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ON BOUNDED PERTURBATIONS OF OPERATORS OF
KLEIN-GORDON TYPE

Peter Jonas

Technische Universität Berlin, Germany

Abstract. A class of nonnegative selfadjoint operators in a Krein
space and bounded perturbations of them of a special form are considered.
The perturbed operators, which include operators arising from the per-
turbed Klein-Gordon equation, are definitizable over a neighbourhood of
infinity, but not necessarily definitizable. This paper can be regarded as
a continuation of [9]; the compactness assumptions on the perturbation in
[9] are dropped.

1. Introduction

The equation
{
−
(
−i ∂

∂t − V(x)
) (

−i ∂
∂t − V(x)

)
−∑n

j=1
∂2

∂x2
j

+ U(x) +m2
}
u(x, t) = 0,

where m ≥ 0, V , U ∈ L∞(Rn), U(x) = U(x), u ∈ C2(Rn × R), which is a
perturbed Klein-Gordon (m > 0) or wave (m = 0) equation, can be written
in the form
(1.1)

∂

∂t

(
u(x, t)
v(x, t)

)
= i

(
V(x) 1

−∑n
j=1

∂2

∂x2
j

+ U(x) +m2 V(x)

)(
u(x, t)
v(x, t)

)
.

Here the derivatives are understood in the distribution sense.
We may consider an equation of the form (1.1) as a first order differential

equation in H = L2(Rn) × L2(Rn). Then if we provide H with the inner
product [·, ·] defined by

[(
u1

v1

)
,
(
u2

v2

)]
:= (v1, u2)L2 + (u1, v2)L2 ,

(
u1

v1

)
,
(
u2

v2

)
∈ H,
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(H, [·, ·]) is a Krein space and the operator corresponding to the matrix in (1.1)
with its natural domain is selfadjoint in this Krein space. In the unperturbed
case (i.e. V = U = 0) this operator is nonnegative in (H, [·, ·]).

The first approach to the spectral theory of the Klein-Gordon equation
employing the indefinite form [·, ·] as the basic inner product was a paper
of K. Veselić ([18]). This work was stimulated by the preceding physical
literature. Later this Krein space approach was elaborated by H. Langer and
B. Najman in the unpublished paper [15], where some class of definitizable
selfadjoint operators which contains operators arising from perturbed Klein-
Gordon equations is studied. For an operator A of that class the quadratic
form [A·, ·] has a finite number of negative squares and, hence, there is a finite
set s of eigenvalues of A such that, roughly speaking, only on the spectral
subspaces which correspond to R-symmetric sets having common points with
s, A is not nonnegative. Nonreal eigenvalues of A and points 6= 0 in which
the spectral function of A has a singularity, belong to s. The paper [15]
contains, among other things, upper estimates for the absolute values of these
“exceptional eigenvalues” and for their number. In [15] this operator approach
to the spectral theory of the Klein-Gordon equation is compared with another
one (for references see [9, Introduction]).

In [9] besides some slight strengthening of the results of [15] a class of
selfadjoint operators is considered which also contains operators associated to
the perturbed wave equation (m = 0). In general, there is no longer a finite
set of “exceptional points” as in [15] but the “exceptional set” “outside of
which” the operator is nonnegative is contained in a circle the radius of which
can be estimated in the same way as in [15]. The operators studied in [9] are
locally definitizable in a neighbourhood of infinity (see Section 2.1).

The perturbations considered in [15] and [9] satisfy some compactness

conditions. In [2] B. Ćurgus and B. Najman considered perturbations with
compactness properties or of sufficiently small size such that the perturbed
operator is definitizable.

In the present paper, which can be regarded as a continuation of [9], the
compactness assumption of [9] on the perturbation is dropped and bounded
perturbations of arbitrary size are considered. Therefore, also in the case
m > 0, we have to deal with operators which are not definitizable. Again we
prove that they are locally definitizable over a neighbourhood of infinity.

In Section 2 we recall some definitions and results of the spectral theory of
selfadjoint operators in Krein spaces and the definition and some properties of
an operator which will play the role of the unperturbed operator. In Section 3
we describe the spectrum and show definitizability properties of the perturbed
operator. The results can be carried over to an associated operator whose
spectral function is bounded in a neighbourhood of infinity. In Section 4
we consider a simple example of a Klein-Gordon or wave equation with a
signum-type function V (see (1.1)).
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It should be mentioned that in [19] K. Veselić studied a perturbation of
an operator associated with the unperturbed Klein-Gordon equation which is
not relatively bounded. It turned out that the perturbed operator has real
spectrum and a regular spectral function, but it is not locally definitizable with
respect to some natural Krein space inner product (which essentially coincides
with that introduced above). For the class of bounded perturbations we are
dealing with, it is not true in general (as simple examples show), that the
perturbed operators are “globally” spectrally decomposable as the perturbed
operator in [19].

