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EVOLUTION EQUATIONS AS OPERATOR EQUATIONS IN
LATTICES OF HILBERT SPACES
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Technische Universität Dresden, Germany

Abstract. Evolution equations are considered as operator equations
involving a sum of the time-derivative operator ∂0 regarded as a normal
operator in a suitable Hilbert space setting and another fairly arbitrary
spatial operator A acting in a Hilbert space H. The initial data are then

modeled as H-valued Dirac-δ-type sources located at time 0. A framework
to discuss this and more general types of evolution problems is constructed.
The solution theory relies on a Fourier-Laplace transform method set in
this framework.

1. Introduction

In the current paper we shall pick up an idea developed in [15] based on
establishing an initial value problem of the form (∂0 denoting differentiation
with respect to the time parameter)

(1.1)
∂0U = 2πi(AU + F ) on R+,

U(0+) = U0

as an operator equation

(1.2) ∂0U = 2πi(AU + F ) + δ ⊗ U0 on R,

in a suitable Hilbert space frame-work. Here i denotes the imaginary unit
and A is a densely defined, closed linear operator on a Hilbert space H0 with
inner product 〈·|·〉0 assumed to be linear in the second factor and induced norm
|| · ||0. (The factor 2πi has been introduced to conveniently adapt the operator
to the Fourier-Laplace transform discussed later.) The initial data U0 ∈ H0

and the source term F : R → H0 are given. The initial data U0 appear in
the operator equation point of view as additional source term at time t = 0.
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For the time being we shall interpret the term δ⊗U0 as a mapping acting on
◦
C∞(R,C), i.e., on complex-valued C∞-functions with compact support in R,
in the following way

(1.3) (δ ⊗ U0)(ϕ) := ϕ(0)U0 for all ϕ ∈
◦
C∞(R, H).

Writing formally D0U for 1
2πi∂0U we are led to the formulation

(1.4) (D0 −A)U = F +
1

2πi
δ ⊗ U0.

We shall consider the operator on the left-hand side as an operator sum. This
idea is close in spirit to some applications considered in [6].

Initially we shall consider (D0 − A) on the algebraic tensor product
◦
C∞(R)⊗aD(A), i.e., on the linear space generated by linear combinations of
products of complex-valued C∞-functions having compact support with ele-
ments in D(A), as a densely defined operator in the Hilbert space Hν,0 ⊗H0

obtained as the completion of
◦
C∞(R) ⊗a D(A) with respect to the norm

|| · ||ν,0,0 given by the inner product

(1.5) 〈U, V 〉ν,0,0 :=

∫

R

〈U(t)|V (t)〉0 exp(−4πνt)dt,

for U, V ∈
◦
C∞(R) ⊗a D(A) (as an early reference to the concept of a tensor

product of Hilbert spaces we refer to [5]). The observation that D0 considered

on
◦
C∞(R)⊗a D(A) is in fact an essentially normal operator on this weighted

L2-type space will lead to substantial simplifications of the theory.
As the distributional right-hand side of (1.4) already indicates, we will

have to generalize the concept of applying D0 and A in the spirit of distri-
butions. This can be achieved by extending our considerations to chains of
Hilbert spaces associated with D0 and A. The construction of such chains has
been well-studied and applied extensively in the literature and is connected
with key expressions like ”rigged (or equipped) Hilbert space”, ”Gelfand
triple”, ”extended Hilbert space”, ”countably Hilbertian space”, scales of
Hilbert (or Banach) spaces” etc., see e.g. [8], [14] chapt. 8 & 9, and the
survey article [10]. Since from our perspective we have two operators (rather
than just one) involved we shall need to consider tensor products of such
chains (i.e. linear lattices). These tensor products inherit the lattice struc-
ture of Z2 and are referred to as Sobolev lattices. As a more recent reference
for chain constructions and tensor products of Hilbert spaces and operators
we refer to [4], for the latter concepts see also [16].

It will turn out that we shall obtain a quite transparent solution theory
which is quite elementary and in a sense more general than standard semi-
group theory in as much as the ideas of semi-group theory are not needed
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at all. There are, however, close links to the theory of distributional semi-
groups, [12], as well as to the concept of integrated semi-groups (see e.g.
[1], [13]) and regularized semi-groups, compare e.g. the detailed account of
these concepts in [11]. Indeed, the resolvent conditions required in this paper
are comparable to those utilized in those contexts, although, the perspective
on evolution equations presented here is conceptually different. Also, the
more complex technicalities of [6] are not needed in this approach, since we
are only interested in special sums with the time-derivative being one of the
terms of the sum. Moreover, we restrict our attention to the Hilbert space
case. Since the Fourier-Laplace transform enters as an essential tool we profit
from the benefits of Laplace transform methods for evolution equations as
emphasized in [2]. The use of transform techniques is at least implicitly a
common means in conjunction with evolution equations, see e.g.[7], part 2,
section 11, [3], [2]. In the semigroup context the Fourier-Laplace transform
usually enters as an operator-valued transform whereas in the present paper
the Fourier-Laplace transform will appear as a unitary transformation. Given
that the major building blocks of the approach presented, such as chains of
Hilbert spaces, sums of commuting operators and (vector-valued) Fourier-
Laplace transform, have been around for more than 30 years, it may seem
somewhat surprising that our elementary approach to evolution equations
has not been discovered earlier. The novelty of the approach first introduced
in [15] and further explored here is indeed only a rather subtle change of
perspective hinging on the observation that the Fourier-Laplace transform
yields a spectral representation of the time differentiation, which in turn is
then recognized as a normal operator in a suitably weighted L2 − space.

2. Chains and Lattices of Hilbert Spaces

Although the construction of chains of Hilbert spaces is a well-known
procedure, we will proceed to introduce them here in order to keep the pre-
sentation fairly self-contained as well as to introduce our basic notational
framework. There are also some specific less common features (e.g. the
concept of Sobolev lattices) in the following construction which are better
explained in a more detailed development.

Let C : D(C) ⊆ H0 → H0 be an arbitrary densely defined, closed linear
operator on a Hilbert space H0 (with inner product 〈·, ·〉0 and norm || · ||0; all
inner products are assumed (as is more common in the physics literature) to
be linear in the second factor). Assuming that 0 is in the resolvent set %(C)
we find D(C) can be regarded as a Hilbert space w.r.t. the inner product

(2.1) 〈u, v〉1 = 〈Cu,Cv〉0 ,
for u, v ∈ D(C). Continuing this idea we now define associated Hilbert spaces

(2.2) Hk(C) := (D((Ck), 〈·, ·〉k),
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where

〈u, v〉k ≡
〈
Cku,Ckv

〉
, u, v ∈ D(Ck).

That Hk(C) is indeed a Hilbert space follows by induction from the closedness
of C, k ∈ N. Moreover, if we consider the completions

(2.3) H−k(C) := || · ||−kH0

with respect to the norm || · ||−k := ||C−k · ||, k ∈ N, then we also get Hilbert
spaces.

