of Beals, see [3, Definition 3.1], and [9, Chapter 3]. For
more general conditions on w near its turning points see [16]. Let H be
a weighted Hilbert space L2(Ω, |w|) and let [f, g] =

∫
Ω f g w. Let B be a

uniformly positive selfadjoint differential operator in H0 = L2(Ω) associated
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with a quasi-differential expression of even order

(4.27) `(f) := (−1)m(p0f
(m))(m) + (−1)m−1(p1f

(m−1))(m−1) + . . .+ pmf

defined on Ω. Assume that the coefficients p0, p1, . . . , pm are real measurable

functions and we assume that the functions
1

p0
, p1, . . . , pm are locally inte-

grable over Ω, see [14, Chapter V]. Note that the uniform positivity of B
imposes additional restrictions on the coefficients. Let T be the operator of
multiplication by the function w. Then A is a uniformly positive operator in
the Krĕın space (H, [ · , · ]) and ∞ is not a singular critical point of A, see [3]
and [9] for the case m = 1.

Example 4.5. Let Ω ⊆ Rn and w : Ω → R be a measurable function
which changes sign in Ω and such that 0 < c ≤ |w| ≤ C for some numbers c
and C. Assume that the sets

Ω+ = {x ∈ R
n : w(x) > 0} and Ω− = {x ∈ R

n : w(x) < 0}
are unions of finitely many domains with sufficiently smooth boundaries. Let
T be the bounded and boundedly invertible operator of multiplication by the
function w. Let H0 = H = L2(Rn), let [f, g] =

∫
f g w, and B = −∆+1. The

operator A in this case is A = 1
w (−∆+1), with domain D(A) = H2(Rn). The

operator A is a uniformly positive operator in the Krĕın space (L2(Ω), [ · , · ])
and ∞ is not its singular critical point, see [4].

The operator −∆+1 may be replaced by a symmetric elliptic operatorL of
order 2m defined on a different domain Ω ⊂ Rn. In this case the Dirichlet form
of L needs to be defined on a closed subspace of Hm(Ω) specified by boundary
conditions in the usual way and this Dirichlet form must be uniformly positive
on its domain. For more details see [4, 15].

Example 4.6. Let Ω = R. Let w(x) = (sgnx)|x|τ , x ∈ R, where τ > −1.
Let H be a weighted Hilbert space L2(Ω, |x|τ ), and let

B = − d2

dx2
.

Then B is a positive differential operator in H0 = L2(R) and the range of B
is dense in L2(R). Let T be the operator of multiplication by the function w.
Let

(Af)(x) := −(sgnx)|x|−τ d
2f

dx2
(x), x ∈ R .

It was proved in [10, Theorem 2.7] (see also [5]), that 0 and ∞ are not singular
critical points of A. For more general operators B see [6].

Example 4.7. Let Ω = Rn and w(x) = sgn(xn), x ∈ Rn, where xn is the
n-th component of x ∈ Rn. Let H0 = H = L2(Rn) and let [f, g] =

∫
f g w.

Let B = −∆. The operator A in this case is A = −(sgnxn)∆, with domain
D(A) = H2(Rn). The operator A is a positive selfadjoint operator in the
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Krĕın space (L2(Rn), [ · , · ]) and by [7, Theorem 4.6(b)] points 0 and ∞ are not
singular critical points of A. In fact [7, Theorem 4.6(b)] relates to more general
positive symmetric partial differential operators with constant coefficients.

Example 4.8. Let Ω = [−1, 1] and w(x) = sgn(x), x ∈ Ω. Let H0 = H =
L2(Ω) and let [f, g] =

∫
Ω f g w. Denote by AC(Ω) the set of all absolutely

continuous functions on Ω. Let (Af)(x) := −(sgnx)f ′(x), x ∈ Ω, with the
domain

D(A) = {f ∈ H : f ∈ AC(Ω), f(−1) = f(1)} .
The operator A is antiselfadjoint in the Krĕın space (L2(Ω), [ · , · ]). Consider
Problem 1.3 for this operator. Let G : [0, 2] → C be an absolutely continuous
function. The general solution of the equation (1.10) in this case is given by

(4.28) u(t) =

{
G(t− x), −1 ≤ x ≤ 0,

G(t+ x), 0 ≤ x ≤ 1 .

Clearly u(t) ∈ D(A) for all 0 ≤ t ≤ 1. Therefore, Problem 1.3 has a solution
if and only if the function

(4.29) x 7→
{
g(x), −1 ≤ x < 0,

g(1 − x), 0 ≤ x ≤ 1 .

is absolutely continuous on Ω. If the condition (4.29) is satisfied, the solution
of Problem 1.3 is given by (4.28) with

G(ξ) :=

{
g(ξ), 0 ≤ ξ ≤ 1,

g(1 − ξ), 1 ≤ ξ ≤ 2 .

It is interesting to note that this solution is not of the form (3.24). Namely,
the solution (3.24) has the property that if we choose g ∈WL+ ⊂ D(A) then
the solution given by (3.24) stays in the uniformly positive subspace L+ for
all 0 ≤ t ≤ 1. This is not the case for the solution here since for arbitrary
G and 0 ≤ t ≤ 1 the solution (4.28) is an even function of x and therefore
it is a neutral vector in the Krein space (L2(Ω), [ · , · ]). Since the operator
A satisfies all the assumptions of Theorem 3.4 except the condition about
the existence of a commuting fundamental symmetry, we conclude that there
exists no fundamental symmetry in (L2(Ω), [ · , · ]) which commutes with A.
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