2. Notation and Preliminaries

2.1. Locally definitizable selfadjoint operators in Krein spaces. In this section
we recall the notation and some definitions and results from [6], [9], [11] and
[14]. Let (H, [·, ·]) be a Krein space and let A be a selfadjoint operator in H
with nonempty resolvent set ρ(A). The operator A is called nonnegative if
[Ax, x] ≥ 0 for every x ∈ D(A). The operator A is called definitizable if there
exists a polynomial p, p 6= 0, such that [p(A)x, x] ≥ 0 for every x ∈ D(p(A)).

An open subset ∆ of R (R is the closure of R in the complex sphere C)
is said to be of positive type (negative type) with respect to A if the following
conditions (i), (ii), (iii) are fulfilled:

(i) No point of ∆ is an accumulation point of σ(A) \R.
(ii) For every closed subset δ of ∆ there exist a positive integer m and

M > 0 such that

‖(A− z)−1‖ ≤M(1 + |z|)2m−2|Im z|−m

for all z in some neighbourhood of δ (in C) with z 6= ∞ and Im z 6= 0.
(iii) For every nonnegative (resp. nonpositive) f ∈ C∞(R) 1 with supp f ⊂

∆ the operator f(A) (defined, in view of (ii), by extension of the Riesz-
Dunford-Taylor functional calculus, see [6, Proposition 1.3] ) is non-
negative.

Condition (ii) means that the resolvent of the Cayley transform of A grows
not faster than of finite order near to the arc of the unit circle corresponding
to ∆. In this definition (ii) and (iii) can be replaced by a condition on the
resolvent of A. We give this condition under the additional assumption that
∞ /∈ ∆: If (i) holds and ∆ ⊂ R, then (ii) and (iii) are true if and only if the
following holds ([11], cf. [6, Remark 2.5]):

(iii′) For every x ∈ H and for almost every t ∈ ∆ we have

lim inf
ε↓0

−i [{(A− t− iε)−1 − (A− t+ iε)−1}x, x] ≥ 0

1Here R is regarded as real-analytic manifold in the usual way.
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(resp. ≤ 0 with lim inf replaced by lim sup); and for every x ∈ H,
every compact subinterval δ ⊂ ∆, and sufficiently small ε0 > 0 there
exists an M > 0 such that

−i [{(A− t− iε)−1 − (A− t+ iε)−1}x, x] ≥ −M (resp. ≤M)

for every t ∈ δ and ε ∈ (0, ε0].

In [14] H. Langer, A. Markus and V. Matsaev introduced sign types
for spectral points of A in the following way: A real boundary point of
σ(A) is said to be of positive type (negative type), if for every sequence
(xn) ⊂ D(A) with ‖xn‖ = 1, n = 1, 2, . . ., and limn→∞ ‖(A − λ)xn‖ = 0
it holds lim infn→∞ [xn, xn] > 0 (resp. lim supn→∞ [xn, xn] < 0). In [14] it
was assumed that A is bounded.

An open subset ∆ of R which satisfies Condition (i) above is of positive
(negative) type with respect to A if and only if all points of ∆ ∩ σ(A) are of
positive type (resp. negative type) (see [11]). In Theorem 3.3 below we need
the “if”-part of this statement and we will prove it in part 4 of the proof of
Theorem 3.3.

We say that an open set ∆ ⊂ R is of definite type if it is of positive or of
negative type.

The operator A is called definitizable over the open set ∆ ⊂ R if the
above-mentioned conditions (i) and (ii) are fulfilled and for every t ∈ ∆ all
sufficiently small one-sided open neighbourhoods of t are of definite type. A
selfadjoint operatorA with σ(A)\R consisting of no more than a finite number
of poles of the resolvent is definitizable over R if and only if it is definitizable.

Let A be definitizable (definitizable over ∆). A point t (resp. t ∈ ∆) is
called a critical point of A (resp. of A in ∆) if there is no open neighbourhood
of t of definite type. The most important consequence of local definitizability
is the existence of a local spectral function. If A is definitizable over ∆,
its spectral function E(·, A) is defined for all connected sets δ ⊂ ∆ whose
endpoints belong to ∆ and are not critical points. For such an δ, E(δ, A) is a
selfadjoint projection in H and A|E(δ, A)H is definitizable. For the definition
of the spectral function and a construction of it with the help of the extension
of the functional calculus of A (observe condition (iii) above) we refer to [6,
Section 2.2] (for a unitary operator, e.g. the Cayley transform of A, see [5]).
For the operators occurring in the present paper the additional condition of
discreteness of the nonreal spectrum in [6] plays no role and could be omitted.
For another construction of the spectral function (for bounded operators) we
refer to [14]. An open subset ∆0 ⊂ ∆ is of positive type (negative type)
with respect to A if and only if for every connected subset δ of ∆0, E(δ, A) is
defined and a nonnegative (resp. nonpositive) projection.