Definition 2.1. The family (Hk(C))k∈Z of Hilbert spaces will be called
the Sobolev chain associated with C.

Lemma 2.2. For the Sobolev chain (Hk(C))k∈Z we have that the imbedding

Hk+1(C) ↪→ Hk(C)

is continuous and has dense range for all k ∈ Z.

Proof. By construction we have H0 ≡ H0(C) dense in H−k(C), k ∈ N.
Therefore, clearly

Hk+1(C) ↪→ Hk(C)

for k ∈ Z−. Moreover, by assumption H1(C) ≡ D(C) dense in H0(C) ≡ H0.
Let now f ∈ Hk(C), k ∈ N, then Ckf ∈ H0(C). Let (ϕn)n be a sequence
in H1(C) ≡ D(C) approximating Ckf ∈ H0(C), then (C−kϕn)n is indeed a
sequence in Hk+1(C) approximating f ∈ Hk(C) in Hk(C). This shows the
density of Hk+1(C) in Hk(C) also for k ∈ N. The dense inclusion of Hk+1(C)
in Hk(C) for k ∈ Z shows in particular the density of H|k|+1(C) in Hk(C) for
k ∈ Z. The continuity of the imbedding follows now from a simple calculation.
Indeed we have initially
(2.4)

||ϕ||k = ||Ckϕ||0 = ||C−1Ck+1ϕ||0 ≤ ||C−1||||Ck+1ϕ||0 ≤ ||C−1||||ϕ||k+1

e.g. for ϕ ∈ H|k+1|(C), k ∈ Z. The desired continuity estimate follows now
from the density result.

For k ∈ N let now f ∈ H−k(C). We recall that by construction of f as
an element of a completion we have that f is indeed an equivalence class of
sequences (ϕn)n in H0 such that (C−kϕn)n is a Cauchy sequence in H0. In
particular ||f ||−k = limn→∞ ||C−kϕn||0. Identifying H0 with its dual space
H∗

0 , i.e., the set of continuous linear functionals on H0 equipped with the
linear structure

(αu+ v)(ϕ) := α∗u(ϕ) + v(ϕ) for α ∈ C, ϕ ∈ H0, u, v ∈ H∗
0 ,

and the usual operator norm as a norm, on the basis of the Riesz representa-
tion theorem, we obtain with

u(ϕ) = 〈u|ϕ〉0 for u, ϕ ∈ H0 ≡ H∗
0 ,
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that f gives rise to a continuous linear functional jk(f) on Hk(C∗) by defining

(2.5) jk(f)(ϕ) := lim
n→∞

〈ϕn|ϕ〉0

for all ϕ ∈ Hk(C∗).
In the spirit of this correspondence we find

Lemma 2.3. For the families of Hilbert spaces (Hk(C))k∈Z and
(Hk(C∗))k∈Z we have

H−k(C) = (Hk(C∗))∗, k ∈ Z,

in the sense of the unitary correspondence

jk : H−k(C) → (Hk(C∗))∗

f 7→ jk(f)

defined by jk(f)(ϕ) := limn→∞ 〈ϕn|ϕ〉0 for all ϕ ∈ Hk(C∗) and (ϕn)n a
representing sequence for f .

Proof. It is sufficient to show the equality for k ∈ N. The rest follows
by the reflexivity of Hilbert spaces and interchanging the role of C and C∗.

Thus it remains to show that for k ∈ N the above formally defined map-
ping

(2.6)
jk : H−k(C) → (Hk(C∗))∗

f 7→ jk(f)

is a well-defined unitary map. Clearly jk(f) does not depend on the partic-
ular choice of representing Cauchy sequence (ϕn)n. This is obvious from the
injectivity of the well-defined mapping

H−k(C) → H0

f 7→ limn→∞ C−kϕn

limn→∞ 〈ϕn|ϕ〉0 = limn→∞

〈
ϕn|C∗−k

C∗k

ϕ
〉

0

= limn→∞

〈
C−kϕn|C∗k

ϕ
〉

0

=
〈
limn→∞ C−kϕn|C∗k

ϕ
〉

0

for all ϕ ∈ Hk(C∗). This proves that jk is well-defined. The continuity of jk
can be derived from the last calculation. Indeed
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|jk(f)(ϕ)| = | limn→∞ 〈ϕn|ϕ〉0 |
= limn→∞ |

〈
C−kϕn|C∗k

ϕ
〉

0
|

≤ limn→∞ ||C−kϕn||0||C∗k

ϕ||0
= ||f ||−k||ϕ||∗,k

for all ϕ ∈ Hk(C∗), where || · ||∗,k denotes the Norm of Hk(C∗). The latter
also shows that

||jk || ≤ 1.

Moreover, letting ϕ = C∗−k

limn→∞ C−kϕn yields

jk(f)(ϕ) = limn→∞ 〈ϕn|ϕ〉0
= limn→∞

〈
C−kϕn|C∗k

ϕ
〉

0

=
〈
limn→∞ C−kϕn|C∗k

ϕ
〉

0

=
〈
limn→∞ C−kϕn| limm→∞ C−kϕm

〉
0

= ||f ||2−k,

and

||ϕ||∗,k = ||C∗k

C∗−k

lim
n→∞

C−kϕn||0 = || lim
n→∞

C−kϕn||0 = ||f ||−k.

Thus we have

||jk || = 1,

and jk is an isometry. It remains to show that jk is also onto. Let now
F ∈(Hk(C∗))∗ be arbitrary then with the Riesz map

R∗,k : (Hk(C∗))∗ → Hk(C∗)

we find

R∗,kF ∈ Hk(C∗),

and so

C∗k

R∗,kF ∈ H0(C
∗) ≡ H0(C) ≡ H0.

Note that by definition of R∗,k we have

〈R∗,kF |ϕ〉∗,k = F (ϕ)

for all ϕ ∈ Hk(C∗). Let now (ψn)n be a sequence in Hk(C) such that

lim
n→∞

ψn = C∗k

R∗,kF.

That such a sequence exists follows from the density of Hk(C) in H0. Then
(ϕn)n := (Ckψn)n is a sequence in H0 such that (C−kϕn)n = (ψn)n is a
Cauchy sequence in H0.
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Let now f denote the corresponding equivalence class in H−k(C). We
only need to show jk(f) = F .

Indeed,

jk(f)(ϕ) = limn→∞ 〈ϕn|ϕ〉0
= limn→∞

〈
ψn|C∗k

ϕ
〉

0

=
〈
limn→∞ ψn|C∗k

ϕ
〉

0

=
〈
C∗k

R∗,kF |C∗k

ϕ
〉

0

= 〈R∗,kF |ϕ〉∗,k

= F (ϕ)

for all ϕ ∈ Hk(C∗).

