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Abstract. In the course of developing a spectral theory for non–
selfadjoint elliptic problems involving an indefinite weight function, there
arises a transmission problem which has not previously been dealt with.
By reducing our problem to one for ordinary differential equations with
the aid of the Fourier transformation, we are able to resolve the problem
and to establish a priori estimates for its solutions which we require for the
further development of the theory.

1. Introduction

A particular problem which arises in the course of developing a spectral
theory for non–selfadjoint elliptic boundary value problems involving an indef-
inite weight function is that of obtaining a priori estimates in a neighbourhood
of the origin in Rn, n ≥ 2, for solutions of equations of the form

(1.1)
L(1)(x,D)u− q2mω(x)u = f1 in Rn

+,

L(2)(x,D)u = f2 in Rn
−.

Here x = (x1, . . . , xn) = (x′, xn) denotes a generic point in Rn, D =
(D1, . . . , Dn), Dj = ∂/∂xj for j = 1, . . . , n, Rn

+ = {x ∈ Rn | xn > 0}, Rn
− =

{x ∈ Rn | xn < 0}, L(1) (resp. L(2)) is a linear differential operator of order
2m defined in Rn

+ (resp. Rn
−), where denotes closure, q is a complex param-

eter varying in a closed sector Σ of C with vertex at the origin, and ω(x) is
a real–valued function in L∞(Rn

+) such that ω is uniformly continuous and
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|ω(x)| has a positive infimum in that subset of Rn
+ for which |x| < 1. Our

assumptions concerning (1.1) will be made precise in §2.

For j = 1, 2, let L
(j)
0 (x,D) denote the principal part of L(j)(x,D), let

L
(j)
00 (D) = L

(j)
0 (0, D), and let ω0 denote the limit as x→ 0, x ∈ R

n
+, of ω(x).

Then by appealing to a well known method, we can reduce our problem con-
cerning (1.1) to that of obtaining a priori estimates for solutions of equations
of the form

(1.2)
L

(1)
00 (D)u− q2mω0u = f1 in Rn

+,

L
(2)
00 (D)u = f2 in Rn

−.

Furthermore, by employing the method of [1] (this involves eliminating the
parameter q by introducing a new space variable t), we can reduce our problem
concerning (1.2) to a more standard one, namely to that of obtaining a priori
estimates for solutions of equations of the form

(1.3)
A1u = f1 in R

n+1
+ ,

A2u = f2 in R
n+1
− ,

where A1 = A1(D,Dt) = L
(1)
00 (D) − (−1)mω0e

iθD2m
t , Dt = ∂/∂t, θ =

arg q2m, A2(D) = L
(2)
00 (D), R

n+1
+ =

{
(x, t) ∈ R

n+1 | xn > 0
}
, and

R
n+1
− =

{
(x, t) ∈ Rn+1 | xn < 0

}
. Hence, since in the sequel we shall impose

conditions which ensure that A1 and A2 are elliptic, and since transmission
problems for elliptic equations have been the subject of much investigation
(we refer to [5] and [20] for the relevant references), it is very tempting at this
stage to subsume (1.3) by the more general transmission problem

A1u1 = f1 in R
n+1
+ ,

A2u2 = f2 in R
n+1
− ,

(1.4)

Dj
nu1 −Dj

nu2 = 0 on xn = 0 for j = 0, . . . , (2m− 1),

and then arrive at the required a priori estimates by appealing to the liter-
ature. Unfortunately, though, the problem (1.4) falls outside the scope of
the investigations cited above. Indeed, to clarify this last statement, let us
remark that the usual method for obtaining a priori estimates for solutions of
(1.4) (see [20]) is to map the closure of R

n+1
− onto the closure of R

n+1
+ , and in

this way reduce the problem (1.4) to a boundary value problem for an elliptic
system acting in R

n+1
+ ; the required a priori estimates can then be directly

obtained from [4]. However, if one applies this method to the problem (1.4),
then one arrives at a system which is not elliptic, and hence the results of [4]
cannot be used. Thus in order to resolve our problem, new methods must be
introduced.
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One finds in the literature many papers devoted to the spectral theory
for general selfadjoint elliptic boundary value problems involving an indefinite
weight function (cf. [14], [15], and [19]). However for non–selfadjoint prob-
lems, most of the literature to date is restricted to the case where the elliptic
operator involved is of the second order, i.e., m = 1 (cf. [9], [10], [11], and [13]).
To show the connection of our work with the works just cited, let us point
out that for the case m = 1, a priori estimates for solutions of a less general
problem than (1.1) were established in [9] and these were used in [10], [11],
and [13] to derive information concerning the completeness of the principal
vectors in certain function spaces and the angular and asymptotic distribution
of the eigenvalues of the operator induced in an appropriate Hilbert space by
the non–selfadjoint elliptic problem. Analogous results were also derived in
[6], [8], and [12] for the case m > 1, but only under the assumption that the
reciprocal of the weight function was essentially bounded in the space con-
cerned. Hence as a consequence of the a priori estimates established in this
paper, we are now able to extend these results to the case where the weight
function vanishes on a set of positive measure, and indeed this topic will be
treated in a subsequent paper.

In §2 of this paper we introduce some further assumptions and state our
main result (see Theorem 2.1). §3 is devoted to some technical results which
we require for the proof of Theorem 2.1 and these are used in §4 to prove the
theorem.

2. The main result

In this section we are going to introduce some further assumptions con-
cerning (1.1) and state the main result of this paper (see Theorem 2.1 below).
Accordingly, in conjunction with the notation given in §1, we introduce the
further notation Dα = Dα1

1 · · ·Dαn
n , where α = (α1, . . . , αn) is a multi–index

whose length
∑n

j=1 αj is denoted by |α|. Furthermore, for 0 ≤ s <∞ and G

an open set in Rp(p ∈ N), we let Hs(G) denote the usual Sobolev–Slobodeckii
space of order s related to L2(G) and denote by ( . , . )s,G and ‖ ‖s,G the inner
product and norm, respectively, in this space, while for s < 0, we let ‖ ‖s,Rn−1

denote the norm in the Bessel–potential space Hs
2(Rn−1) (see [21, p.177]).