A critical point t of A in ∆ is called regular if there exists a neighbourhood
Ut (in R) of t such that sup ‖E(δ, A)‖ < ∞, where the supremum is taken
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over all intervals δ ⊂ Ut such that E(δ, A) is defined. A non-regular critical
point of A is called singular.

2.2. The unperturbed operator. Let (G0, (·, ·)0) be a Hilbert space and let H0

be a nonnegative selfadjoint operator in G0 such that 0 ∈ σ(H0). We set
Hm := H0 + m2, m ≥ 0. Define a scalar product (·, ·)α on D(Hα

1 ), α ∈ R,
by (x, y)α := (Hα

1 x,H
α
1 y)0, x, y ∈ D(Hα

1 ). By Gα, α ∈ R, we denote the

completion of D(Hα
1 ) with respect to the norm ‖ · ‖α, ‖x‖α := (x, x)

1
2
α , x ∈

D(Hα
1 ). The form (·, ·)0 can be extended by continuity to Gα ×G−α for every

α ∈ R. In the following, extensions of forms by continuity will be denoted in
the same way as the forms theirselves. Every continuous linear functional on
Gα is of the form (·, y)0, y ∈ G−α.

We provide the linear space H = G0 × G0 with the Krein space inner
product [·, ·] defined by

(2.2)

[(
u1

u2

)
,

(
v1
v2

)]
= (u2, v1)0 + (u1, v2)0, u1, u2, v1, v2 ∈ G0.

Set

J =

(
0 1

1 0

)

with respect to the decomposition H = G0×G0. J is a fundamental symmetry
of (H, [·, ·]) and we have
((

u1

u2

)
,

(
v1
v2

))
:=

[
J

(
u1

u2

)
,

(
v1
v2

)]
= (u1, v1)0+(u2, v2)0, u1, u2, v1, v2 ∈ G0.

Set ‖x‖ := (x, x)
1
2 , x ∈ H.

In what follows the operator A in H defined by

(2.3) A :=

(
0 1
Hm 0

)
, D(A) := G1 × G0,

m ≥ 0, will play the role of the unperturbed operator in our abstract setting.
The operator matrix in (1.1) with V , U = 0 is a special case of A.

Since JA is selfadjoint in the Hilbert space (H, (·, ·)), A is selfadjoint in
the Krein space (H, [·, ·]). Moreover, A is a nonnegative operator: we have
C \ R ⊂ ρ(A) (see [9, (2.1)]) and [Ax, x] ≥ 0 for every x ∈ D(A). There are
explicit formulas for the resolvent and the spectral function of A ([15], [9]).
If H0 is unbounded, then ∞ is a singular critical point of A. The point 0 is
a singular critical point of A if and only if m = 0 and 0 is an accumulation
point of σ(H0).

2.3. The “regularized” operator Ar. If

H 1
2

:= G 1
2
× G0, H− 1

2
:= G0 × G− 1

2
,
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we have H 1
2
⊂ H ⊂ H− 1

2
and the form [·, ·] restricted to H 1

2
×H (H ×H 1

2
)

can be extended by continuity to H 1
2
× H− 1

2
(resp. H− 1

2
× H 1

2
). Every

continuous linear functional on H 1
2

has the form [·, y] for some y ∈ H− 1
2
. A

can be extended by continuity to an operator Ã ∈ L(H 1
2
,H− 1

2
).

Let

Hr = G 1
4
× G− 1

4

and define a Krein space inner product on Hr by (2.2) with u1, v1 ∈ G 1
4
, u2,

v2 ∈ G− 1
4
. We have H 1

2
⊂ Hr ⊂ H− 1

2
. In the case of the Klein-Gordon equa-

tion the space Hr regarded as Hilbert space was called, in [19], the “number
norm” Hilbert space because of its physical meaning. The operator Ar in Hr

introduced in [7, Section 2.4] (in that paper denoted by A′) which is defined
by

(2.4) D(Ar) := {x ∈ H 1
2

: Ãx ∈ Hr}, Arx := Ãx, x ∈ D(Ar),

is a nonnegative operator in Hr and ∞ is not a singular critical point of
Ar (see [7, Lemma 2.1]). By this definition, D(Ar) = G 3

4
× G 1

4
. We have

σ(A) = σ(Ar). Moreover, the spectral subspaces with respect to A and Ar

corresponding to an arbitrary bounded interval (which are contained in D(A)
or D(Ar), respectively) coincide and A and Ar coincide on these subspaces.

