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Abstract. Certain continuity properties of the factors in generalized
polar decompositions of real and complex matrices are studied. A complete
characterization is given of those generalized polar decompositions that

persist under small perturbations in the matrix and in the scalar product.
Connections are made with quadratic matrix equations, and with stability
properties of certain invariant subspaces.

1. Introduction

Let F be the field of real numbers R or the field of complex numbers C.
Choose a fixed real symmetric (if F = R) or complex Hermitian (if F = C)
positive definite n × n matrix H . Consider the scalar product induced by H
by the formula [x, y] = 〈Hx, y〉, x, y ∈ F n. Here 〈 · , · 〉 stands for the usual
scalar product in F n, i.e., 〈x, y〉 =

∑n
j=1 xjyj , where x and y are column

vectors with components x1, · · · , xn and y1, · · · , yn, respectively, and yj = yj

if F = R.
Well-known concepts related to scalar products are defined in an obvious

way. Thus, given an n× n matrix A over F , the H-adjoint AH is defined by
[Ax, y] = [x,AHy] for all x, y ∈ F n. In that case AH = H−1A∗H , where A∗

denotes the conjugate transpose of A (with A∗ = AT , the transpose of A, if
F = R). An n×n matrix A is called H-selfadjoint if AH = A. An n×n matrix
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U is called H-unitary if [Ux,Uy] = [x, y] for all x, y ∈ F n (or equivalently, if
U∗HU = H).

An H-polar decomposition of a matrix X ∈ F n×n is, by definition, a
factorization of the form

(1.1) X = UA,

where U is H-unitary and A is H-selfadjoint. This definition is more general
than the standard definition in that we allow A to be H-selfadjoint (not just
H-positive semidefinite) and the scalar product need not be the standard one.

In this paper we study the behaviour of the factors in an H-polar decom-
position of a matrix X under perturbations of X and H .

2. Selfadjoint Square Roots and Polar Decompositions

We review some basic results concerning selfadjoint square roots, polar
decompositions, and their stability. The results in this section are known, or
can be easily obtained from known results.

The following statement is standard when H = I , and can be easily
reduced to this case. Indeed, A is H-selfadjoint if and only if H

1
2AH− 1

2 is

I-selfadjoint; here H
1
2 is the positive definite square root of H .

Proposition 2.1. The following statements are equivalent for an H-
selfadjoint matrix A:

(i) A has the form A = BHB for some B.
(ii) All eigenvalues of A are nonnegative.
(iii) There exists an H-selfadjoint square root of A, i.e., a matrix B such

that B = BH and B2 = A.

If any (and hence all ) of the statements (i)-(iii) holds true, then there is
a unique H-selfadjoint square root of A with nonnegative spectrum, denoted
H
√
A.

If the statements (i)-(iii) of Proposition 2.1 hold true and A is non-

singular, then H
√
A is given by a functional calculus formula:

H
√
A =

1

2πi

∫

Γ

z
1
2 (zI −A)−1 dz

where Γ is a simple rectifiable contour in the open right halfplane that contains
the eigenvalues of A in its interior and z1/2 is the branch of the square root
satisfying 11/2 = 1. We indicate another formula, perhaps less known, for H

√
A

that applies also for singular A:

H
√
A =

1

π

∫ ∞

0

λ−
1
2 (λI +A)−1Adλ. (2.1)
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Note that the convergence of the integral is guaranteed (under the statements
(i)-(iii) of Proposition 2.1. To verify (2.1), first observe that the right-hand side
of (2.1) is clearly H-selfadjoint with only nonnegative eigenvalues. To prove
that its square is equal toA, we may assume, using a similarity transformation,
that A is diagonal. Then the proof reduces to the scalar case, where the
elementary integral

1

π

∫ ∞

0

λ−
1
2 (λ+ q)−1q dλ =

√
q, q ≥ 0

completes the proof.

Proposition 2.2. The square root H
√
A ( having a nonnegative spectrum)

of an H-selfadjoint matrix A with nonnegative spectrum is a continuous func-
tion of A. More precisely: Given such a matrix A, for every ε > 0 there is
δ > 0 ( depending also on A and H) such that for every G-selfadjoint matrix
B having nonnegative spectrum and satisfying ‖H − G‖ + ‖B − A‖ < δ the

inequality ‖ G
√
B − H

√
A‖ < ε holds. (G is assumed to be Hermitian, and

necessarily positive definite if δ is chosen sufficiently small.)

