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ABSTRACT. We introduce the class N& of all complex functions Q
such that Q4 (z) := z- Q(z) is a Nevanlinna function. If 0 € D(Q) and

do (t)

limy 00 Q(iy) = 0 we prove an integral representation Q(z) := [ s

—oo
with a nonmonotonic function ¢. If in particular Q4+ is an Ri-function
we obtain an operator representation Q(z) = [(A — 2z)"!F_, F_], with a
selfadjoint, nonnegative and boundedly invertible multiplication operator
A in the model Krein space (LZ,[.,.]o) and an element F_ € L2. The
nonsingularity of the critical point infinity of A makes this representation
unique up to a Krein space isomorphism.

1. INTRODUCTION

A Nevanlinna function is a complex function @ having an integral repre-
sentation of the form

(1.1) Q(z):a+6z+/oo< ! )do(t)

t—=z 1+¢2

— 00

do(t)
1+¢2

o0
where a € R, 3 > 0 and o is a nondecreasing function satisfying [ <

— 00

0o. In particular by definition @ belongs to the subclass R; of the class
of Nevanlinna functions if 8 = 0 and [ dolh) < 50 (see [KK1]). Now, if

141t

a Nevanlinna function @ satisfies lim % = 0 then for zg € D(Q), the

Y—00
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domain of holomorphy of @, the function ) has an operator representation
of the form

(1.2) Q(z) = s — i Imzg [v,v] + (2 — 20)[(A — 20)(A — 2) " v, ]

where A is a selfadjoint operator in a Hilbert space (K, [.,.]) and s e R,v € K
such that

(1.3) K =span{(4A—2)"1v | z € C\R}.

This representation is unique up to an isomorphism. Note that a holomorphic
function @ with C\R C D(Q) is a Nevanlinna function if and only if the
Nevanlinna kernel

(2,¢ € D(Q))

z —

is nonnegative, i.e. > Ng(zi,2;)¢C; > 0 for all n € N and all 2y, ..., 2, €
i,j=1
D(Q), (1,..., ¢ € C. Krein and Langer generalized the representations (1.1)
and (1.2) to Ny—functions (x € N U {0}) allowing x negative squares of the
kernel Ng(z,() (see e.g. [KL]). In this case (K,[.,.]) is a Pontrjagin space
of type Il,. In order to obtain representations by nonnegative selfadjoint
operators in II,; the class N;¥ was introduced consisting of all N,—functions
Q such that Q4 (z) := z - Q(z) is a Nevanlinna function (see e.g. [KL, §2]).
In the present note we drop the restrictions to the number of negative
squares of the kernel Ng(z,() but still assume that Q4 (z) = z- Q(z) is a
Nevanlinna function. We denote the class of all such functions @ by N . For
an NI —function @ with 0 € D(Q) and UILII;O Q(iy) = 0 we obtain an integral

representation
T do
ae = [ ep@)

with a nonmonotonic function . Under the additional condition that Q4 is
an R;—function we obtain an operator representation of the form

Qz)=[(A-2)"v,v]  (2€D(Q)

with a selfadjoint, nonnegative and boundedly invertible operator A in a Krein
space (K,[.,.]) and an element v € K such that (1.3) is satisfied. Moreover
we find a representation of this kind such that infinity is not a singular crit-
ical point of A. According to Langer’s theory of definitizable operators (see
e.g. [L]) this means that the eigenspectral function of A in the Krein space
(K,[.,.]) is bounded. Additionally we show a uniqueness result: All opera-
tor representations of @ such that infinity is not a singular critical point are
unitarily equivalent.
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Note that this result can also be deduced from general calculations of
Jonas for “definitizable functions” recently developed in [J]. However, whereas
Jonas’ approach to operator representations uses an abstract representation
theorem of Azizov [A] in this paper we present a direct construction using
the integral representation of Q1. In this way we obtain the operator repre-
sentation by means of a multiplication operator in the model Krein space L%