Triples H 1
2
⊂ H ⊂ H− 1

2
, H 1

2
⊂ Hr ⊂ H− 1

2
and “regularized” operators

Ar can be assigned to more general selfadjoint operators A in H; we refer to
[12], [7] and [10]. In more general cases H 1

2
is defined as the middle space in the

interpolation scale between D(A) with the graph norm and H, H− 1
2

is defined

with the help of [·, ·] and Hr is again the middle space in the interpolation
scale between H 1

2
and H− 1

2
.

3. A class of bounded perturbations of A

3.1. We consider operators in H = G0 × G0 of the form

B :=

(
V0 1

Hm + U0 V ∗
0

)
,

where U0, V0 ∈ L(G0), U0 = U∗
0 . Since B arises from A (see (2.3)) by the

symmetric bounded perturbation

Z0 =

(
V0 0
U0 V ∗

0

)
,

B is selfadjoint in H. Our aim is to describe the spectrum of B and its sign
properties. Theorem 3.2 below will show that ρ(B) is not empty. For describ-
ing the nonreal part of σ(B) we shall need the numbers (cf. [9, Section 3.2])
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γ̃0 := sup {((V ∗
0 V0 − U0 −Hm)u, u)0(u, u)

−1
0 : u ∈ G1},

γ0 := (max {γ̃0, 0})
1
2 ,

γl := inf {Re (V0u, u)0 (u, u)−1
0 : u ∈ G0},

γr := sup {Re (V0u, u)0 (u, u)−1
0 : u ∈ G0}

and the following

Lemma 3.1. If L(λ) is the operator polynomial

(3.5) L(λ) = λ2 − λ(V0 + V ∗
0 ) −Hm − U0 + V ∗

0 V0,

in the Hilbert space G0 defined on G1, then the following holds:

(i) λ ∈ σ(B) if and only if 0 ∈ σ(L(λ)).
(ii) λ ∈ σp(B) if and only if 0 ∈ σp(L(λ)).

Proof. If 0 ∈ ρ(L(λ)) for some λ ∈ C, then it can easily be verified that

(3.6)

(
L(λ)−1(V ∗

0 − λ) −L(λ)−1

1 − (V0 − λ)L(λ)−1(V ∗
0 − λ) (V0 − λ)L(λ)−1

)

is the inverse of B − λ, that is λ ∈ ρ(B).
If λ ∈ ρ(B), then the system

(V0 − λ)u1 + u2 = 0
(Hm + U0)u1 + (V ∗

0 − λ)u2 = f2

has a unique solution
(
u1

u2

)
∈ D(B) for every f2 ∈ G0. This implies that for

every f2 ∈ G0, −L(λ)u1 = f2 has a unique solution u1 ∈ D(H0), that is
0 ∈ ρ(L(λ)), which proves (i). An easy computation shows that (ii) holds.

For the case when the nonreal spectrum of B consists of isolated eigen-
values the first part of the following theorem was proved in [15] (see also [17],
[9, Proposition 3.3]).

Theorem 3.2. The spectrum of B is contained in R ∪ S, where

S := {λ : |λ| ≤ γ0} ∩ {λ : γl ≤ Reλ ≤ γr}.
Moreover, there exists a neighbourhood U of R\S in C and a constant c such
that

‖(B − λ)−1‖ ≤ c(1 + |λ|)2 |Imλ|−2, λ ∈ U \R.

Proof. 1. We consider the numerical root range R(L) of L (see (3.5))

R(L) := {λ ∈ C : there exists f ∈ G1 with ‖f‖ = 1 and (L(λ)f, f) = 0}.
The relation (L(λ)f, f) = 0 holds if and only if

(λ− Re (V0f, f))2 = (Re (V0f, f))2 + ((Hm + U0 − V ∗
0 V0)f, f).
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This equation has a nonreal solution λ if and only if

((−Hm − U0 + V ∗
0 V0)f, f) − (Re (V0f, f))2 > 0.

In this case

λ = Re (V0f, f) ± i
√

((−Hm − U0 + V ∗
0 V0)f, f) − (Re (V0f, f))2.

This implies
|λ|2 = ((−Hm − U0 + V ∗

0 V0)f, f).

Hence R(L) ⊂ R ∪ S.
Now we apply [16, Theorem 26.7]. The proof of that theorem remains

true if one coefficient of the operator polynomial is unbounded. We obtain
that λ /∈ R ∪ S implies 0 ∈ ρ(L(λ)) and

‖L(λ)−1‖ ≤ (dist {λ,R ∪ S})−2.

In view of Lemma 3.1, this proves the first assertion of the theorem.
It is easy to see that there is a neighbourhood U of R \S in C such that,

for some constant c′,

‖L(λ)−1‖ ≤ c′|Imλ|−2, λ ∈ U .
Then the second assertion of the theorem follows from the matrix represen-
tation (3.6) for (B − λ)−1, and Theorem 3.2 is proved.