If H = I and G is taken to be equal to H , the result of Proposition 2.2
is a particular case of a general theorem concerning continuity of functions
of normal matrices (see Theorem 6.2.37 in [HJ]). The theorem asserts that
given a set D in the complex plane and a continuous function f(λ) on D,
the matrix function f(X) is continuous on the set of normal matrices X with

all eigenvalues in D. Taking D = [0,∞) and f(λ) =
√
λ gives Proposition

2.2 when H = G = I . Again, Proposition 2.2 can be obtained from this
particular case without difficulty. Actually, more can be said: the square root
H
√
A is a locally Lipschitz function of the pair (A,H) if A is nonsingular, and

is a locally Hölder function with exponent 1
2 if A is singular. Namely, let A

be as in Proposition 2.2, and let α = 1 if A is nonsingular, α = 1
2 if A is

singular. Then there exist positive constants δ and K (depending on A and
H) such that for every G-selfadjoint matrix B having nonnegative spectrum
and satisfying ‖H −G‖ + ‖B −A‖ < δ the inequality

‖ G
√
B − H

√
A‖ ≤ K (‖H −G‖ + ‖B −A‖)α

(2.2)

holds. The local Lipschitz property of the square root is evident, because, by
the functional calculus, the square root is an analytic function of a matrix A
with positive spectrum, whereas the local Hölder property follows from the
proof of Theorem 6.2.37 in [HJ].

As a byproduct of the above considerations, we obtain:

Proposition 2.3. The square roots
H
√
XHX and

H
√
XXH are continuous

functions of the pair (X,H), where H ∈ F n×n is positive definite and X ∈
Fn×n. Moreover,

H
√
XHX and

H
√
XXH are locally Lipschitz continuous on
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the set of pairs (X,H) as above, where X is nonsingular, and are locally
Hölder continuous with exponent 1

2 on the set of pairs (X,H) as above with
singular X.

Passing to polar decompositions, it is a standard result that an H-polar
decomposition (1.1) always exists. Moreover, in this case one can take A hav-
ing nonnegative spectrum; an H-polar decomposition of the form (1.1) with
this property of A will be called a nonnegative H-polar decomposition. By
Proposition 2.1 the factor A in a nonnegativeH-polar decomposition is unique

and coincides with
H
√
XHX. The factor U in a nonnegative H-polar decom-

position is unique if and only if X is nonsingular. By Proposition 2.3 we have:

Proposition 2.4. The factors U and A of the nonnegative H-polar de-
composition (1.1) are locally Lipschitz continuous functions on the set of pairs
(X,H), where H ∈ F n×n is positive definite and X ∈ F n×n is nonsingular.

In connection with Proposition 2.4 we mention the following formula that
gives perturbation bounds on the unitary factor of the nonnegative polar
decomposition for invertible matrices, assuming H = I (see [Li]; also [Bh],
Theorem VII.5.1). Let X and Y be invertible matrices with the nonnegative
polar decompositions X = UA and Y = V B. Then

‖U − V ‖ ≤ 2

‖X−1‖−1 + ‖Y −1‖−1
‖X − Y ‖. (2.3)

As shown in [Li], the formula (2.3) is the best possible in the sense that the
bound can be achieved. Using the identity A−B = V −1(X − Y )−U−1(U −
V )V −1X and the unitarity of U and V , we immediately get the corresponding
bounds for the positive semidefinite factor:

‖A−B‖ ≤
(

1 +
2‖X‖

‖X−1‖−1 + ‖Y −1‖−1

)
‖X − Y ‖. (2.4)

3. Stability

In this section we state and prove the main result of this paper concerning
stability of polar decompositions (1.1), which are not necessarily nonnegative.

The polar decomposition (1.1) is called stable if for every ε > 0 there
is δ > 0 such that every pair of matrices (Y,G), where Y ∈ F n×n and
G ∈ Fn×n is Hermitian, admits a G-polar decomposition Y = V B with
‖U − V ‖ + ‖A − B‖ < ε, as soon as ‖Y − X‖ + ‖H − G‖ < δ. Restricting
this definition to perturbations of Y only, in other words, assuming G = H ,
we obtain the definition of H-stability of the polar decomposition (1.1). The
polar decomposition (1.1) is called Lipschitz stable (resp. H-Lipschitz stable)
if there exist positive constants δ and K such that every Y ∈ F n×n admits
a G- (resp. H-) polar decomposition Y = V B with ‖U − V ‖ + ‖A − B‖ ≤
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K (‖X − Y ‖ + ‖G−H‖) (resp. ‖U − V ‖ + ‖A − B‖ ≤ K‖X − Y ‖) as soon
as ‖X − Y ‖ + ‖G − H‖ ≤ δ (resp. ‖X − Y ‖ ≤ δ). Clearly, stability implies
H-stability, Lipschitz stability implies stability and H-Lipschitz stability, and
H-Lipschitz stability implies H-stability. The following result shows, in par-
ticular, that these a priori distinct notions of stability are in fact equivalent.

Theorem 3.1. (a) F = C. There exist H-stable H-polar decompositions
of X if and only if X is nonsingular. In this case, the following statements
are equivalent for an H-polar decomposition (1.1):

(i) (1.1) is H-stable.
(ii) (1.1) is Lipschitz stable.
(iii) The H-selfadjoint matrices A and −A have no common eigenvalues.

(b) F = R. There exist H-stable H-polar decompositions of X if and only if
dim KerX ≤ 1. In this case, the following statements are equivalent for an
H-polar decomposition (1.1):

(iv) (1.1) is H-stable.
(v) (1.1) is Lipschitz stable.
(vi) The H-selfadjoint matrices A and −A have no common nonzero eigen-

values.