Also for d > 0 we let Bd denote the open ball in Rn with centre at the origin
and radius d. Turning now to (1.1), we henceforth suppose that



92 MELVIN FAIERMAN

Assumption 2.1.

(1) L(1)(x,D) =
∑

|α|≤2m a
(1)
α (x)Dα, where the a

(1)
α (x) are complex–valued

functions in L∞(Rn
+) such that a

(1)
α ∈ C0(Rn

+ ∩ B1) for |α| = 2m;

(2) L(2)(x,D) =
∑

|α|≤2m a
(2)
α (x)Dα, where the a

(2)
α (x) are complex–valued

functions in L∞(Rn
−) such that a

(2)
α is of class Cm(Rn

− ∩B1) if m < |α| < 2m

and of class C2m(Rn
− ∩ B1) if |α| = 2m;

(3) (−1)mL
(1)
00 (ξ) − ω0q

2m 6= 0 for all ξ = (ξ1, . . . , ξn) = (ξ′, ξn) ∈ Rn and
q ∈ Σ satisfying |ξ| + |q| 6= 0;

(4) L(2)(0, D) is properly elliptic.

For u ∈ H2m(Rn
+) and q ∈ Σ\{0} let us introduce the norm

‖|u|‖+
q = ‖u‖2m,Rn

+
+ |q|2m‖u‖0,Rn

+
,

while for u ∈ H2m(Rn
−) and q ∈ Σ\{0} we introduce the norm

‖|u|‖−q = ‖u‖2m,Rn
−

+ |q|m−1/2‖u‖m+1/2,Rn
−

+|q|m−1/2

( 0∫

−∞

∥∥(D2m
n u)( . , xn)

∥∥2

−(m−1/2),Rn−1dxn

)1/2

.

Then our main result is contained in the following theorem (here we write
supp for support).

Theorem 2.1. Given any ε > 0 there exists a δ > 0 such that for any
u ∈ H2m(Rn) with supp u ⊂ Bδ and any q ∈ Σ with |q| ≥ ε, we have

‖|u|‖+
q + ‖|u|‖−q ≤ c

[∥∥∥
(
L(1) − q2mω(x)

)
u
∥∥∥

0,Rn
+

+ ‖L(2)u‖0,Rn
−

+|q|m−1/2

( 0∫

−∞

∥∥(L(2)u)( . , xn)
∥∥2

−(m−1/2),Rn−1dxn

)1/2
]
,

where the constant c depends upon the a
(j)
α (x) and their derivatives, ω(x), Σ, ε,

m, and n, but not upon u or q.

3. Preliminaries

In this section we are going to derive some results which are needed for
the proof of Theorem 2.1 Accordingly, for |q| ≥ ε let

L−(D) = L
(2)
00 (D), L+(D, q) = L

(1)
00 (D) − q2mω0,
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and for u ∈ C∞(Rn) with supp u ⊂ Bd, 0 < d < 1, let
(
a−1
− L−(D)u

)
(x) = f−(x) for x ∈ R

n
−,(3.1)

(
a−1
+ L+(D, q)u

)
(x) = f+(x, q) for x ∈ R

n
+,(3.2)

where a± denotes the coefficient of D2m
n in the operators L±. Then

Lemma 3.1. For 0 ≤ r < m we have
∥∥(Dr

nu)( . , 0)
∥∥

2m−r−1/2,Rn−1

≤ c
[
‖L+u‖0,Rn

+
+ ‖L−u‖0,Rn

−
+ Φ(d)

∥∥(Dr
nu)( . , 0)

∥∥
0,Rn−1

]
,

|q|2m−r−1/2
∥∥(Dr

nu)( . , 0)
∥∥

0,Rn−1 ≤ c

[
‖L+u‖0,Rn

+

+
2m−1∑

j=m

|q|2m−j−1/2

( 0∫

−∞

∥∥(L−u)( . , xn)
∥∥2

−(2m−j−1/2),Rn−1dxn

)1/2

+Φ(d)|q|2m−r−1/2
∥∥(Dr

nu)( . , 0)
∥∥

0,Rn−1

]
,

where Φ(d) = 0 if m = 1, Φ(d) = d(m−1/2)(n−1)/2(m−1) if m > 1, and the

constant c depends only upon the a
(j)
α (0) (|α| = 2m), ω0, Σ, ε, m, and n.

Proof. Writing t for xn, let

U(ξ′, t) = (Fu)(ξ′, t), F+(ξ′, t, q) = (Ff+)(ξ′, t, q), F−(ξ′, t) = (Ff−)(ξ′, t),

where Fv denotes the Fourier transformation of v with respect to x′(x′ → ξ′),
and let us also introduce the notation g(r)(t) = drg(t)/dtr for r ≥ 0. Then it
follows from (3.1–2) that for each pair (ξ′, q), U(ξ′, t) is the unique solution
of each of the initial value problems

a−1
− L−(iξ′, d/dt)y = F−(ξ′, t) in − d ≤ t ≤ 0,

y(r)(−d) = 0 for r = 0, . . . , (2m− 1),

(3.3) and

a−1
+ L+(iξ′, d/dt, q)y = F+(ξ′, t, q) in 0 ≤ t ≤ d,

y(r)(d) = 0 for r = 0, . . . , (2m− 1).

Let us now hold ξ′ 6= 0 and q fixed and write y(t), h+(t), and h−(t)
for U(ξ′, t), F+(ξ′, t, q), and F−(ξ′, t), respectively. Then as a consequence
of Assumption 2.1. and [7, Proposition 2.2], we know that in the µ–plane,
L+(iξ′, iµ, q) and L−(iξ′, iµ) each have precisely m zeros, counted according
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to multiplicity having positive (resp. negative) imaginary parts. Hence it
follows from (3.3) and the arguments of [3, §1] that for r = 0, . . . , (2m− 1),

y(r)(t) =

2∑

j=1

Y −
jr (t) in − d ≤ t ≤ 0,

= −
2∑

j=1

Y +
jr (t) in 0 ≤ t ≤ d,

where for j = 1, 2,

(3.4)

Y −
jr (t) =

t∫
−d

I−jr(t, τ)h−(τ)dτ,

Y +
jr (t) =

d∫
t

I+
jr(t, τ)h+(τ)dτ,

I−jr(t, τ) = (2π)−1
∫

γ−
j

(iµ)rei(t−τ)µ
[
a−1
− L−(iξ′, iµ)