Theorem 3.3. The interval (min {γr, γ0},∞) is of positive type with re-
spect to B and the interval (−∞,max {γl,−γ0}) is of negative type with respect
to B. B is definitizable over

(3.7) (min {γr, γ0},∞) ∪ {∞} ∪ (−∞,max {γl,−γ0}).
Proof. 1. Let λ ∈ R be a real boundary point of the spectrum of B.

Consider a sequence of elements xn =
(
un

vn

)
∈ D(B) such that ‖xn‖ = 1 and

limn→∞ ‖(B − λ)xn‖ = 0. Then, for n→ ∞,

V0un − λun + vn → 0,(3.8)

(Hm + U0)un + V ∗
0 vn − λvn → 0.(3.9)

In view of [xn, xn] = 2 Re (vn, un) relation (3.8) gives

(3.10) Re (V0un, un) − λ(un, un) +
1

2
[xn, xn] → 0

for n→ ∞. From (3.8) and (3.9) it follows that

{Hm + U0 − (V ∗
0 − λ)(V0 − λ)}un → 0

and

((Hm + U0 − V ∗
0 V0)un, un) + 2λRe (V0un, un) − λ2(un, un) → 0.

Making use of (3.10) we obtain

(3.11) λ2(un, un) + ((Hm + U0 − V ∗
0 V0)un, un) − λ[xn, xn] → 0.
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2. Let λ ∈ (γr,∞) ∩ σ(B). Then λ is a boundary point of the spectrum
of B. Let xn =

(
un

vn

)
be as in the first part of the proof. Then by (3.10)

lim inf
n→∞

[xn, xn] =

= 2 lim inf
n→∞

{λ(un, un) − Re(V0un, un)} ≥ 2(λ− γr) lim inf
n→∞

(un, un).

We have lim infn→∞ (un, un) > 0. Indeed, by (3.8) lim infn→∞ (un, un) = 0
would contradict ‖xn‖ = 1. Hence

lim inf
n→∞

[xn, xn] > 0.

Similarly, λ ∈ (−∞, γl) ∩ σ(B) implies

lim sup
n→∞

[xn, xn] < 0.

3. Now let λ ∈ (γ0,∞) ∩ σ(B) and let xn =
(
un

vn

)
be as above. Then by

(3.11)

lim inf
n→∞

[xn, xn] =

= λ−1 lim inf
n→∞

{λ2(un, un) + ((Hm + U0 − V ∗
0 V0)un, un)} ≥

≥ λ−1(λ2 − γ2
0) lim inf

n→∞
(un, un).

As above it follows that

lim inf
n→∞

[xn, xn] > 0.

Similarly, λ ∈ (−∞,−γ0) ∩ σ(B) implies

lim sup
n→∞

[xn, xn] < 0.

4. The sign properties of B mentioned in the theorem follow now with
the help of [11] from what was proved in parts 2 and 3 of this proof. For
completeness we shall prove this here.

Let t be an arbitrary point of (min {γr, γ0},∞), and x ∈ H. We claim
that

(3.12) lim inf
ε↓0

−i [{(B − t− iε)−1 − (B − t+ iε)−1}x, x] ≥ 0.

Suppose that this is not true. Then there exist an β < 0 and a sequence (εn),
εn ↓ 0, such that

−i [{(B − t− iεn)−1 − (B − t+ iεn)−1}x, x] =(3.13)

= 2εn [(B − t− iεn)−1x, (B − t− iεn)−1x] ≤ β.

This implies bn := ‖(B− t− iεn)−1x‖ → ∞ for n→ ∞ and, hence, t ∈ σ(B).
If xn := b−1

n (B − t− iεn)−1x, then ‖xn‖ = 1 and

‖(B − t)xn‖ = b−1
n ‖x+ iεn(B − t− iεn)−1x‖ → 0.
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Hence by parts 2 and 3 of this proof

0 < b−2
n [(B − t− iεn)−1x, (B − t− iεn)−1x]

for sufficiently large n. This contradicts (3.13). Hence (3.12) holds.
Let δ be a compact subinterval of (min {γr, γ0},∞), and x ∈ H. We claim

that for a sufficiently small ε0 > 0 there exists an M > 0 such that

(3.14) −i [{(B − t− iε)−1 − (B − t+ iε)−1}x, x] ≥ −M
for all t ∈ δ and ε ∈ (0, ε0].

Suppose that this is not true. Then there exist a sequence (tn) ⊂ δ,
limn→∞ tn =: t ∈ δ and a sequence (εn), εn ↓ 0, such that

(3.15) εn [(B − tn − iεn)−1x, (B − tn − iεn)−1x] → −∞.