o0
equipped with the inner product [F,G], := [ FGdo. An earlier approach
— 00
to operator representations of holomorphic functions @ such that the kernel
Ng(z,¢) may have an infinite number of negative squares was given by Di-
jksma, Langer and de Snoo in [DLS]. In that paper no restrictions to the
function z - Q(z) were required. But then critical points could not be studied
and uniqueness statements could only be formulated in a “weak” sense.
Functions Q € N}, appear e.g. as Titchmarsh-Weyl coefficients of indef-
inite Sturm-Liouville problems and more generally of indefinite Krein—Feller
differential equations of the form —D,, D, f = zf (see [F1]).

2. INTEGRAL AND OPERATOR REPRESENTATIONS

Let Q : D(Q) — C be a holomorphic function defined on an open set
D(Q) ¢ C with C\R C D(Q) and assume that

(24) Q@) = Q) (2€D(Q),
(2.5) Q4(2) = z-Q(2) (#€D(Q)) defines a Nevanlinna function.

In analogy to the notation in [KL] we denote the class of all such functions @
by NXI. From (2.5) we obtain the integral representation

1 t
t—z 142

(2.6) Q4 (2) = a+ Bzt 70 <

— 00

) doi(t) (z € D(Q+) = D(Q))

see e.g. [KK1]) where « € R, # > 0 and o is a nondecreasing leftcontinuous
g + g
function satisfying

(2.7) / (igi(;) < .

If o4 is normalized by o4 (0) = 0 then «, 8 and o are uniquely determined.
In particular we have
8= lim M
y—oo 1y
In the following we additionally assume that
(2.8) 0 € D),

(2.9) Qliy) — 0  (y—o0).
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Then in the representation (2.6) we have 8 = 0 and o is constant in an open
neighbourhood of 0. Consequently the integrals

(2.10) o(t) ;:/ doils) o ;:/ d“;—f) (teR)

S

exist. Note that by (2.7) o_ is a bounded function. Moreover, o4 and o_
are nondecreasing whereas o is nonincreasing on (—o0,0) and nondecreasing
on (0,00). Since o need not be of bounded variation in the following the
integration with respect to o will be understood in the sense of [F'1, Appendix
A]. Then a function F': R — C is integrable with respect to ¢ if and only if
F is integrable with respect to the nondecreasing function

o= [ er)
0

5]

which is called “the total variation of o” (see [F1]). In this case we have

oo oo

/ Fdo = / F - (X(0,00) = X(=00,0)) dllo]|-

— 00 — 00

Now writing equation (2.6) by means of o we obtain

(2.11) Q+(2) = a+7o <i_Ttt?> t do(t)
= 0<+Z fi(?z, +Z — do(t) = ZZ fff_('fz)

since by (2.5) and (2.8) we have Q4 (0) = 0. This implies the integral repre-
sentation

(2.12) a0 = [ 1 ep@)

In order to interprete (2.11) and (2.12) as operator representations with mul-

tiplication operators we consider the model spaces L2 " L2 and L% of all

(equivalence classes of) functions F' : R — C which are measurable and square
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integrable with respect to o4, ||o|| and o_ respectively. We put

o0

(F,.G)y, = / FGdoy  (F,GelLl),
(F,G)y. = / FGdo_ (F,GelL2),
[F,G], := /Fédo—, (F,G)s ;:/ FGd||o|  (F,G e L2%).