The last lemma will motivate for us to identifyH−k(C) with (Hk(C∗))∗ for k ∈
Z. We also notice that the inner product 〈·|·〉0 can apparently be continuously
extended to

〈·|·〉0 : Hk(C∗) ×H−k(C) → C

(u, v) 7→ 〈u|v〉0
for k ∈ Z by letting

(2.7) 〈u|v〉0 := lim
n→∞

〈
C∗k

ϕn|C−kψn

〉
0

where (ϕn)n and (ψn)n are sequences in H|k|(C
∗) and H|k|(C), respec-

tively, with ϕn → u in Hk(C∗) and ψn → v in H−k(C) as n → ∞, k ∈ Z.

This extension is well-defined. Let (ϕ̃n)n and (ψ̃n)n be two other sequences

in H|k|(C
∗) and H|k|(C), respectively, with ϕ̃n → u in Hk(C∗) and ψ̃n → v in

H−k(C) as n→ ∞, then

limn→∞

〈
C∗k

ϕn|C−kψn

〉
0
− limn→∞

〈
C∗k

ϕ̃n|C−kψ̃n

〉
0

= limn→∞(
〈
C∗k

ϕn|C−kψn

〉
0
−
〈
C∗k

ϕ̃n|C−kψ̃n

〉
0
)

= limn→∞

〈
C∗k

ϕn − C∗k

ϕ̃n|C−kψn

〉
0
+ limn→∞

〈
C∗k

ϕ̃n|C−kψn − C−kψ̃n

〉
0

≤ limn→∞ ||C∗k

ϕn − C∗k

ϕ̃n||0||C−kψn||0
+ limn→∞ ||C∗k

ϕ̃n||0||C−kψn − C−kψ̃n||0
= limn→∞ ||C∗k

ϕn − C∗k

ϕ̃n||0 limn→∞ ||C−kψn||0+
+ limn→∞ ||C∗k

ϕ̃n||0 limn→∞ ||C−kψn − C−kψ̃n||0
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= limn→∞ ||ϕn − ϕ̃n||∗,k||v||−k + ||u||∗,k limn→∞ ||ψn − ψ̃n||−k

= 0.

The desired continuity estimate follows

| 〈u|v〉0 | = limn→∞ |
〈
C∗k

ϕn|C−kψn

〉
0
|

≤ limn→∞ ||C∗k

ϕn||0||C−kψn||0
= limn→∞ ||C∗k

ϕn||0 limn→∞ ||C−kψn||0
= ||u||∗,k||v||−k.

Noting that, moreover,

〈u|v〉0 = lim
n→∞

〈
C∗k

ϕn|C−kψn

〉
0

= lim
n→∞

〈ϕn|ψn〉0

motivates the continued use of the inner product symbol 〈·|·〉0 in this more
general sense. In the case of k ∈ N we have thus motivated and introduced
the suggestive notation 〈u|v〉∗0 = 〈v|u〉0 for the application of the functional
v ∈ H−k(C) to u ∈ Hk(C∗).

A chain is a linear lattice which indeed (Hk(C))k∈Z is with respect to the
dense and continuous imbedding ”↪→” as order relation. Obviously, we have
since C is assumed to be unbounded

(2.8) Hk(C) ↪→ Hj(C) if and only if k ≥ j, k, j ∈ Z.

Thus, the chain (Hk(C))k∈Z with respect to ”↪→” corresponds to Z with ”≥”.
In particular, we observe the lattice structure with
(2.9)

sup(Hk(C), Hj(C)) := Hmin(k,j)(C), inf(Hk(C), Hj(C)) := Hmax(k,j)(C),

for k, j ∈ Z. This justifies the name Sobolev chain introduced in definition
2.1.

We summarize our findings for later reference.

Theorem 2.4. Let C : D(C) ⊆ H0 → H0 be an unbounded, densely
defined, closed, linear operator with 0 ∈ %(C). Here H0 denotes a Hilbert
space with norm || · ||0 and inner product 〈·|·〉0 (as always, assumed to be
linear in the second factor). Then we have that the family of Hilbert spaces
(Hk(C))k∈Z has the property

Hk+1(C) ↪→ Hk(C)

is a continuous and dense imbedding for any k ∈ Z.
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By construction of the Sobolev chain associated with the operator C we
see that

H|k|+1(C) ⊆ Hk+1(C) → Hk(C)

ϕ 7→ Cϕ

has a continuous extension, which we shall denote by

(2.10) Ck+1,k : Hk+1(C) → Hk(C), k ∈ Z.

We find

Lemma 2.5. The mapping Ck+1,k : Hk+1(C) → Hk(C) is unitary for any
k ∈ Z.

Proof. For ϕ ∈ H|k|+1(C) we see (compare the reasoning in (2.4)

||ϕ||k+1 = ||Ck+1ϕ||0 = ||CkCϕ||0 = ||Cϕ||k , k ∈ Z.

By taking limits this shows that Ck+1,k is indeed isometric. Moreover,
let ψ ∈ Hk(C) then there is a sequence (ψn)n in H|k|(C) such that

(Ckψn)n ≡ (Ck+1C−1ψn)n converges in H0. Then ϕ := limn→∞ C−1ψn ex-
ists in Hk+1(C) and (C−1ψn)n is actually a sequence in H|k|+1(C). Now, we

have ϕ := limn→∞ C−1ψn ∈ Hk+1(C) and limn→∞ ψn = limn→∞ CC−1ψn =
limn→∞ Ck+1,kC

−1ψn exists in Hk(C), k ∈ Z. Consequently, we find

Ck+1,kϕ = lim
n→∞

Ck+1,kC
−1ψn = lim

n→∞
ψn = ψ

where the limits are taken in Hk(C), k ∈ Z. Since ψ ∈ Hk(C) was arbitrary,
this finally shows the unitarity of Ck+1,k .

Since (Hk(C))k∈Z is the Sobolev chain associated with C, we also find

Ck,k−1 ⊆ Ck+1,k

for all k ∈ Z. Recalling that Ck+1,k is by the fact that it is a mapping indeed
a specific subset of Hk+1(C) ⊕ Hk(C), we find that indeed that Ck+1,k is a
closed subspace of Hk+1(C)⊕Hk(C). Moreover, the induced continuous and
dense imbedding of

Hk(C) ⊕Hk−1(C) ↪→ Hk+1(C) ⊕Hk(C)

implies that also
Ck,k−1 ↪→ Ck+1,k

for all k ∈ Z. Therefore we may define

(2.11)
C :

⋃
k∈Z

Hk(C) → ⋃
k∈Z

Hk(C)

ϕ 7→ Cϕ

with

(2.12) Cϕ := Ck,k−1ϕ
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for ϕ ∈ Hk(C) and all k ∈ Z. In other words, we obtain a mapping, which we
will for simplicity of notation again denote by C,

C =
⋃

k∈Z

Ck,k−1,

such that C|Hk
= Ck,k−1 for all k ∈ Z. Here ”|...” should be read as ”restricted

to . . .”. In H−∞(C) :=
⋃

k∈Z
Hk(C) we may define a natural concept of

convergence by saying ϕn → ϕ in H−∞(C) as n→ ∞ if

ϕn → ϕ in Hk(C) as n→ ∞ for some k ∈ Z.