]−1
dµ,

I+
jr(t, τ) = (2π)−1

∫

γ+
j

(iµ)rei(t−τ)µ
[
a−1
+ L+(iξ′, iµ, q)

]−1
dµ,

and γ+
1 and γ−1 are closed contours lying in the half–plane Imµ > 0 which en-

close all the zeros of L+(iξ′, iµ, q) and L−(iξ′, iµ), respectively, having positive
imaginary parts, while γ+

2 and γ−2 are closed contours lying in the half–plane
Imµ < 0 which enclose all the zeros of L+(iξ′, iµ, q) and L−(iξ′, iµ), respec-
tively, having negative imaginary parts. Thus we have

(3.5) y(r)(0) =
∑2

j=1 Y
−
jr (0) and y(r)(0) = −∑2

j=1 Y
+
jr (0)

for r = 0, . . . , (2m−1). The equations (3.5) are not adequate for our purposes
in that the integrands I−2r(0, τ) and I+

1r(0, τ) may become exponentially large.
Consequently, in order to eliminate these terms let us observe from (3.5) that

(3.6) Y +
1r (0) + Y −

2r (0) = −Y +
2r(0) − Y −

1r (0) for r = 0, . . . , (2m− 1).

Now let {µ+
k }s+

1 (resp. {µ−
k }s−

1 ) denote the distinct zeros of L+(iξ′, iµ, q) (resp.

L−(iξ′, iµ)) and suppose that µ±
k has multiplicity m±

k for k = 1, . . . , s± and

that Imµ±
k is positive (resp. negative) for k = 1, . . . , n± (resp. k = (n± +

1), . . . , s±). Then it follows from the residue theorem that (3.6) can be written
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in the form

n+∑

k=1

m+
k −1∑

p=0

r!

Γ(r − p+ 1)
(iµ+

k )r−pJ+
kp +

s−∑

k=n−+1

m−
k −1∑

p=0

r!

Γ(r − p+ 1)
(iµ−

k )r−pJ−
kp =(3.7)

= −Y +
2r(0) − Y −

1r (0) for r = 0, . . . , (2m− 1),

where Γ(z) denotes the Gamma function,

J±
kp = ±

±d∫

0

c−iτµ±
k P±

kp(τ)h±(τ)dτ,

and P±
kp(τ) is a polynomial in τ of degree m±

k − 1 − p whose coefficients are

polynomials in the (µ±
k −µ±

j )−1, j 6= k. We may view (3.7) as a simultaneous

system of 2m linear equations in the “unknowns” J±
kp, and we let A denote

the 2m×2m matrix constructed from the coefficients on the left side of (3.7).
Then it is not difficult to verify that

(3.8) det A =

( n†∏

k=1

mk−1∏

j=1

j!

) n†∏

j,k=1
j>k

(νj − νk)mjmk 6= 0,

where mk = m+
k , νk = iµ+

k for k = 1, . . . , n+ and mn++k = m−
n−+k, νn++k =

iµ−
n−+k for k = 1, . . . , (s− − n−), while n† = n+ + s− − n−. Hence if we solve

(3.7) for the J±
kp and bear in mind that the first (resp. second) double sum on

the left side of (3.7) is Y +
1r (0) (resp. Y −

2r (0)), then we see that

(3.9)
Y −

2r (0) = −∑2m−1
j=0 Q−

rj

(
Y +

2j (0) + Y −
1j (0)

)

Y +
1r (0) = −∑2m−1

j=0 Q+
rj

(
Y +

2j (0) + Y −
1j (0)

)

for r = 0, . . . , (2m− 1), where Q−
rj = det A−

rj/ det A, Q+
rj = det A+

rj/ det A,

and with A = (aks), 1 ≤ k, s ≤ 2m, A−
rj (resp. A+

rj) is the matrix obtained

from A by replacing the (j + 1)–th row of A by (0 . . . 0ar+1,m+1 . . . ar+1,2m)
(resp. (ar+1,1 . . . ar+1,m0 . . . 0)).

Let us next fix our attention upon a pair r, j and for z ∈ C and σ an
integer satisfying 0 ≤ σ ≤ 2m−1 let fσ(z) = zσ. Then employing the notation
of (3.8), we assert that

( n+∏

k=1

n†∏

`=n++1

(ν` − νk)m`mk

)
Q+

rj
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is a determinant of order 2m whose entry in the (σ + 1)–th row and(∑s−1
k=1 mk + p+ 1

)
–th column (1 ≤ s ≤ n+, 0 ≤ p ≤ ms − 1) is

1

2πi

∫

γ1

fσ(z)(∏s−1
k=1(z − νk)mk

)
(z − νs)p+1

dz,

where γ1 is a closed contour lying in the left–half of the complex z–plane en-
closing all the νk for which 1 ≤ k ≤ n+, and we are to replace fσ(z) by fr(z) if

σ = j, while its entry in the (σ+1)–th row and
(
m+

∑s−1
k=n++1mk + p+ 1

)
–

th column (n+ + 1 ≤ s ≤ n†, 0 ≤ p ≤ ms − 1) is

1

2πi

∫

γ2

fσ(z)(∏s−1
k=n++1(z − νk)mk

)
(z − νs)p+1

dz,

where γ2 is a closed contour lying in the right–half of the complex z–plane
enclosing all the νk for which (n+ + 1) ≤ k ≤ n†, and we are to replace fσ(z)
by 0 if σ = j. To establish the assertion, let us firstly suppose that the µ±

k

of (3.7) are all simple zeros. Then by successive subtractions of the first m
columns and of the last m columns of Q+

rj = κ−1 detA+
rj (κ = detA) and by

appealing to the results of [16, p.231] concerning the calculus of differences,
we immediately obtain the validity of the assertion for this case. Turning to
the case where the µ±

k are not all simple, let us replace L+(µ) and L−(µ) by
L+(µ)+ζ and L−(µ)+ζ, respectively, where for brevity we have written L+(µ)
for L+(iξ′, iµ, q) and L−(µ) for L−(iξ′, iµ), and where ζ ∈ C\{0} is small in
modulus. Let us also denote the analogue of Q+