Then (LZ,,(+)o,), (L2 ,(:;.)o_) and (L2, (.,.)s) are Hilbert spaces and
(L2,].,.]5) is a Krein space (see e.g. [F1, Appendix C]). Moreover
TF = (X(0,00) = X(~00,0)) " I (FelLy)

is a fundamental symmetry and (.,.), is the corresponding positive definite
inner product. For F € L2 , G € L% we have

(T+’
(F.F),, = / |FPdo. = / F@)P 11 dlloll(t) > ¢ / FP dlo]
660 = [ (6P dlol= [ 16 Hdo) e [ (6P do-

with a constant ¢ > 0. Therefore we obtain
2 2 2
(2.13) L; CL;CL;

and both imbeddings are continuous. Moreover with the set of all step func-
tions also L?7+ is dense in L2 and L2 is dense in L2 . In the space triplet (2.13)
we consider the operators of multiplication with the function a(t) :=t (¢t € R),
i.e. the operators A4, A and A_, given by

(2.14) D(As):={FelL, |a-FelLl}, ALF :=a-F.

Then in particular we have JAF = |a|F (F € D(A)). Therefore the oper-
ators Ay, JA and A_ are selfadjoint in the corresponding Hilbert spaces
(Lg(i), (- )o,) and JA is nonnegative. Consequently A is selfadjoint and
nonnegative in the Krein space (L2, [.,.],). Moreover, since o, o and o_
are constant in an open neighbourhood of 0 the operators A, A and A_ are
boundedly invertible. Therefore A is definitizable with o(A4) C R\{0} and

infinity is the only possible critical point of A (see [L]).

PROPOSITION 2.1. Infinity is not a singular critical point of A.
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PRrROOF. If |A_| denotes the absolute value of the operator A_ in
(L2 ,(.,.)s_) then we have |[A_|F = |a| - F (F € D(A-)). This implies
D(JA_|2) = {F e L2 ’ la|2F € L2 } = L2. Then the proposition follows
e.g. from [F2, Theorem 3]. O

Further properties of the space triplet and of the multiplication operators
can be adapted from [F1, Section 4.4].

Now, in order to return to representations of @4 and () we consider the
functions )

F.(t):= 7 F_(t):=1 (teR).
Then by (2.7) we have F, € ng F_ € L? . Therefore (2.11) can be written
as

Tt doy(t) B
Q= [ 7 T e (A =9 P F,
which is an operator representation of @4 according to [KL, Satz 1.4]. A
representation of @ by means of A and F_ can be obtained from (2.12) when-
ever F_ € L2. This is true if and only if o or |||, respectively, is bounded.

Further this is equivalent to

(2.15) / d(’ﬁ'(t) < o0,

i.e. Q4 is an R;—function. Now under condition (2.15) we obtain from (2.12)
(2.16) Q) = (A=) F, Fl,.

Note that without condition (2.15) equation (2.12) can also be interpreted
as an operator representation of the form (2.16) with A replaced by A_ and
with [., .], interpreted as the duality between L7, and L2 .

LEMMA 2.2. If Q. is an Ry-function the set span{(A—z)~1 F_|z € C\R}
is dense in (L2, (.,.)s)-

oo

PROOF. Let F € L2 such that 0= ((A—2)"' F_, F), = [ £ d|o]

t—=z

—00

t
for all z € C\R. If F is real and nonnegative then by u(t) := [ Fd|o|| (t € R)
0

o0

a bounded leftcontinuous nondecreasing function is defined with [ du(t)

t—z

0 (z € C\R). Then the inversion formula of Stieltjes—Livsic (see e.g. [F1,
Proposition A.10]) applied to p yields 0 = [du = [ F d||o|| for all bounded
A A

intervals A. For an arbitrary F € L2 consider a decomposition F' = Fy —
Fy — i(F3 — Fy) with nonnegative functions Fy, Fy, F3,Fy € L2 and apply
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the inversion formula for the four functions separately. Then again we obtain
J F d|o| = 0 for all bounded intervals A. This implies F' = 0 ||o|-a.e. a
A

Summing up we have proved

THEOREM 2.3. Let Q € NI with 0 € D(Q) such that Q4(z) = z -
Q(z) (2 € D(Q)) is an Ry—function (which implies (2.9)). Then with the
function o, defined in (2.10), we obtain the representations

o) = [ P ja- R (D@ = plA)

where A is the selfadjoint nonnegative and boundedly invertible multiplication
operator in the Krein space (L2,[.,.]s), given by (2.14), and F- =1 € L2.
Moreover, it holds that