In this sense,

C : H−∞(C) → H−∞(C)

ϕ 7→ Cϕ

is now continuous.
In general, we will call a mapping

G : H−∞(C) → H−∞(C)

ϕ 7→ Gϕ

continuous, if for every k ∈ Z there is a j ∈ Z such that

Hk(C) → Hj(C)

ϕ 7→ Gϕ

is continuous. Due to the structure of a Sobolev chain it is apparently suffi-
cient to have this for all sufficienly large negative indices k in order to show
continuity of G.

The intermediate operators Ck+1,k give rise to unbounded operators

(2.13)
Ck,k : Hk+1(C) ⊆ Hk(C) → Hk(C)

ϕ 7→ Ck+1,kϕ

for k ∈ Z. The connection of the generalized C to the original operator C,
which is clearly just C0,0, is contained in the trivial correspondence

Cϕ = C0,0ϕ for all ϕ ∈ Hk(C), k ∈ Z
+,

and less trivially by

〈ψ|Cϕ〉0 = 〈C∗ψ|ϕ〉0 for all ϕ ∈ H−k(C), ψ ∈ Hk+1(C
∗) for k ∈ N,

where the inner product notation 〈·|·〉0 is used in the sense of the above
extension to Hk+1(C

∗)×H−k−1(C) and Hk(C∗)×H−k(C), respectively. The
operator C∗ is the analogously constructed extension of C∗

0,0 rather than C0,0
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as for the extension C. The operator C also yields a simple description of the
norm in Hk(C)

||ϕ||k = ||Ckϕ||0 for all ϕ ∈ Hk(C), k ∈ Z.

Definition 2.6. Let (Hk(C))k∈Z be a Sobolev chain associated with the
operator C. Then the continuous operator

⋃
k∈Z

Ck,k−1 on H−∞(C) will be
called the extension of C to the Sobolev chain (Hk(C))k∈Z (and usually de-
noted by the same name).

For our purposes we also need the construction of tensor products of
Sobolev chains.

Definition 2.7. Let (Hk(C))k∈Z and (Hk(B))k∈Z two Sobolev chains as-
sociated with operators B and C, respectively. Then (Hj(B)⊗Hk(C))(j,k)∈Z2

is also a lattice with respect to the dense and continuous imbedding ”↪→”.
Such a lattice will be called Sobolev lattice.

Remark 2.8. We note here that the concept of a Sobolev lattice asso-
ciated with two operators B, C clearly extends to several factors (i.e., more
than two operators). It is a rather natural generalization of the concept of a
Sobolev chain.

Indeed, we find

Hj(B) ⊗Hk(C) ↪→ Hu(B) ⊗Hv(C)

if and only if j ≥ u and k ≥ v, for j, k, u, v ∈ Z, and we realize an immediate
correspondence to Z2 with ”≥” component-wise. In particular, we observe
the lattice structure with

sup(Hj(B) ⊗Hk(C), Hu(B) ⊗Hv(C)) := Hmin(u,j)(B) ⊗Hmin(k,v)(C),

inf(Hj(B) ⊗Hk(C), Hu(B) ⊗Hv(C)) := Hmax(u,j)(B) ⊗Hmax(k,v)(C),

for k,j ∈ Z. By analogy to the case of a single chain we denote

H−∞(B) ⊗H−∞(C) :=
⋃

j,k∈Z

Hj(B) ⊗Hk(C),

and use the analogous convergence concept:

ϕn → ϕ in H−∞(B) ⊗H−∞(C) as n→ ∞ if

ϕn → ϕ in Hj(B) ⊗Hk(C) as n→ ∞ for some k, j ∈ Z.

Denoting the continuous extension (i.e., the closure) of the densely defined
mapping

Hj(B) ⊗a H|k|+1(C) ⊆ Hj(B) ⊗Hk+1(C) → Hj(B) ⊗Hk(C)

ψ ⊗ ϕ 7→ ψ ⊗ Cϕ
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by Cj,k+1,k . We find

Cj,k+1,k : Hj(B) ⊗Hk+1(C) → Hj(B) ⊗Hk(C)

ϕ 7→ Cj,k+1,kϕ

again to be unitary for all j, k ∈ Z.
Similarly as above we observe that

Cj,k,k−1 ⊂ Cj,k+1,k for j, k ∈ Z.

Therefore we may define

C : H−∞(B) ⊗H−∞(C) → H−∞(B) ⊗H−∞(C)

ϕ 7→ Cϕ

with
Cϕ := Cj,k+1,kϕ for all ϕ ∈ Hj(B) ⊗Hk+1(C), j, k ∈ Z.

In other words, we obtain a mapping

C =
⋃

j,k∈Z

Cj,k+1,k,

such that
C|Hj⊗Hk+1

= Cj,k+1,k for all j, k ∈ Z.

In the above sense of convergence

C : H−∞(B) ⊗H−∞(C) → H−∞(B) ⊗H−∞(C)

ϕ 7→ Cϕ

and by an analogous construction for another operator B (B|Hj+1⊗Hk
=

Bj+1,j,k for all j, k ∈ Z)

B : H−∞(B) ⊗H−∞(C) → H−∞(B) ⊗H−∞(C)

ϕ 7→ Bϕ

are now again linear and continuous. Moreover, they are commuting in the
obvious sense.

We will call a general mapping

G : H−∞(B) ⊗H−∞(C) → H−∞(B) ⊗H−∞(C)

ϕ 7→ Gϕ

continuous, if for every (u, v) ∈ Z
2 there is a (j, k) ∈ Z

2 such that

Hu(B) ⊗Hv(C) → Hj(B) ⊗Hk(C)

ϕ 7→ Gϕ
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is continuous. The construction clearly extends to several factors. The con-
nection to the operator I ⊗ C0,0 is given by

Cϕ = I ⊗ Cϕ for all ϕ ∈ Hj(B) ⊗Hk(C), j ∈ Z, k ∈ Z
+,

and by

〈ψ|Cϕ〉⊗ = 〈(I ⊗ C0,0)
∗ψ|ϕ〉⊗

for all, ϕ ∈ H−j(B) ⊗H−k(C), ψ ∈ Hj(B
∗) ⊗Hk+1(C

∗) for j, k ∈ N, where
the inner product notation 〈·|·〉⊗ is used in the sense of the extension to the
Cartesian products

(Hj(B
∗) ⊗Hk+1(C

∗)) × (H−j(B) ⊗H−k−1(C))

and

(Hj(B
∗) ⊗Hk(C∗)) × (H−j(B) ⊗H−k(C)),

respectively. For the operator B ⊗ I we have the analogous properties. The
operators B and C also yield a simple description of the norm in in Hj(B)⊗
Hk(C)

||ϕ||⊗,jk = ||BjCkϕ||⊗,0,0 = ||CkBjϕ||⊗,0,0

for all ϕ ∈ Hj(B) ⊗Hk(C), j, k ∈ Z.