rj for the perturbed polyno-

mials by Q+
rj(ζ). Since the zeros of L±(µ) + ζ are all simple, the assertion is

certainly true for Q+
rj(ζ). On the other hand, by successive subtractions of

the columns of Q+
rj(ζ) corresponding to those zeros of L±(µ) + ζ which tend

to a common zero of L±(µ) as ζ → 0, by appealing to the results of [16], and
by making use of the Taylor series expansion of fσ(z) about the points νk, it
is not difficult to show with the aid of the residue theorem that Q+

rj(ζ) → Q+
rj

as ζ → 0. In light of these facts, we need only let ζ → 0 to arrive at the

assertion for the general case. Hence if we put ρ =
(
|ξ′|2 + |q|2

)1/2
, then it

follows from what we have just said about Q+
rj and from the Laplace method

for expanding a determinant that

∣∣Q+
rj(ξ

′, q)
∣∣ ≤ cρr−j

(
|ξ′|/ρ

)max{m−j,0}
,

where the constant c does not depend upon r, j, ξ′, or q. Similarly, we can
show that ∣∣Q−

rj(ξ
′, q)

∣∣ ≤ c|ξ′|r−j
(
|ξ′|/ρ

)max{j−m+1,0}
.
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We conclude immediately from (3.4) and the second equations of (3.5) and
(3.9) that for 0 ≤ r < m,

∥∥(Dr
nu)( . , 0)

∥∥2

2m−r−1/2,Rn−1

≤ c
[
‖L+u‖2

0,Rn
+

+ ‖L−u‖2
0,Rn

−
+
∥∥(F−1χ) ? (Dr

nu)( . , 0)
∥∥2

0,Rn−1

]
,

|q|2(2m−r−1/2)
∥∥(Dr

nu)( . , 0)
∥∥2

0,Rn−1 ≤ c

[
‖L+u‖2

0,Rn
+

+
2m−1∑

j=m

|q|2(2m−j−1/2)

0∫

−∞

∥∥(L−u)( . , xn)
∥∥2

−(2m−j−1/2),Rn−1dxn

+|q|2(2m−r−1/2)
∥∥(F−1χ) ? (Dr

nu)( . , 0)
∥∥2

0,Rn−1

]
,

where χ = χ(ξ′) denotes the characteristic function of the set {ξ′ ∈
Rn−1

∣∣ |ξj | < δ = d1/2(m−1) for j = 1, . . . , (n − 1)} if m > 1 and is zero
otherwise, ? denotes convolution, and the constant c depends only upon the

a
(j)
α (0)

(
|α| = 2m

)
, ω0, Σ, ε, m, and n. Observing from [21, Lemma 2.2.4,

p.167] that (F−1χ)(x′) = (2/π)(n−1)/2
∏n−1

j=1

(
sin{δxj}

)
/xj , the assertions of

the lemma now follow from an argument similar to that used in the proof of
Young’s inequality for convolution integrals.

Turning to the next result of this section, let f ∈ C∞(Rn) such that
supp f ⊂ B1 and let us introduce in Rn the function g(x) by putting

g(x′, xn) = f(x′, xn) for xn ≤ 0,

=
∑̀

j=1

cjf(x′,−xn/j) for xn > 0,

where ` = 2m+2n+3 and
∑`

j=1(−j)rcj = 1 for r = −(n+1), . . . , (2m+n+1).

It is important to observe that g ∈ Cn+1(Rn) and supp g ∈ B`. For 0 6=
ξ ∈ Rn, let U1(ξ) = G(ξ)/L−(iξ), where G(ξ) = (Fg)(ξ) and F denotes the
Fourier transformation in R

n with respect to x (x → ξ), and put u1 = F−1U1.
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Lemma 3.2. It is the case that u1 ∈ H2m(Rn)∩C2m(Rn) and L−(D)u1 =

g in R
n. Furthermore,

(
1+ |x|

)n+1
(Dαu1)(x) is bounded in R

n for any multi–
index α satisfying |α| ≤ 2m. Finally,

‖u1‖m+1/2,Rn +

( ∞∫

−∞

∥∥(D2m
n u1)( . , xn)

∥∥2

−(m−1/2),Rn−1dxn

)1/2

≤ c

( ∞∫

−∞

∥∥(f( . , xn)
∥∥2

−(m−1/2),Rn−1dxn

)1/2

,

where the constant c depends only upon the a
(2)
α (0)

(
|α| = 2m

)
, m, and n,

but not upon f .

Proof. For multi–index α = (α1, . . . , αn) let Dα = Dα1
1 · · ·Dαn

n , where
Dj = ∂/∂ξj for j = 1, . . . , n. Then it follows from the definitions that

(
1 +

|ξ|
)n+1

(DαG)(ξ) is bounded in Rn and that U1(ξ) = (f, h)0,Rn
−
, where

h = h(x, ξ) =

(
(−i)n+1

(2π)n/2

)(
ξ2m+n+1
n

L−(ξ)

)
x2m+n+1

n e−iξ′·x′

×
∞∑

r=0

(−iξnxn)r

(r + 2m+ n+ 1)!

[
1 −

∑̀

j=1

(−j)r+2m+n+2cj

]
,

h denotes complex conjugation of h, and · denotes the inner product in
Rn−1. We conclude from these facts that ξαU1(ξ) ∈ L2(Rn) ∩ L1(Rn) for
|α| ≤ 2m, and hence it follows from an argument similar to that used in
the proof of Lemma 2.10 of [18, p.72] that u1 ∈ H2m(Rn) ∩ C2m(Rn). That
L−(D)u1 = g in Rn is now an immediate consequence of these results and
the definition of u1. Moreover, if α is the multi–index given in the statement
of the lemma and β = (β1, . . . , βn) is any multi–index satisfying |β| ≤ n+ 1,
then it is clear from what has been shown above that Dβ

(
ξαU1(ξ)

)
∈ L1(Rn),

and hence xβ(Dαu1)(x) is bounded in Rn. It follows from this fact that(
1 + |x|

)n+1
(Dαu1)(x) is bounded in R

n, and thus all the assertions of the
lemma, except the last, have now been proved.