This implies b′n := ‖(B− tn− iεn)−1x‖ → ∞ for n→ ∞ and, hence, t ∈ σ(B).

If x′n := b
′−1
n (B−tn−iεn)−1x, then ‖x′n‖ = 1 and ‖(B−t)x′n‖ → 0. Therefore,

by what was proved above

0 < b
′−2
n [(B − tn − iεn)−1x, (B − tn − iεn)−1x]

for sufficiently large n, which contradicts (3.15). A similar reasoning applies
for (min {γr, γ0},∞) replaced by (−∞,max {γl,−γ0}). In this case we obtain
relations similar to (3.12) and (3.14) with opposite signs.

5. By Theorem 3.2 the connected set (3.7) fulfils condition (ii) in Section
2.1 with m = 2. Then part 4 of the proof together with Condition (iii′) in
Section 2.1 imply the sign properties of B stated in Theorem 3.3.

Theorem 3.3 implies the existence of a local spectral function for B with
the sign properties mentioned in Section 2.1. Then for every closed connected
subset of

(min {γr, γ0},∞) ∪ {∞} ∪ (−∞,max {γl,−γ0})
with finite endpoints we may decompose H into the corresponding spectral
subspace of B and its orthogonal complement. In the following theorem we
put down the properties of such a decomposition.

Theorem 3.4. For every open interval ∆ = (α, β) containing 0,
min {γr, γ0} and max {γl,−γ0} there exists a selfadjoint projection E∞ com-
muting with every bounded operator which commutes with the resolvent of B
such that the diagonal representation of B,

B =

(
B∞ 0
0 B(∞)

)
,

with respect to the decomposition

H = E∞H + (1 −E∞)H
has the following properties:
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(i) B∞ is a uniformly positive operator in the Krein space (E∞H, [·, ·]),
that is, there exists some µ > 0 such that [B∞x, x] ≥ µ‖x‖2 for all
x ∈ D(B∞). B(∞) is bounded.

(ii) σ(B∞) ⊂ R \ ∆, σ(B(∞)) ⊂ ∆̄ ∪ S (see Theorem 3.2).
(iii) α, β /∈ σp(B(∞)).
(iv) If E(·) and E(·;B∞) are the spectral functions of B and B∞, respec-

tively, then

E(δ) = E(δ;B∞)E∞

for all connected subsets δ of R \∆ such that ∞ is not an endpoint of
δ.

(v) If H0 is unbounded, then ∞ is a singular critical point of B∞ and,
hence, of B.

Proof. Let E(·) be the local spectral function of B. We set E∞ :=
E(R \ ∆). Then the fact that B(∞) is bounded, and the assertions (ii) and
(iii) are consequences of properties of the local spectral function of B (see [6,
Theorem 2.6]). For every connected subset ∆′ of R such that ∞ is not an
endpoint of ∆′, we have

(3.16) E(∆′;B∞) = E(∆′ ∩ (R \ ∆))|E∞H.
This implies (iv).

By (3.16) and Theorem 3.3 E(∆′;B∞) is nonnegative if ∆′ ⊂ (0,∞), and
nonpositive if ∆′ ⊂ (−∞, 0). Then it follows from [3, § 3.2, Satz 5 and its
proof] that there exists a positive integer m such that [B−m

∞ x, x] ≥ 0 for all
x ∈ E∞H. From this fact and the injectivity of B−1

∞ we infer that

(3.17) closp {E((−n, n);B∞)E∞H : n ∈ N} = E∞H
([13], see also [4, § 1.1]). The relation (3.17) implies [B−1

∞ x, x] ≥ 0 for every
x ∈ E∞H and, consequently, the first part of assertion (i) holds.

To verify (v) we assume that H0 is unbounded. Then ∞ is a singular

critical point of A. Since the nonnegative operators A and

(
B∞ 0
0 0

)
differ

by a bounded operator, we find by [1, Corollary 3.3] that ∞ is a singular
critical point of B∞ and, hence, of B. This proves Theorem 3.4.

3.2. Now we consider the operator Ar in Hr = G 1
4
× G− 1

4
as unperturbed

operator (see Section 2.3). The perturbation Z0 of A introduced at the begin-
ning of Section 3.1 can, in general, not be considered as a bounded operator
in Hr. We are going to define a perturbation of Ar which corresponds to the
perturbation Z0 of A in a natural way.

Let V denote the restriction of V0 to an operator of G 1
2

into G0. Then

V ∗ ∈ L(G0,G− 1
2
). Here “ ∗ ” denotes the adjoint with respect to the (·, ·)0-

duality in the scale Gα, α ∈ R, see Section 2.2. The restriction of U0 to G 1
2
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regarded as an operator of G 1
2

into G− 1
2

will be denoted by U . Then U = U∗.