Definition 2.9. Let (Hj(B)⊗Hk(C))j,k∈Z be a Sobolev lattice associated
with the operators B and C. Then the continuous operator

⋃
j,k∈Z

Cj,k,k−1 and

the analogously constructed
⋃

j,k∈Z
Bj,j−1,k acting on H−∞(B)⊗H−∞(C) will

be called the extension of C and B to the Sobolev lattice (Hj(B)⊗Hk(C))j,k∈Z

(and usually denoted again by the same names).

The following examples are of importance in our approach.

2.1. Examples.

Example 1. For ν ∈ R the mapping
◦
C∞(R) ⊆ L2(R, e

−4πνtdt) → L2(R, e
−4πνtdt)

ϕ 7→ (2πi)−1ϕ′ + iνϕ

is essentially selfadjoint, i.e., its closure is a selfadjoint operator, which will be
denoted by Dν . Here the Hilbert space L2(R, e

−4πνtdt) is just the completion

of
◦
C∞(R) with respect to the norm || · ||ν,0 induced by the inner product

〈ϕ|ψ〉ν,0 :=

∫

R

ϕ(t)∗ψ(t)e−4πνtdt for ϕ, ψ ∈
◦
C∞(R).

For convenience we define for later use

D0 := Dν − iν,

and note that

D0ϕ = (2πi)−1ϕ′



124 RAINER PICARD

for all ϕ ∈
◦
C∞(R). The dependence of D0 on the parameter ν has to be

deduced from the context. Since Dν is selfadjoint, we have ±i ∈ %(Dν). So
we can construct the associated Sobolev chains

(Hk(Dν − i))k∈Z,

which we shall also refer to as the chain of exponentially weighted Sobolev
spaces.

In particular, we have

H0(Dν − i) = L2(R, e
−4πνtdt).

The norm and inner product in Hk(Dν − i) will be labelled as || · ||ν,k and
〈·|·〉ν,k, respectively. Note that

||ϕ||ν,k ≤ ||ϕ||ν,k+1 for all ϕ ∈ Hk+1(Dν − i),

since

||(Dν − i)−1|L2(R),exp(−4πνt)dt)|| = 1.

We note that by a standard cut-off and smoothing procedure it can easily be
shown that

(2.14)
◦
C∞(R) is dense in Hk(Dν − i) for k ∈ Z.

Since
◦
C∞(R) ⊂ ⋂k Hk(Dν − i) =: H∞(Dν − i), the density result also

shows that

(2.15) H∞(Dν − i) dense in Hk(Dν − i) for k ∈ Z.

Next we construct a companion chain as another example needed in
our context.
Example 2. The mapping

◦
C∞(R) ⊆ L2(R) → L2(R)

ϕ 7→ mϕ

with

(mϕ)(t) := tϕ(t) for all ϕ ∈
◦
C∞(R),

can be easily seen to have a selfadjoint operator as closure, which will be
denoted again by m. Since m is selfadjoint, we have e.g. ±i ∈ %(m). So we
can construct the associated Sobolev chains

(Hk(m− i))k∈Z.

The norm and inner product in Hk(m− i) will be labelled as || · ||k and 〈·|·〉ν,k,
respectively.
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The latter two Sobolev chains are connected by the Fourier-Laplace
transform Lν defined by

(Lνϕ)(x) : =
∫

R
exp(−2πi(x− iν)y)ϕ(y)dy,

=
∫

R
exp(−2πixy) exp(−2πνy)ϕ(y)dy,

= (L0 exp(−2πνm)ϕ)(x)

for all ϕ ∈
◦
C∞(R).

The Fourier-Laplace transform Lν extends by continuity and by the

density of
◦
C∞(R) in Hk(Dν − i) for k ∈ Z to a continuous bijection

Lν : H−∞(Dν − i) → H−∞(m− i),

where we re-utilize the same name for the extension (compare [15]). Indeed,
Lν |Hk

: Hk(Dν − i) → Hk(m− i) is unitary for any k ∈ Z.

3. Space-Time Evolution Equations

Let now A : D(A) ⊆ H → H be an arbitrary densely defined, closed
linear operator on a Hilbert space H with nonempty resolvent set %(A) say
λ0 ∈ %(A). Consider the Sobolev lattice (Hj(Dν − i) ⊗ Hk(λ0 − A))j,k∈Z,
the associated topological vector space H−∞(Dν − i) ⊗ H−∞(λ0 − A) and
the extensions of Dν ≡ Dν ⊗ IH and A ≡ I ⊗ A to the Sobolev lattice
(Hj(Dν − i) ⊗ Hk(λ0 − A))j,k∈Z, which we shall denote for ease of notation
again by Dν and A(I : H0(Dν − i) → H0(Dν − i), IH : H → H denoting the
respective identities). Note that the choice of a different point in %(A) yields
the same linear space with an equivalent norm.

Then with D0 := Dν − iν we have

(3.1) D0−A : H−∞(Dν − i)⊗H−∞(λ0−A) → H−∞(Dν − i)⊗H−∞(λ0−A)

as a continuous operator. Our aim is to investigate equations of the form

(D0 −A)u = f ∈ H−∞(Dν − i) ⊗H−∞(λ0 −A).

As a first result we have the following solution theory of such equations.

Theorem 3.1. Let A : D(A) ⊆ H → H be a densely defined, closed linear
operator on a Hilbert space H such that there is a ν ∈ R with

(3.2) R − iν ⊂ %(A),

and

(3.3) sup
λ∈R

||(λ− i)−k(λ− iν −A)−1|| <∞ for some k ∈ N.

Then the extended operator

D0 −A : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(Dν − i) ⊗H−∞(iν +A)
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is a continuous bijection.

Proof. Let f ∈ Hs(Dν − i) ⊗Hv(iν +A), s, v ∈ Z, be given. The extended
Fourier-Laplace transform

Lν : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(m− i) ⊗H−∞(iν +A),

determined by letting

Lν(ϕ⊗ w) := Lνϕ⊗ w

for ϕ ∈
◦
C∞(R), w ∈ H−∞(iν + A), can now be utilized to give a solution of

the equation

(3.4) (D0 −A)u = f.

Since (3.2) implies that (λ − iν − A)−1 extends to a continuous operator on
Hv(iν +A) and because of (3.3) even to a bounded operator from the Hilbert
space Hs(m− i)⊗Hv(iν+A) to the Hilbert space Hs−k(m− i)⊗Hv(iν+A),
we have indeed hat

(m− iν −A)−1Lνf ∈ Hs−k(m− i) ⊗Hv(iν +A),

and then

u = L∗
ν(m− iν −A)−1Lνf

yields a solution of (3.4) in H−∞(Dν − i)⊗H−∞(iν +A). Uniqueness follows
again by applying the Fourier-Laplace transform. Indeed, let f = 0 in (3.4),
then

(3.5) (m− iν −A)Lνu = 0.