In proving the last assertion, we shall make use of the fact that

∞∫

−∞

∥∥(D2m
n u1)( . , xn)

∥∥2

−(m−1/2),Rn−1dxn =

∫

Rn

(
1+|ξ′|2

)−(m−1/2)
ξ4m
n

∣∣U1(ξ)
∣∣2dξ.
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Then fixing our attention firstly upon the case 0 < |ξ| < 1, we have

(
1 + |ξ|2

)(m+1/2)/2
U1(ξ) =

0∫

−∞

(
f( . , xn), v1( . , xn, ξ)

)
0,Rn−1dxn,

(
1 + |ξ′|2

)−(m−1/2)/2
ξ2m
n U1(ξ) =

0∫

−∞

(
f( . , xn), v2( . , xn, ξ)

)
0,Rn−1dxn,

where v1(x
′, xn, ξ) = χ(x)

(
1 + |ξ|2

)(m+1/2)/2
h(x, ξ), v2(x

′, xn, ξ) = χ(x)×
(
1 + |ξ′|2

)−(m−1/2)/2
ξ2m
n h(x, ξ), and χ(x) ∈ C∞(Rn), 0 ≤ χ(x) ≤ 1, χ(x) = 1

for x ∈ B1, and suppχ ⊂ B2. Hence if we let 〈 . , . 〉 denote the pairing between

H
−(m−1/2)
2 (Rn−1) and its dual Hm−1/2(Rn−1), then for −∞ < xn < 0 we

have ∣∣∣
(
f( . , xn), vj( . , xn, ξ)

)
0,Rn−1

∣∣∣ =
∣∣∣
〈
f( . , xn), vj( . , xn, ξ)

〉∣∣∣
≤

∥∥f( . , xn)
∥∥
−(m−1/2),Rn−1

∥∥vj( . , xn, ξ)
∥∥

m−1/2,Rn−1

for j = 1, 2, and so we conclude that

I0 =

∫

|ξ|<1

(
1 + |ξ|2

)m+1/2∣∣U1(ξ)|2dξ +

∫

|ξ|<1

(
1 + |ξ′|2

)−(m−1/2)
ξ4m
n

∣∣U1(ξ)
∣∣2dξ(3.10)

≤ c

0∫

−∞

∥∥f( . , xn)
∥∥2

−(m−1/2),Rn−1dxn,

where here and below c denotes a generic constant which may vary from

inequality to inequality and which only depends upon the a
(2)
α (0) (|α| = 2m),

m, and n. On the other hand,

I∞ =

∫

|ξ|≥1

(
1 + |ξ|2

)m+1/2∣∣U1(ξ)
∣∣2dξ +

∫

|ξ|≥1

(
1 + |ξ′|2

)−(m−1/2)
ξ4m
n

∣∣U(ξ)
∣∣2dξ

≤ c‖g‖2
−(m−1/2),Rn ≤ c

∞∫

−∞

∥∥g( . , xn)
∥∥2

−(m−1/2),Rn−1dxn,

and hence it follows from the definition of g that (3.10) remains valid when
I0 there is replaced by I∞. This completes the proof of the lemma.
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We come now to the final results of this section; and in proving these
results we shall make use of the extension operator E : C2m(Rn

−) → C2m(Rn)
defined by

(Ef)(x′, xn) = f(x′, xn) if xn ≤ 0,

=

2m+1∑

j=1

cjf(x′,−xn/j) if xn > 0

for f ∈ C2m(Rn
−), where

∑2m+1
j=1 (−1/j)rcj = 1 for r = 0, . . . , 2m.

Lemma 3.3. Let u ∈ C∞(Rn) such that supp u ⊂ B1 and let b ∈ L∞(Rn
−)

such that b is of class C2m in some subset of Rn
−∩B1 containing supp u∩Rn

−.
Let α = (α1, . . . , αn) be a multi–index satisfying |α| = 2m and let γ > 0.
Then

(3.11)

0∫
−∞

∥∥(Dα(bu)
)
( . , xn)

∥∥2

−(m−1/2),Rn−1dxn ≤ c

[
γαn‖bu‖m+1/2,Rn

−

+γαn−2m
0∫

−∞

∥∥(D2m
n (bu)

)
( . , xn)

∥∥2

−(m−1/2),Rn−1dxn

]
,

where the constant c depends only upon m and n.

Proof. We have

I =

0∫

−∞

∥∥(Dα(bu)
)
( . , xn)

∥∥2

−(m−1/2),Rn−1dxn

≤
0∫

−∞

( ∫

Rn−1

(
1 + |ξ′|2

)m−αn+1/2∣∣(Dαn
n F(bu)

)
(ξ′, xn)

∣∣2dξ′
)
dxn

≤
∫

Rn

(
1 + |ξ′|2

)m−αn+1/2|ξn|2αn
∣∣(FE(bu)

)
(ξ)
∣∣2dξ,

where F and F are the Fourier transformations in Rn−1 and Rn, respectively,
introduced above. Hence if in this last integral we decompose the domain of
integration into the sets Ω = {ξ ∈ Rn | ξ2n/

(
1 + |ξ|2

)
≤ γ and Rn\Ω, then we

obtain

I ≤ γαn
∥∥E(bu)

∥∥
m+1/2,Rn

+ γαn−2m

∫

Rn−1

(
1 + |ξ′|2

)−(m−1/2)
( ∞∫

−∞

∣∣(FD2m
n E(bu)

)
(ξ′, xn)

∣∣2dxn

)
dξ′,

and the assertion of the lemma follows immediately from the definition of E
and some standard interpolation results (see Theorem 5.1, p.27, Theorem 7.1,
p.30, and Theorem 9.1, p.40 of [17]).
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A scrutiny of the proof of Lemma 3.3 shows that

Corollary 3.4. Let u and b satisfy the hypotheses of Lemma 3.3 and
let r ∈ Z satisfy 0 ≤ r ≤ 2m. Then the inequality (3.11) remains valid when
the expression on the left side of this inequality is replaced by

∫

Rn−1

(
1 + |ξ′|2

)m−r+1/2
( 0∫

−∞

∣∣(Dr
nF(bu)

)
(ξ′, xn)

∣∣2dxn

)
dξ′.