We consider the operator

Z =

(
V 0
U V ∗

)
∈ L(H 1

2
,H− 1

2
).

The set of all λ ∈ C for which Ã + Z − λE, where Ã is the extension
of A (see Section 2.3) and E is the natural imbedding of H 1

2
in H− 1

2
, is an

isomorphism of H 1
2

onto H− 1
2

coincides with ρ(B) = ρ(A+ Z0) ([12, Section

1.1], [7, Section 2.1]). Then ρ(B) 6= ∅ implies that the operator Ar]Z defined
by

D(Ar ] Z) = {x ∈ H 1
2

: (Ã+ Z)x ∈ Hr}, Ar ] Z = Ã+ Z|D(Ar ] Z)

is closed and densely defined. Moreover, ρ(B) ⊂ ρ(Ar ] Z). If λ ∈ ρ(B) \ R,
then by

[(Ã+ Z − λE)x, y] = [x, (Ã+ Z − λ̄E)y]

for all x, y ∈ H 1
2

and, hence, for all x, y ∈ D(Ar ] Z). That is,

((Ar ] Z − λ)−1)+ = (Ar ] Z − λ̄)−1

and Ar ]Z is selfadjoint in Hr. The operator Ar ]Z will be regarded as the
operator in Hr which corresponds to the perturbed operator A + Z0 in H.

Both operators A+ Z0 and Ar ] Z are restrictions of Ã+ Z.
On the other hand, we may consider the “regularization” Br correspond-

ing to B. As D(B) = D(A), the operator Br is an operator in Hr. Since

the extension by continuity B̃ ∈ L(H 1
2
,H− 1

2
) of B coincides with Ã + Z the

operators Br and Ar ] Z coincide (see [7, (2.6)]). Then, as a consequence of
[7, Lemma 2.1] we obtain the following.

Theorem 3.5. Theorem 3.4 remains true if H and B are replaced by Hr

and Ar ] Z, respectively. Moreover, if ∞ is a critical point of Ar ] Z it is a
regular critical point. In particular, i (Ar]Z) generates a C0-group of unitary
operators in Hr.

4. An example

Let G0 = L2(R), let H0 be the operator − d2

dx2 with its usual domain, m ≥
0. We set U0 = 0, and assume that V0 is the operator Va,b· of multiplication
with the function Va,b defined by

Va,b(x) =

{
a if x ∈ (0,∞)
b if x ∈ (−∞, 0),

where a and b are complex numbers. We consider the operator B = A + Z0,
which can be written as

B =

( Va,b· 1

− d2

dx2 +m2 Va,b·

)
.
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Then the spectrum of B has the following properties:

(i) σp(B) = ∅.
(ii) σ(B) is real if and only if |Im a| ≤ m and |Im b| ≤ m. In this case σ(B)

is the union of the following four intervals:
(
−∞,Rea−

√
m2 − (Im a)2

]
,

(
−∞,Re b−

√
m2 − (Im b)2

]
,

[
Re a+

√
m2 − (Im a)2,∞

)
,

[
Re b+

√
m2 − (Im b)2,∞

)
.

(iii) Assume that σ(B) ⊂ R and Rea < Re b. Then the interval
(
Re a−

√
m2 − (Im a)2,∞

)
∩
(
Re b−

√
m2 − (Im b)2,∞

)

is of positive type with respect to B, the interval
(
−∞,Re a+

√
m2 − (Im a)2

)
∩
(
−∞,Re b+

√
m2 − (Im b)2

)

is of negative type with respect to B, and no open subinterval of
(
Rea+

√
m2 − (Im a)2,∞

)
∩
(
−∞,Re b−

√
m2 − (Im b)2

)

is of definite type.
(iv) Assume that |Im a| > m and |Im b| > m holds. Then

σ(B) = R ∪ {Rea+ it
√

(Im a)2 −m2 : t ∈ [−1, 1]}∪
∪{Re b+ it

√
(Im b)2 −m2 : t ∈ [−1, 1]}.

If, in addition, Re a < Re b, then the intervals (Re b,∞) and (−∞,Rea)
are of positive and negative type, respectively, with respect to B, and
no subinterval of (Re a,Re b) is of definite type.

We shall prove (i-iv) by verifying the following three assertions. In (i-
iv) we did not consider all possible choices for a and b. But the following
assertions apply also to the remaining cases.

Assertion 1. σp(B) = ∅.
Proof. By Lemma 3.1 it is sufficient to prove that, for every λ ∈ C,

u ∈ D(H0), L(λ)u = 0 implies u = 0.
Let u ∈ D(H0), L(λ)u = 0. Then

{
− d2

dx2
+ma

}
u(x) = 0 if x ∈ (0,∞),

{
− d2

dx2
+mb

}
u(x) = 0 if x ∈ (−∞, 0),

(4.18)

where

ma :=m2 − (λ2 − 2(Re a)λ+ |a|2),
mb :=m2 − (λ2 − 2(Re b)λ+ |b|2).