By the density of
◦
C∞(R) in Hs(m− i) and the definition of the tensor product

we have a sequence (ϕn)n in the algebraic tensor product
◦
C∞(R)⊗aH|v|+1(iν+

A) approximating Lνu. Since

(m− iν −A) : H−∞(m− i) ⊗H−∞(iν +A) → H−∞(m− i) ⊗H−∞(iν +A)

is continuous, we have

(m− iν −A)ϕn → (m− iν −A)Lνu = 0

in Hs(m− i) ⊗Hv(iν +A) as n→ ∞ for some j,m ∈ Z. It follows that

(m− i)s(iν +A)v(m− iν −A)ϕn → 0

in H0(m− i) ⊗H0(iν +A) as n→ ∞, or
∫

R

||(t− i)s(iν +A)v(t− iν −A)ϕn(t)||20dt→ 0

as n→ ∞. Using assumption (3.3) we get with

C1 := supλ∈R||(λ − i)−k(λ− iν −A)−1||
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the estimate
∫

R

||(t− i)s−k(iν +A)vϕn(t)||20dt

≤ C1

∫

R

||(t− i)s(iν +A)v(t− iν −A)ϕn(t)||20dt,
(3.6)

and so ∫

R

||(t− i)s−k(iν +A)vϕn(t)||20dt→ 0

as n→ ∞. The latter shows that

ϕn → 0 in H−∞(m− i) ⊗H−∞(iν +A) as n→ ∞.

Since on the other hand (ϕn)n was taken such that

ϕn → Lνu in H−∞(m− i) ⊗H−∞(iν +A) as n→ ∞,

we obtain

Lνu = 0,

and so as desired

u = 0.

Finally, continuity of the solution operator also follows from the estimate (3.6)

and the density of the algebraic tensor product
◦
C∞(R) ⊗a H|v|+1(iν + A) in

Hs(m− i) ⊗Hv(iν +A). In fact, this way we obtain

||(D0 −A)−1f ||ν,s−k,v = ||(m− iν −A)−1Lνf ||s−k,v

≤ C1||Lνf ||s,v = C1||f ||ν,s,v

(3.7)

for all f ∈ Hs(Dν − i) ⊗Hv(iν +A), s, v ∈ Z.

Lemma 3.2. The condition (3.3) in theorem 3.1, is equivalent to the ex-
istence of u, v, k ∈ N with u+ v = k and

(3.8) sup
λ∈R

||(λ− i)−u(iν −A)−v(λ− iν −A)−1|| <∞.

Moreover, if condition (3.3) holds then (3.8) holds for all u, v ∈ N with u+v =
k, where k is the natural number whose existence is assured by (3.3).

Proof. We first have by the resolvent equality

(λ− i)(iν +A)−1(λ− iν −A)−1 = (iν +A)−1 − (λ− iν −A)−1+

−i(iν + A)−1(λ− iν −A)−1.
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This implies (with v ≥ 1)

E(u, v) := (λ− i)−u(iν +A)−v(λ− iν −A)−1

= − (λ − i)−u−1(iν +A)−v

− (λ − i)−u−1(iν +A)−(v−1)(λ− iν −A)−1

+ i(λ − i)−u−1(iν +A)−v(λ− iν −A)−1

= (λ− i)−u−1(iν +A)−v −E(u+ 1, v − 1) +E(u+ 1, v).

From this calculation we obtain (noting that ||E(u + 1, v)|| ≤ ||E(u, v)|| and
||E(u+ 1, v)|| ≤ ||(iν +A)−1|| ||E(u+ 1, v − 1)||) the two estimates

||E(u, v)|| ≤ ||(λ− i)−u−1(iν +A)−v ||+ (1 + ||(iν +A)−1||)||E(u+ 1, v − 1)||,

||E(u+ 1, v − 1)|| ≤ ||(λ − i)−u−1(iν +A)−v|| + 2||E(u, v)||.
From these the claim follows by induction.

The smallest such number k ∈ N occurring in assumption (3.3) will in lieu of
(3.7) be referred to as regularity defect. There is one other aspect of a solution
theory associated with the operator in (3.1). We would want to have causal
solutions. We first need the concept of time-support.

Definition 3.3. Let g ∈ H−k(C), k ∈ Z. The time-support of g is
defined as

supp0 g := R −
⋃

{I |I open interval & 〈g|ϕ⊗ ψ〉ν,0,0 = 0

for all ϕ ∈
◦
C∞(I), ψ ∈ Hk(C)}.

In our context this concept leads to the following definition of causality.

Definition 3.4. Let C : D(C) ⊆ H → H be a densely defined, closed
linear operator on a Hilbert space H with 0 ∈ %(C) and ν ∈ R fixed. Then a
continuous mapping

G : H−∞(Dν − i) ⊗H−∞(C) → H−∞(Dν − i) ⊗H−∞(C)

will be called causal if

inf supp0Gf ≥ inf supp0f ∈ R ∪ {−∞} for all f ∈ H−∞(Dν − i) ⊗H−∞(C).

With the concept of causality we obtain the following refinement of our
solution theory.

Theorem 3.5. Let A : D(A) ⊆ H → H be a densely defined, closed linear
operator on a Hilbert space H such that there is a ν0 ∈ R+ with

(3.9) R − iν ⊂ %(A) for all ν ≥ ν0,
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and

(3.10) sup
λ∈C−

||(λ − i)−k(λ− iν0 −A)−1|| <∞ for some k ∈ N.

Then the extended operator

D0 −A : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(Dν − i) ⊗H−∞(iν +A)

is a continuous and causal bijection for all ν ≥ ν0.

Proof. Let f ∈ Hs(Dν − i)⊗Hv(iν+A), s, v ∈ Z, be given. Then according
to the proof of theorem 3.1 the solution u of (3.4) is given by

u = (D0 −A)−1f = Lν(m− iν −A)−1Lνf ∈ Hs−k(Dν − i) ⊗Hv(iν +A).

Assuming now that supp0 f ⊆ [0,∞[, we need to show that supp0 u ⊆ [0,∞[.
We first observe that

z 7→ (Lν−Im(z)(Dν − i)s(iν +A)vf)(Re(z))

is analytic in C
− := R − iR+, indeed

z 7→
〈
w|(Lν−Im(z)(Dν − i)s(iν +A)vf)(Re(z))

〉
0

satisfies the assumptions of the Paley-Wiener theorem (see e.g. [9]) for any
w ∈ H = H0(iν +A). From the analyticity of the resolvent it follows that

z 7→ (z − i)−k(z − iν −A)−1(Lν−Im(z)(Dν − i)s(iν +A)vf)(Re(z))

is also analytic in C−. Consequently, also the function ζw given by

z 7→
〈
w|(z − i)−k(z − iν −A)−1(Lν−Im(z)(Dν − i)s(iν +A)vf)(Re(z))