4. Proof of Theorem 2.1

Let us suppose firstly that u ∈ C∞(Rn) such that supp u ⊂ Bd, 0 < d < 1.
Then referring to the beginning of §3 for terminology and assuming henceforth
that |q| ≥ ε, it follows from [7, §3] that

‖|u|‖+
q ≤ c

[
‖L+u‖0,Rn

+
+

m−1∑

r=0

(∥∥(Dr
nu)( . , 0)

∥∥
2m−r−1/2,Rn−1

+|q|2m−r−1/2
∥∥(Dr

nu)( . , 0)
∥∥

0,Rn−1

)]
,

where here and below c denotes a generic constant which may vary from
inequality to inequality and in each case it can only depend upon some or

all of the quantities a
(j)
α (0)

(
|α| = 2m

)
, ω0, Σ, ε, m, and n. Hence in light of

Lemma 3.1 and the interpolation and trace inequalities of [7, §1], we obtain

‖|u|‖+
q ≤ c

[
‖L+u‖0,Rn

+
+ ‖L−u‖0,Rn

−

+
2m−1∑

j=m

|q|2m−j−1/2

( 0∫

−∞

∥∥(L−u)( . , xn)
∥∥2

−(2m−j−1/2),Rn−1dxn

)1/2

+Φ(d)‖|u|‖+
q

]
.

We conclude immediately from this last inequality and a minor modification
of the interpolation inequality of [7, §1] that

‖|u|‖+
q ≤ c

[
‖L+u‖0,Rn

+
+ ‖L−u‖0,Rn

−

(4.1)

+|q|m−1/2

( 0∫

−∞

∥∥(L−u)( . , xn)
∥∥2

−(m−1/2),Rn−1dxn

)1/2

+ Φ(d)‖|u|‖+
q

]
.
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Likewise it follows from [3, Theorem 14.1] that

‖u‖2m,Rn
−
≤ c

[
‖L−u‖0,Rn

−
+

m−1∑

r=0

∥∥(Dr
nu)( . , 0)

∥∥
2m−r−1/2,Rn−1

]
,

and hence by arguing as in the previous case, we obtain

(4.2) ‖u‖2m,Rn
−
≤ c
[
‖L+u‖0,Rn

+
+ ‖L−u‖0,Rn

−
+ Φ(d)‖|u|‖+

q

]
.

Turning now to estimates for

‖u‖m+1/2,Rn
−

and

( 0∫

−∞

∥∥(D2m
n u)( . , xn)

∥∥2

−(m−1/2),Rn−1dxn

)1/2

,

let gr(x
′) = (Dr

nu)(x
′, 0) for r = 0, . . . , (m − 1), f(x) =

(
L−(D)u

)
(x), let u1

denote the function of Lemma 3.2 constructed from the f just defined, and for
r = 0, . . . , (m− 1) let hr(x

′) = (Dr
nu1)(x

′, 0). If u2 = u−u1 and v = u2 | Rn
−,

then v is a solution of the boundary value problem:

L−(D)y = 0 in R
n
−, Dr

ny = gr(x
′)−hr(x

′) on xn = 0 for r = 0, . . . , (m−1).

Hence if we write t for xn, let

V (ξ′, t) = (Fv)(ξ′, t), Gr(ξ
′) = (Fgr)(ξ

′), Hr(ξ
′) = (Fhr)(ξ

′),

where F is the Fourier transformation in R
n−1 introduced in §3, and observe

that for each ξ′ ∈ Rn−1, V (ξ′, t), as a function of t, is in H2m
(
(−∞, 0)

)
, then

it follows from [3, §1] (see also [7, §3]) that for ξ′ 6= 0 and t < 0,

(4.3) V (ξ′, t) =

m−1∑

r=0

(
Gr(ξ

′) −Hr(ξ
′)
)
Ωr(ξ

′, t),

where

(4.4) Ωr(ξ
′, t) =

∫

γ

eitµ Nr(ξ
′, µ)

M−(ξ′, µ)
dµ,

γ is a closed contour lying in the half–plane Imµ < 0 which enclosed all the
zeros

{
µj(ξ

′)
}m

1
of L−(ξ′, µ) having negative imaginary parts, M−(ξ′, µ) =∏m

j=1

(
µ − µj(ξ

′)
)
, and Nr(ξ

′, µ) is a polynomial in µ whose coefficients are

infinitely differentiable functions of ξ′ for ξ′ ∈ Rn−1\{0} and which is positive
homogeneous of degree m− r − 1 in all its arguments.

Next with E denoting the extension operator and F the Fourier trans-
formation in Rn introduced in §3 and bearing in mind (4.3–4), we have for
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ξ′ 6= 0,

(2π)1/2(FEv)(ξ) =

∞∫

−∞

e−iξnt(FEv)(ξ′, t)dt

=

m−1∑

r=0

(
Gr(ξ

′) −Hr(ξ
′)
) ∫

γ

Nr(ξ
′, µ)

M−(ξ′, µ)

[ 0∫

−∞

eit(µ−ξn)dt(4.5)

+

2m+1∑

j=1

jcj

0∫

−∞

eit(µ+jξn)dt

]
dµ.

Observing that the expression in the square bracket on the right side of (4.5)
is just

−i
[

1

µ− ξn
+

2m+1∑

j=1

jcj
µ+ jξn

]
= −i

( 2m+1∏

j=1

(1+j)

)
µ2m+1

/
(µ−ξn)

2m+1∏

j=1

(µ+jξn),

we conclude that

∣∣(FEv)(ξ)
∣∣ ≤ c

m−1∑

r=0

∣∣Gr(ξ
′) −Hr(ξ

′)
∣∣
/
|ξ′|r+1

(
1 + |ξn|/|ξ′|

)2m+2
.

Thus if we put

W (φ) = ‖φ‖m+1/2,Rn
−

+

( 0∫

−∞

∥∥(D2m
n φ)( . , t)

∥∥2

−(m−1/2),Rn−1dt

)1/2

,

then it is not difficult to deduce from this last inequality that

W (v) ≤ ‖Ev‖m+1/2,Rn +

(∫

Rn

(
1 + |ξ′|2

)−m+1/2
ξ4m
n

∣∣(FEv)(ξ)
∣∣2dξ

)1/2

≤

c

[
‖v‖0,Rn

−
+

m−1∑

r=0

(∥∥(Dr
nu)( . , 0)

∥∥
m−r,Rn−1 +

∥∥(Dr
nu1)( . , 0)

∥∥
m−r,Rn−1

)]
,

and hence it follows from a standard trace theorem that

(4.6) W (v) ≤ c
[
‖u‖0,Rn

−
+ ‖u‖m+1/2,Rn

+
+ ‖u1‖m+1/2,Rn

−

]
.