(4.19)
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It is easy to see that if ma ≤ 0 or mb ≤ 0 then there is no nontrivial solution
u ∈ D(H0) of (4.18). Assume that ma, mb ∈ C \ (−∞, 0]. Let νa (νb) be the
square root of ma (resp. mb) with negative (resp. positive) real part. Then a
solution u ∈ L2(R) of (4.18) has the form

u(x) =

{
c+e

νax if x ∈ (0,∞)
c−e

νbx if x ∈ (−∞, 0).

But the only function u of this form which is continuous at 0 and has a
continuous derivative at 0 is u = 0. This proves Assertion 1.

Let H0,+ (H0,−) be the restriction of the maximal operator corresponding

to − d2

dx2 in L2(R+) (resp. L2(R−)) by the boundary condition u(0) = 0. H0,+

and H0,− are selfadjoint operators whose spectra coincide with [0,∞).
Define an operator B+ in L2(R+) × L2(R+) by

B+ :=

(
a 1

H0,+ +m2 ā

)

and an operator B− in L2(R−) × L2(R−) by

B− :=

(
b 1

H0,− +m2 b̄

)
.

Then by Lemma 3.1 λ ∈ σ(B+) if and only if 0 ∈ σ(H0,++ma) or, equivalently,
ma ∈ (−∞, 0] (see (4.19)). The latter relation holds if and only if

λ ∈ {Rea±
√
m2 + ν2 − (Im a)2 : ν ∈ [0,∞)},

where the square root may be nonreal. This implies the following: If |Im a| ≤
m, then

(4.20) σ(B+) = R ∩ {z : |z − a| ≥ m}.
The spectrum of B+ is real. If |Im a| > m then

(4.21) σ(B+) = R ∪ {Re a+ it
√

(Im a)2 −m2 : t ∈ [−1, 1]}.
In this case σ(B+) contains nonreal points.

Similar relations hold for B+ and a replaced by B− and b. By Lemma
3.1 we have σp(B+) = σp(B−) = ∅.

We consider the operator

C :=




a 0 1 0
0 b 0 1

H0,+ +m2 0 ā 0
0 H0,− +m2 0 b̄




in L2(R+) × L2(R−) × L2(R+) × L2(R−). Since C is the direct product of
B+ and B− we have σ(C) = σ(B+) ∪ σ(B−) and σp(C) = ∅.

Assertion 2. σ(B) = σ(C).
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Proof. Let λ0 ∈ ρ(B) ∩ ρ(C) and let C0 be the restriction of C to the
linear set of all elements

(u1+, u1−, u2+, u2−)T ∈ D(H0,+) ×D(H0,−) × L2(R+) × L2(R−)

such that
d

dx
u1+(+0) − d

dx
u1−(−0) = 0.

Then B is an extension of C0 and (B−λ0)
−1 and (C −λ0)

−1 coincide on the
range of C0 − λ0 which has codimension one. This implies that

(B − λ0)
−1 − (C − λ0)

−1

has rank one. Since every point of ρ(C) belongs to a connected component of
ρ(C) containing points of ρ(B), it follows by a well-known result on compact
perturbations that σ(B) ∩ ρ(C) ⊂ σp(B). Then Assertion 1 gives ρ(C) ⊂
ρ(B). Similarly, on account of σp(C) = ∅ we obtain ρ(B) ⊂ ρ(C) and, hence,
ρ(B) = ρ(C), which proves Assertion 2.

The relations (4.20), (4.21) (and similar ones for B+ replaced by B−) and
Assertion 2 imply the description of σ(B) in (ii) and (iv).

Assertion 3. A real open interval is of positive (negative) type with respect
to B if and only if it is of positive (resp. negative) type with respect to C.

Proof. Let the open interval ∆ be of positive type with respect to B.
Suppose that there exists a point t0 ∈ ∆ such that no open neighbourhood
of t0 is of positive type with respect to C. Then since the difference of the
resolvents of B and C is of rank one, on account of [8] t0 is an eigenvalue
of C, which contradicts σp(C) = ∅. We remark that under the assumptions
of the present paper the discreteness of the nonreal spectrum assumed in the
theorem in [8] plays no role in the proof of that theorem. A similar reasoning
with B and C interchanged proves the assertion.

By applying Theorem 3.3 to B+ and B− we can easily characterize the
intervals of positive and negative type with respect to B+ and B− and, hence,
with respect to C. Then Assertion 3 implies the sign properties of B men-
tioned in (iii) and (iv).
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