〉
0

is analytic in C
−. Moreover, we have

ζw(· − iε) ∈ L2(R)

for any ε ∈ R
+, and∫

R

|ζw(λ− iε)|2dλ =

=

∫

R

|
〈
w|(λ − i(1 + ε))−k(λ− i(ν + ε) − A)−1

(Lν+ε(Dν − i)s(iν +A)vf) (λ)〉0 |2dλ

≤
∫

R

||w||20||(λ− i(1 + ε))−k(λ− i(ν + ε) −A)−1

(Lν+ε(Dν − i)s(iν +A)vf)(λ)||0dλ

≤ C2
1 ||w||20

∫

R

||(Lν+ε(Dν − i)s(iν +A)vf)(λ)||0dλ

≤ C2
1 ||w||20||(Dν − i)s(iν +A)vf ||2ν+ε,0

≤ C2
1 ||w||20||(Dν − i)s(iν +A)vf ||2ν,0.
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The last estimate follows from exp(−4πεt) ≤ 1 for t ∈ [0,∞[ and since

(iν +A) : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(Dν − i) ⊗H−∞(iν +A)

and

(Dν − i) : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(Dν − i) ⊗H−∞(iν +A)

as well as their inverses are causal. Since it is obvious that (iν+A), (iν+A)−1

and (Dν − i) cannot extend the time-support beyond [0,∞[, to show this we
only need to prove that the time-support will stay contained in [0,∞[ if

(Dν − i)−1 : H−∞(Dν − i) ⊗H−∞(iν +A) → H−∞(Dν − i) ⊗H−∞(iν +A)

is applied. Indeed, let g ∈ H−∞(Dν − i) ⊗H−∞(iν +A) be such that

supp0 g ⊆ [0,∞[,

i.e.,

〈g|ϕ⊗ ψ〉ν,0,0 = 0

for all ϕ ∈
◦
C∞(R−) and ψ ∈ Hj(iν + A) for a sufficiently large j ∈ N. We

have
〈
(Dν − i)−1g|ϕ⊗ ψ

〉
ν,0,0

=
〈
g|(Dν + i)−1ϕ⊗ ψ

〉
ν,0,0

=
〈
g|((Dν + i)−1ϕ) ⊗ ψ

〉
ν,0,0

.

Now, if (Dν + i)−1ϕ can be approximated by elements in
◦
C∞(R−) in any

Hj(Dν−i), j ∈ Z, the claim follows. Apparently it suffices to have this approx-
imation property for j ∈ N sufficiently large. Noting the implied boundary
conditions at ±∞, an elementary calculation shows that

((Dν + i)−1ϕ)(t) = −2πi exp(2π(ν + 1)t)

∫ ∞

t

exp(−2π(ν + 1)s)ϕ(s)ds.

Clearly,

supp0(Dν + i)−1ϕ ⊂ R
−,

and

(Dν + i)−1ϕ ∈ C∞(R) ∩H∞(Dν − i).

Thus a simple cut-off yields the desired approximation by
◦
C∞(R−)-functions.

This finally concludes the proof of the above estimate

||ζw(· − iε)||0,0 ≤ C1||w||0||f ||ν,s,v .

Thus, applying the Paley-Wiener theorem yields that

ζw(· − i0+) =
〈
w|(· − i)−k(· − iν −A)−1Lν(Dν − i)s(iν +A)vf

〉
0
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has an inverse Fourier transform with support in [0,∞[. Since pre-multiplication
with exp(2πνm) does not change the support we have

0 = 〈L∗
νζw(· − i0+)|ϕ〉ν,0

= 〈exp(2πνm)L∗
0ζw(· − i0+)|ϕ〉ν,0 = 〈〈w|u〉0 |ϕ〉ν,0

= 〈u|ϕ⊗ w〉ν,0

for all ϕ ∈
◦
C∞(R−) and arbitrary w ∈ Hj(iν + A) for a sufficiently large

j ∈ N. In other words, we have

supp0 u ⊆ [0,∞[.

The same result now follows for arbitrary inf supp0 f ∈ R by the time-shift
invariance of (D0 −A). In the limit case inf supp0 f = −∞ nothing needs to
be shown.

An analogous statement to lemma 3.2 holds in this case.

Lemma 3.6. The condition (3.10) in theorem 3.5, is equivalent to the
existence of u, v, k ∈ N with u+ v = k and

sup
λ∈C−

||(λ − i)−u(iν + A)−v(λ − iν −A)−1|| <∞.

Proof. The result follows by the same reasoning as in the proof of lemma
3.2.

Remark 3.7. Re-translating lemma 3.6 by the inverse Fourier-Laplace
transform into the time-dependent realm we have also shown that if condition
(3.10) of theorem 3.5 holds then we also have the continuity of

(Dν − i)−u(iν0 −A)−v(Dν −A)−1 :

Hj(Dν − i) ⊗Hm(iν +A) → Hj(Dν − i) ⊗Hm(iν +A)

for all j,m ∈ Z and u, v ∈ N with u+ v = k. Observing that the pure initial
value problem

(D0 −A)u =
1

2πi
δ ⊗ u0

is solved by

Uu0 := (D0 −A)−1 1

2πi
δ ⊗ u0,

we realize that the result of lemma 3.6 is indeed somewhat akin of the equiva-
lence of integrated semi-groups (see e.g. [1]) and regularized semi-groups (see
[11] for a detailed study).
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4. Initial Value Problems as Space-Time Evolution Problems

We shall now investigate the relationship between (3.4) and the associated
(formal) initial value problem

(4.1) (∂0u)(t) = 2πi(Au(t) + f(t)), t > 0,

with initial condition

(4.2) u(0+) = u0

with given sayH-valued f . The assumptions of theorem 3.5 on A are assumed
to be satisfied throughout this chapter. In order to compare with the above
results we have to make (4.1) and (4.2) more precise. We shall interpret (4.1)
as

(4.3) (D0 −A)u = f on R
+,

i.e., supp((D0 −A)u− f) ⊆ ]−∞, 0], where f ∈ H0(Dν − i) ⊗H−∞(iν +A).
W.l.o.g. we may and shall assume that supp0 f ⊆ [0,∞[ and supp0 u ⊆ [0,∞[.
The initial condition is imposed in the sense of convergence in H−∞(iν +A):

(4.4) u(0+) = u0 in H−∞(iν +A).

In order to make the point-wise limit meaningful we will be looking for a
solution u ∈ χR+(m)H1(Dν − i)⊗H−∞(iν+A). Thus the precise form of the
initial value problem is:

IVP: For any given f ∈ χR+(m)H0(Dν − i) ⊗ H−∞(iν + A) and u0 ∈
H−∞(iν + A) find u ∈ χR+(m)H1(Dν − i) ⊗ H−∞(iν + A) such that (4.3)
and (4.4) hold.

In order to establish the link between the initial value problem and a corre-
sponding operator equation we need the following regularity statement.