Observing from [9, Proposition 3.2] that

‖u‖0,Rn
−
≤ ‖Eu‖0,Rn ≤ cdm+1/2‖Eu‖m+1/2,Rn ,

we conclude from (4.6) and a minor modification of the interpolation inequal-
ity of [7, §1] that

|q|m−1/2W (u) ≤ c
[
dm+1/2|q|m−1/2‖u‖m+1/2,Rn

−
+ ‖|u|‖+

q + |q|m−1/2W (u1)
]
,
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and hence in view of Lemma 3.2 and (4.1–2) we finally obtain

Y (u) = ‖|u|‖+
q + ‖|u|‖−q ≤ c

[
‖L+u‖0,Rn

++‖L−u‖0,Rn
−

+

m|q|m−1/2

( 0∫

−∞

∥∥(L−u)( . , t)
∥∥2

−(m−1/2),Rn−1dt

)1/2

+
(
Φ(d) + dm+1/2

)
Y (u)

]
.

It follows from this last inequality that if we choose d0, 0 < d0 ≤ 1/3, small

enough so that c
(
Φ(d0) + d

m+1/2
0

)
≤ 1/2, then

Y (u) ≤ c

[
‖L+u‖0,Rn

+
+ ‖L−u‖0,Rn

−

(4.7)

+|q|m−1/2

( 0∫

−∞

∥∥(L−u)( . , t)
∥∥2

−(m−1/2),Rn−1dt

)1/2
]

for d ≤ d0. We shall suppose henceforth that d0 is chosen small enough so
that the coefficient of D2m

n in L(2)(x,D) does not vanish in Ω, where Ω =
{x ∈ B51/2d0

| xn < 0}, and also that d ≤ d0.

Let χ(d) denote the maximum of the expressions χ(0)(d), χ
(j)
α (d) (1 ≤ j ≤

2, |α| = 2m), where χ(0)(d) denotes the supremum of
∣∣ω(x) − ω0

∣∣ in the set

Bd ∩ R
n
+ and χ

(j)
α (d) denotes the supremum of

∣∣a(j)
α (x) − a

(j)
α (0)

∣∣ in the set
Bd ∩ Rn

+ if j = 1 and in the set Bd ∩ Rn
− if j = 2. Then a standard argument

involving the Poincaré inequality shows that the sum of the first two terms in
the bracket on the right side of (4.7) does not exceed
∥∥(L(1) − q2mω(x)

)
u
∥∥

0,Rn
+

+ ‖L(2)u‖0,Rn
−

+ c1
(
χ(d) + d

)(
‖|u|‖+

q + ‖u‖2m,Rn
−

)
,

where here and below c1 denotes a generic constant which may vary from
inequality to inequality and in each case it can only depend upon some or all

of the quantities (Dβa
(j)
α )(x), ω(x), Σ, ε, m, and n. Turning now to the last

term, let us observe that for −∞ < t < 0,
∥∥(L−u)( . , t)

∥∥2

−(m−1/2),Rn−1 ≤ 9
[
I1(t)+ I2(t)+

∥∥(L(2)u)( . , t)
∥∥2

−(m−1/2),Rn−1

]
,

where

I1(t) =
∥∥((L(2) − L

(2)
0 )u

)
( . , t)

∥∥2

−(m−1/2),Rn−1 ,

I2(t) =
∥∥(L(2)

0 − L−)u
)
( . , t)

∥∥2

−(m−1/2),Rn−1 .

Fixing our attention firstly upon I1(t), let φ ∈ C∞(Rn−1) such that 0 ≤
φ(x′) ≤ 1, φ(x′) = 1 for |x′| < d0, φ(x′) = 0 for |x′| > 2d0, and let us consider
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a typical term a
(2)
α Dα appearing in L(2) − L

(2)
0 . Then for |α| ≤ m we have

J1 =

0∫

−∞

∥∥(a(2)
α Dαu)( . , t)

∥∥2

−(m−1/2),Rn−1dt ≤
0∫

−∞

∥∥(a(2)
α Dαu)( . , t)

∥∥
0,Rn−1dt

≤ c1

0∫

−∞

∥∥(Dαu)( . , t)
∥∥2

0,Rn−1dt ≤ c1‖u‖2
m,Rn

−
≤ c1‖Eu‖m,Rn,

and hence in view of [9, Proposition 3.2] and some standard interpolation
results we conclude that J1 ≤ c1d‖u‖2

m+1/2,Rn
−
. Turning to the case |α| > m,

let us observe that if 〈 . , . 〉 denotes the pairing between H
−(m−1/2)
2 (Rn−1)

and its dual Hm−1/2(Rn−1) and v ∈ C∞
0 (Rn−1), then

∣∣∣
〈
(a(2)

α Dαu)( . , t), v
〉∣∣∣ =

∣∣∣
(
(a(2)

α Dαu)( . , t), v
)
0,Rn−1

∣∣∣

=
∣∣∣
〈
(Dαu)( . , t), a(2)

α ( . , t)φv
〉∣∣∣

≤ c1
∥∥(Dαu)( . , t)

∥∥
−(m−1/2),Rn−1‖v‖m−1/2,Rn−1 ,

and hence
∥∥(a(2)

α Dαu)( . , t)
∥∥
−(m−1/2),Rn−1 ≤ c1

∥∥(Dαu)( . , t)
∥∥
−(m−1/2),Rn−1

and

J1 ≤ c1

∫

Rn−1

(
1 + |ξ′|2

)|α′|−m+1/2
( 0∫

−∞

∣∣(Dαn
n Fu)(ξ′, t)

∣∣2dt
)
dξ′,

where we have written α = (α′, αn). Thus it follows from an argument similar
to that used in the proof of Lemma 7.3 of [2, p.73] that