L% =span{(A—2)"1F_|z € C\R}

and infinity is not a singular critical point of A. O

A linear bijective mapping F from one Kreine space (K1, [.,.]1) to another
Krein space (K3,[.,.]2) is called a Krein space isomorphism if [Ff, Fgls =
[f,g]1 for all f,g € K;. With this definition we conversely obtain

THEOREM 2.4. Let Q) satisfy the same conditions as in Theorem 2.3 and
let o, A and F_ be given as in Theorem 2.3.

(i) Assume that T : R — R is a leftcontinuous function of bounded variation
normalized by 7(0) = 0 such that

oo - [ Y ceow),

Then T =o.
(i) Assume that (K,[.,.]) is a Krein space, A is a selfadjoint, nonnegative
and boundedly invertible operator in (K,[.,.]) and f— € K such that

Qz) = [(A-2)7"f-,f-] (2€C\R),

(2.17) K = span{(4A—2z)~1f_|z € C\R}.

Then infinity is not a singular critical point of A if and only if A and
A are unitarily equivalent, i.e.

A=F' AF

with a Krein space isomorphism F from (K, [.,.]) to (L2,].,.]5). In this
case the isomorphism F can be chosen such that

F(f)=F..
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PROOF. (i) Consider decompositions 7 = 7 — 77, 0 = ot — 0~ with
bounded leftcontinuous nondecreasing functions 77,77, 07,07 : R — R (see
e.g. [F1, Appendix A]). Then the statement follows from the inversion formula
of Stieltjes—Livsic (see e.g. [F1, Proposition A.10]) applied to 71,77, 07,0~
separately. Here we use the fact that

7 dtTi(? _7 dtT:(? :7 d:j(zt) —7 d::(? (z € C\R)

(ii) If A and A are unitarily equivalent then infinity is not a singular critical
point of A since a Krein space isomorphism preserves this property.

Now assume that infinity is not a singular critical point of A. In order
to construct the required isomorphism F : K — L2 we consider the inner
product

(2.18) {f.9}-=[A""f.g] (f9€K).

If J is a fundamental symmetry of (K, [.,.]) and (f,g) = [Jf,g9] (f,g9 € K)
is the corresponding positive definite inner product then JA is selfadjoint,
nonnegative and boundedly invertible in (K, (.,.)). Therefore for f € K we
have

(219) {f7f}— = (A71f= JA Ailf) >c: (A71f7 Ailf)7
(220) {f,f}2 = [ATUSP<ATLAT) - (F ) <d-(f, f)?

with some constants ¢, d > 0. Consequently {.,.}_ is a positive definite inner
product and (K, (.,.)) is continuously imbedded in the completion of K with
respect to {.,.}_ which will be denoted by (K_,{.,.}_). From (2.18), (2.19),
(2.20) we obtain for f,g € K

(A7 f, gy = [AT'f, ATlgl={f, A7'g}_,

(A7, AT < Va (AT, A”f)ﬁ@{f,f}—-

Therefore A~! can be uniqueley extended to a bounded selfadjoint and in-
jective operator B_ in (K_,{.,.}_). Then A_ := B~' is a selfadjoint and
boundedly invertible extension of the operator A in (K_,{.,.}_). Moreover,
estimate (2.19) implies D(A_) = R(B_) C K and equation (2.18) ex-

tends to {f,g}_ = [A"'f, g] for all f € K_,g € K. Consequently for all
fe€D(A-),g € K we have {A_f, g} = [AZ" A_f, g] = [f, g] and hence,
the operator A_ is associated to the sesquilinear form [.,.] in the sense of the