Lemma 4.1. Let A : D(A) ⊆ H → H satisfy the assumptions of theorem
3.5 and ν ≥ ν0 > 0. For f ∈ Hs(Dν − i) ⊗ Hm(iν + A) the solution u =
(D0 −A)−1f of

(D0 −A)u = f,

satisfies

u ∈
⋂

h∈[−k−1,1]∩Z

Hs+h(Dν − i) ⊗Hm−h−k(iν +A).

Proof. From

(D0 −A)u = f = (Dν − (iν +A))u = (iν +A)(iν +A)−1f

we obtain

(4.5) (Dν − (iν +A))(u− (iν +A)−1f) = Dν(iν +A)−1f.

Let now k ∈ N be the regularity defect of (D0 −A) then we have

u− (iν +A)−1f ∈ Hs−1−k(Dν − i) ⊗Hm+1(iν +A).
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Since

(iν +A)−1f ∈ Hs(Dν − i) ⊗Hm+1(iν +A),

we find

(4.6) u ∈ Hs−1−k(Dν − i) ⊗Hm+1(iν +A).

From

(D0 −A)u = f = ((Dν + i) − (i(ν + 1) +A))u = (Dν + i)(Dν + i)−1f

we obtain similarly

(4.7) ((Dν +i)− (i(ν+1)+A))(u− (Dν +i)−1f) = (i(ν+1)+A)(Dν +i)−1f

From (4.6) we obtain by induction for any n ∈ N

((Dν + i) − (i(ν + 1) +A))(u− (Dν + i)−1
∑n−1

j=0 (i(ν + 1) +A)j(Dν + i)−jf) =

= (i(ν + 1) +A)n(Dν + i)−nf.

As above we conclude

u−(Dν +i)−1
n−1∑

j=0

(i(ν+1)+A)j (Dν +i)−jf ∈ Hs−k+n(Dν − i)⊗Hm−n(iν+A)

and with

(Dν + i)−1
n−1∑

j=0

(i(ν + 1) +A)j(Dν + i)−jf ∈ Hs+1(Dν − i) ⊗Hm−n+1(iν +A)

we establish

u ∈ Hs−k+n(Dν − i) ⊗Hm−n(iν +A) for n = 0, 1, 2, . . . , k + 1.

Together with (4.6) we get indeed

(4.8) u ∈ Hs−k+n(Dν − i) ⊗Hm−n(iν +A) for n = −1, 0, 1, 2, ..., k+ 1.

Remark 4.2. Note that the result of lemma 4.1 is also reflected in lemma
3.6.

We are now ready to show the following equivalence result.

Theorem 4.3. Let A : D(A) ⊆ H → H satisfy the assumptions of the-
orem 3.5 and f ∈ χR+(m)H0(Dν − i) ⊗H−∞(iν + A) be given (for ν ≥ ν0).
Then the solution u ∈ χR+(m)H1(Dν − i) ⊗H−∞(iν +A) of the initial value
problem (4.3) and (4.4) is given by

u = (D0 −A)−1(f +
1

2πi
δ ⊗ u0).
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Conversely, if u ∈ χR+(m)H1(Dν − i) ⊗H−∞(iν +A) solves the initial value
problem then

(D0 −A)u = f +
1

2πi
δ ⊗ u0.

Proof. Consider the solution u = (D0 − A)−1(f + 1
2πiδ ⊗ u0) of the

equation

(D0 −A)u = f +
1

2πi
δ ⊗ u0.

Then

〈(D0 −A)u− f |ϕ⊗ ψ〉ν,0,0 =
〈

1
2πiδ ⊗ u0|ϕ⊗ ψ

〉
ν,0,0

= − 1
2πiϕ(0) 〈u0|ψ〉0 = 0

for all ϕ ∈
◦
C∞(R − {0}). This proves (4.3) formally. Next we want to show

the initial condition (4.4) and that

u ∈ χR+(m)H1(Dν − i) ⊗H−∞(iν +A).

Since D0χR+ = 1
2πiδ in H−1(Dν − i) for ν〉0 we have

(D0 −A)(u− χR+ ⊗ u0) = f − χR+ ⊗Au0 ∈ H0(Dν − i) ⊗H−∞(iν +A)

According to lemma 4.1 we have now

u− χR+ ⊗ u0 ∈ H1(Dν − i) ⊗H−∞(iν +A).

Because of causality

supp0 u ⊆ [0,∞[,

and so with Sobolev’s imbedding result (u − χR+ ⊗ u0) is continuous and
vanishes on R−. Consequently,

u(0+)− u0 = V (0−) = 0.

Since v = u on R+ we have as desired

u(0+) = u0.

Moreover,

u− χR+ ⊗ u0 = u− χR+(m)β ⊗ u0 ∈ H1(Dν − i) ⊗H−∞(iν +A)

with β ∈ C∞(R) such that supp(β) is bounded below and β ≡ 1 on R+. Thus,
finally

u ∈ χR+(m)β ⊗ u0 + χR+(m)H1(Dν − i) ⊗H−∞(iν +A)

and so

u ∈ χR+(m)H1(Dν − i) ⊗H−∞(iν +A).
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Let now such a u solve the initial value problem. We calculate with ϕ ∈
◦
C∞(R) ⊗a Hj(iν +A), j sufficiently large,

〈(D0 −A)u|ϕ〉ν,0,0

= 〈(Dν − iν −A)u|ϕ〉ν,0,0

= 〈u|(Dν + iν −A∗)ϕ〉ν,0,0

=
∫∞

0 〈u(t)|(Dνϕ)(t) + (iν −A∗)ϕ(t)〉0 exp(−4πνt)dt

=
∫∞

0
{〈u(t)|(Dνϕ)(t)〉0 − 〈(iν +A)u(t)|ϕ(t)〉0} exp(−4πνt)dt.

Together with (4.3) this yields

〈(D0 − A)u|ϕ〉ν,0,0

=
∫∞

0
{〈u(t)|(Dνϕ)(t)〉0 − 〈Dνu(t) − f(t)|ϕ(t)〉0} exp(−4πνt)dt

= 〈f |ϕ〉ν,0,0 +
∫∞

0 {〈u(t)|(Dνϕ)(t)〉0 − 〈Dνu(t)|ϕ(t)〉0} exp(−4πνt)dt

= 〈f |ϕ〉ν,0,0 +
∫∞

0
(D0F )(t)dt,

with
F (t) := 〈exp(−2πνt)u(t)| exp(−2πνt)ϕ(t)〉0

for t ∈ R+. Thus,

〈(D0 −A)u|ϕ〉ν,0,0 = 〈f |ϕ〉ν,0,0 −
1

2πi
F (0+),

or with F (0+) = 〈u(0+)|ϕ(0)〉0,

〈(D0 −A)u|ϕ〉ν,0,0 = 〈f |ϕ〉ν,0,0 −
1

2πi
〈u0|ϕ(0)〉0 =

〈
f +

1

2πi
δ ⊗ u0|ϕ

〉

ν,0,0

.

This confirms our claim. In particular, the solution of the initial value prob-
lem is uniquely determined and satisfies the continuous dependence estimate
induced by (3.7).
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