J1 ≤ c1d
2

∫

Rn−1

(
1 + |ξ′|2

)−m+1/2
( 0∫

−∞

∣∣(D2m
n Fu)(ξ′, t)

∣∣2dt
)
dξ′

≤ c1d
2

0∫

−∞

∥∥(D2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt

if |α′| = 0,

J1 ≤ c1d
2

∫

Rn−1

(
1 + |ξ′|2

)m−βn+1/2
( 0∫

−∞

∣∣(Dβn
n Fu)(ξ′, t)

∣∣2dt
)
dξ′

if |α′| > 0, where βn = αn + 1 < 2m, and so we conclude from Corollary 3.4
(with γ = 1, b(x) = 1) that J1 ≤ c1d

2Z(u), where Z(u) = ‖u‖2
m+1/2,Rn

−
+

0∫
−∞

∥∥(D2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt. It has consequently been shown that
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0∫
−∞

I1(t)dt ≤ c1dZ(u), and furthermore, the same arguments and the Leib-

nitz formula show that if α is a multi–index with |α| = 2m and b(x) =

a
(2)
α (x) − a

(2)
α (0), then

∣∣∣∣

0∫

−∞

∥∥(bDαu)( . , t)
∥∥2

−(m−1/2),Rn−1dt−

0∫

−∞

∥∥(Dα(bu)
)
( . , t)

∥∥2

−(m−1/2),Rn−1dt

∣∣∣∣ ≤ c1dZ(u).

(4.8)

Fixing our attention secondly upon I2(t), let ψ ∈ C∞(Rn) such that
0 ≤ ψ(x) ≤ 1, ψ(x) = 1 for |x| < 1, ψ(x) = 0 for |x| > 2, let ψd(x) = ψ(x/d),

and let us consider a typical term bα(x)Dα appearing in L
(2)
0 −L− for which

αn < 2m, where bα(x) = a
(2)
α (x) − a

(2)
α (0). Then it follows from Lemma 3.3

(with γ = d−1/(2m−1), b(x) = bα(x)) and (4.8) that

J2 =

0∫

−∞

∥∥(bαDαu)( . , t)
∥∥2

−(m−1/2),Rn−1dt ≤

c1

[
d−αn/(2m−1)‖bαu‖m+1/2,Rn

−
+

d(2m−αn)/(2m−1)

0∫

−∞

∥∥(D2m
n (bαu)

)
( . , t)

∥∥2

−(m−1/2),Rn−1dt+ dZ(u)

]
.

(4.9)

Now let us observe that bαD
αu = bαψdD

αu and that for any multi–index β,
with |β| ≤ 2m, we have

∣∣(Dβ(bαψd)
)
(x)
∣∣ ≤ c1d

1−|β| for x ∈ Rn
−. Further-

more, if γ is any multi–index satisfying |γ| ≤ m, then we can appeal to [9,
Proposition 3.2] and argue with the extension operator E as we did with J1

above to show that

‖Dγu‖2
0,Rn

−
≤ cd2

(
m+1/2−|γ|

)
‖u‖m+1/2,Rn

−
,

∫

Rn
−×Rn

−

∣∣(Dγu)(x) − (Dγu)(y)
∣∣2

|x− y|n+1
dxdy ≤ c1d

2
(

m−|γ|
)
‖u‖m+1/2,Rn

−
.

Hence it follows from the definition of ‖bαu‖m+1/2,Rn
−

(see [9, Eq. (2.3)]) that

‖bαu‖2
m+1/2,Rn

−
≤ c1d

2‖u‖2
m+1/2,Rn

−
, and so we conclude from (4.8–9) that

J2 ≤ c1

[
dZ(u) + d1/(2m−1)

0∫

−∞

∥∥(bD2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt

]
.
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On the other hand, we can argue with the pairing 〈 . , . 〉 between

H
−(m−1/2)
2 (Rn−1) and its dual as we did above when dealing with J1 to show

that

0∫

−∞

∥∥(bD2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt ≤ c1

0∫

−∞

∥∥(D2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt,

and hence it follows that J2 ≤ c1d
1/(2m−1)Z(u). Moreover, if we let a(x) =

a
(2)
2men

(x) and b(x) = a(x)−a(0), where en is the unit vector in Rn whose last
component is 1 and all other components are 0, then we have

b(x)(D2m
n u)(x) =

(
b(x)/a(x)

)[
(L(2)u)(x)−

∑′

|α|≤2m

a(2)
α (x)(Dαu)(x)

]
in Rn

−,

where we define b(x)/a(x) to be zero in Rn
−\Ω and

∑′
indiates that the

summation is over those α for which α 6= 2men. Hence if we argue as we

did above with J1 (replacing a
(2)
α (x) there by b(x)a

(2)
α (x)/a(x)) and with J2

(replacing bα(x) there by b(x)a
(2)
α (x)/a(x) and observing that (4.8) also holds

with the b(x) there replaced by this latter term), then it is not difficult to
verify that

0∫

−∞

∥∥(bD2m
n u)( . , t)

∥∥2

−(m−1/2),Rn−1dt

≤ c1

[ 0∫

−∞

∥∥(L(2)u)( . , t)
∥∥2

−(m−1/2),Rn−1dt+ d1/(2m−1)Z(u)

]
.

Thus we have shown that

0∫

−∞

I2(t)dt ≤ c1

[ 0∫

−∞

∥∥(L(2)u)( . , t)
∥∥2

−(m−1/2),Rn−1dt+ d1/(2m−1)Z(u)

]
.

As a consequence of the foregoing estimates, it follows from (4.7) that

Y (u) ≤ c1

[
∥∥(L(1) − q2mω(x)

)
u
∥∥

0,Rn
+

+ ‖L(2)u‖0,Rn
−

+|q|m−1/2

( 0∫

−∞

∥∥(L(2)u)( . , t)
∥∥2

−(m−1/2),Rn−1dt

)1/2

+
(
χ(d) + d1/2(2m−1)

)
Y (u)

]
,
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and hence if we choose δ, 0 < δ ≤ d0, small enough so that c1
(
χ(δ) +

δ1/2(2m−1)
)
≤ 1/2, then the proof of the theorem is complete for the case

of u smooth. The proof of the theorem for the general case now follows from
a standard approximation procedure.
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