First Representation Theorem [F2, Theorem 1]. Then by the Second Repre-
sentation Theorem [F2, Theorem 3| the nonsingularity of the critical point
infinity of A implies K = D(|A_|z) where |A_| denotes the absolute value of
the operator A_ in (K_,{.,.}_). Moreover, from [F2, Theorem 3] it follows
that (.,.) and {|A_|2 .,|A_|2 .}_ induce equivalent norms on D(|A_|?).
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Now let E_ denote the leftcontinuous resolution of the identitiy of A_ in
(K_-,{.,.}-). Then we have

Q) = [(A—2) "o fl={A(A—2)'f, [}

- /%d{E,(t)f,,f,},:/ f%(i (z € C\R)

where 7(t) = f sd{E_(s)f_,f-}_ (t € R). Since f_ € D(JA_|2) it holds
0
that

[ 1sld{E-(s)f-, f-}- < oo and hence 7 is of bounded variation. Then

t
(i) implies 7 = o and consequently o_(t) = [ 22 — (B (1)f_, f.}_ —

S

0

{E_(0)f—, f-}- (t € R). From property (2.17) it follows that A_ has sim-
ple spectrum with generating element f_ in the sense of [AG, Nr. 83]. This
means that span{E_(A)f_ | A C R, A interval } is dense in (K_,{.,.}_).
Indeed let f € K_ with {E_(A)f_, f}- = 0 for all intervals A. Then we
also have {E_(t)f—, f}—- =0 for all t € R and hence {(A—2)"1f_, f}_ =

[ 2 d{E_(t)f-, f}- =0. By (2.17) this implies {g, f} - =0 forallg € K

and consequently f = 0. Therefore, by [AG, Nr. 83, Satz 2] the formula

o0

O(F) ::/ FtydB_(t)f- (FelL?)

— 00

defines an isometric and bijective linear mapping ® from (L% ,(.,.),_) to
(K_,{.,.}-) such that A_ = ® A_®~1. Consequently with A_ and A_ also
the operators |A_|2 and |A_|2 are unitarily equivalent (by means of ®), i.e.
|A_|z2 = ® |A_|2®!. In particular this implies

K = D(JA-|%) = ®(D(|A-|*)) = (L)
(compare the proof of Proposition 1). Then we obtain

A=Ay = PA- 4@ = 2 AT

Moreover, ® is an isomorphism between the Hilbert spaces (L2, (.,.),) and
(K,{|A_|z ., |A_|2.}_) since for F, G € L2 we have
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{[A_|2@F, [A_|20G} = (JA_|*F,|A_|2G),_

oo

_ / F(t)GWO)t| do—(t) = (F,G),.

Therefore the equation
F,G], = / FOGOtdo_(t) = (A_F,G)y_ = {A_OF,BG}_ = [OF, 5G]

which is valid for F € D(A_), G € L2 extends by continuity to all F,G € L2.
Then the statement follows with F := ®~!. In particular note that ®(F_) =

T amr = 0

Now let us consider some examples. First let Q(z) := sin® a(cota —
Q(z)) (2 € D(Q)) where o € (0, §) and Q(2) is the Titchmarsh-Weyl coeffi-
cient of the indefinite Sturm—Liouville problem
(2.21)

—f" = zsgn(x —xo)|lr — x0|” f on [0,1],

sinaf’(0) —cosaf(0) = zsinaf(0),

fra) = zf1)
with zp € (0,1) and v > —1. Then @Q satisfies the conditions of Theorem
2.3. Moreover the operator realization of problem (2.21) in the Krein space
L2 x C? with p(z) = sgn(z — xo)|x — 20|" allows an operator representation
of @ as described in Theorem 2.4 (ii) with f_ := (0,—1,0) and infinity is
not a singular critical point. In this case F can be chosen as a generalized
Fourier transformation. This is described in detail in [F1]. In particular the
statements mentioned above follow from [F1, Example 2.4, Example 2.15,
Proposition 4.2, Section 4.2, Corollary 3.9, Theorem 4.20]. According to [F1]
the example of problem (2.21) can be generalized to certain indefinite Krein—
Feller differential equations of the form —D,,D,f = zf where the function
m starts with a jump at the left endpoint. Of this form is also the following
example.

3. A COUNTEREXAMPLE

In this section we will see that in Theorem 2.4 the operators A and A
need not necessarily be unitarily equivalent. For n € N let m,, > 0 such
o0
that > m, < co and put
n=1
1

by = nl’ M_p = =My, Ly 1= —ty (n € N)
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Then with an a € (0, §) we consider for z € C the difference equation system

(3.22)
(thrl - tn)fnfl - (thrl - tnfl)fn + (tn - tnfl)fnJrl - f
mn(tn—l - tn)(tn - tn-i—l) "

(n € Z\{-1,0,1}),

1 fi—fe _
(323) —ml 7151 — t2 = Z fl,
J2—fa1, _ 1
(3.24) p— (cotaf_q — 7t_2 —— ) = zfa+ —m_l

equipped with the “interface conditions”

(325)  lim f,= lim f,, fim ISt g e fen

n— 00 n——oo n—oo t, — tn+1 n——oo t, — tn+1
Problems of this kind are studied in detail in [F1]. In the following we will
present some consequences of [F1, Example 2.5, Example 2.16, Proposition
4.2, Section 4.2]: For all z € C\R and all z in an open neighbourhood of 0

this system has a unique solution ( fﬁ)nEZ\ {0} For that solution we put
Qz) == fZ,.

This function @ is holomorphic and satisfies (2.4), (2.5). Moreover in the

integral representation (2.6) of Q4 (z) = z2-Q(z) wehave § =0and [ do; <

00. Then @4 is an R;—function and hence @ satisfies the assumptions of
Theorem 2.3. Now by

lz(mn) = {(fn)n€Z\{o}| Z |fn|2 |mn|<oo},

neZ\{0}
(fogl = ) faBama (F=(fn), 9= (gn) € P(mn))
neZ\{0}
we define the Krein space (I12(my,), [., .]). In this Krein space we consider

the operator A with domain
D(A) :={ f =(fn) € *(m,) | f satisfies (3.25) ,
Z |(tn+1 - tn)fnfl - (thrl - tnfl)fn + (tn - tnfl)fn+1|2

< 0
[ |(tn—1 — tn)?(tn — tny1)? }

neZ\{-1,0,1}

and defined for each coordinate n € Z\{0} by the expression on the left hand
side of formula (3.22) if n € Z\{-1,0,1} and of formula (3.23) if n = 1
and of formula (3.24) if n = —1. Then A is selfadjoint, nonnegative and
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boundedly invertible in (?(m,,). Moreover for the sequence § = (6n>n€Z\ (0}
with d_1 = ﬁ , 0, =0 (n € Z\{-1,0}) we have

Qz) = [(A-2)7"6,0] (2 €D@Q),

I*(m,) = span{(A—2)"1§|z € C\R}.

Therefore A satisfies the assumptions of Theorem 2.4 (ii). However by [F1,
Theorem 3.12] infinity is a singular critical point of A and hence the model
operators A and A of @) are not unitarily equivalent. A more abstract “coun-
terexample” of this kind can be found in [J, Section 2.3].

Finally the author wants to rise the following question: “Does there exist
a class of (second order Krein-Feller type) differential operators, such that the
functions of the class N are the Titchmarsh-Weyl coefficients of this class?”
In the definite case of the class N according to Krein’s inverse spectral theory
we can take a class of differential operators determined by vibrating strings on
the positive half axis (see e.g. [KK2, Theorem 11.2]). Recently in [LW] this
class of strings was generalized in order to obtain all Nf—functions (x > 1).
However the NI -situation seems still to be open.
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