In particular, the nonnegative H-polar decomposition is Lipschitz stable
if and only if X is nonsingular (in the complex case) or dim KerX ≤ 1 (in the
real case).

In contrast with (2.3) and (2.4), Theorem 3.1 provides qualitative re-
sults. On the other hand, the quantitative formulas (2.3) and (2.4) apply to a
more restrictive class of polar decompositions, namely, the nonnegative polar
decompositions of nonsingular matrices.

Proof. In the first part of the proof we reduce the problem in three steps
to the case where H = I and X is selfadjoint, and to the polar decomposition
with U = I , and we show that we have to consider perturbations of X only.

First of all we note that without loss of generality we may restrict ourselves
to the case H = I . Indeed, write H = S∗

1S1 for some invertible S1, and
observe that X = UA is an H-polar decomposition if and only if S1XS

−1
1 =

S1US
−1
1 · S1AS

−1
1 is an I-polar decomposition.

Secondly, observe that for any α > 0 the I-polar decomposition X = UA
of X is stable if and only if the I-polar decomposition αX = U(αA) of αX
is stable. Thus we may assume in the sequel that ‖X‖ = 1. Now we show
that we can restrict our attention to perturbations of X only. Let X = UA
be an I-polar decomposition of X . Consider a perturbation Y of X and a
perturbation G = G∗ of H = I . Then we can write G = S2, with positive
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definite S close to I . In fact, by (2.2) (with H = G = A = I , B = S2) we have
‖S − I‖ ≤ C1‖G − I‖ for some constant C1 > 0, uniformly in G. Moreover,
we may assume that ‖Y ‖ ≤ 2 as ‖X‖ = 1 and we consider sufficiently small
perturbations. Put Y1 = SY S−1. Then

‖Y1 −X‖ ≤ ‖Y1 − Y ‖ + ‖Y −X‖

≤ ‖S−1‖ · ‖(S − I)Y − Y (S − I)‖ + ‖Y −X‖

≤ C2‖G− I‖ + ‖Y −X‖,
where C2 is a positive constant, uniformly in G. Moreover, if Y = V B is a G-
polar decomposition of Y then with V1 = SV S−1 and B1 = S−1(GB)S−1 =
SBS−1 we have that Y1 = V1B1 is an I-polar decomposition of Y1, and vice
versa. Indeed, V being G-unitary implies that V1 is unitary and B being
G-selfadjoint implies that GB and hence B1 are selfadjoint. Therefore, we
can restrict our attention to perturbations of X only, keeping H = I fixed.
Henceforth, in this proof we shall drop the I in I-stable and in I-polar decom-
position. This also shows that the notions of stability andH-stability coincide,
as well as the notions of Lipschitz stability and Lipschitz H-stability.

Thirdly, we show that we can restrict the attention to the case where X
is selfadjoint and the unitary factor in the polar decomposition is the identity
matrix. Indeed, suppose X = UA is a stable polar decomposition. Then for
X̃ = U∗X the polar decomposition X̃ = I · A is also stable. Indeed, let
‖Ỹ − X̃‖ < δ, then for Y = UỸ we have ‖Y −X‖ = ‖Ỹ − X̃‖ < δ, so there
exist a unitary V and a selfadjoint B with Y = V B and ‖U−V ‖+‖A−B‖ < ε.

Then Ỹ = (U∗V )B is a polar decomposition and

‖U∗U − U∗V ‖ + ‖A−B‖ = ‖U − V ‖ + ‖A−B‖ < ε.

On the other hand, if X = UA is a polar decomposition which is not stable,
then there exists a sequence Xn → X such that for any polar decomposition
Xn = UnAn either An does not converge to A or Un does not converge to U .
Consider again X̃ = U∗X , and X̃n = U∗Xn. Then for any polar decomposi-
tion of X̃n either the unitary factor does not converge to I , or the selfadjoint
factor does not converge to A. Hence the polar decomposition X̃ = I · A is
not stable. Analogously one proves that (1.1) is Lipschitz stable if and only if

X̃ = I ·A is Lipschitz stable. We conclude that for the remainder of the proof
we may assume that X is selfadjoint and that the unitary factor in the polar
decomposition under consideration is the identity matrix.

Now suppose thatX is singular and selfadjoint. Decompose the underlying
space Fn as KerX ⊕ ImX . Put dim KerX = k. Suppose first that k > 1 or

F = C. With respect to this decomposition we can write X as

(
0 0
0 X22

)

with X22 invertible and selfadjoint. Let X11 be an arbitrary invertible k × k
matrix such that in any polar decompositionX11 = V11A11 the unitary matrix
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V11 is bounded away from Ik . This is possible as k > 1 or F = C. Put

Y =

(
εX11 0

0 X22

)
, where ε ∈ R is close to zero. As Y is invertible any polar

decomposition that needs to be close to the polar decomposition X = I · X
must be of the form Y =

(
V11 0
0 I

)(
εA11 0

0 X22

)
, with A11 taken from a

polar decomposition X11 = V11A11. However, as V11 6= Ik, we cannot have
that V11 − Ik → 0 as ε goes to zero. So no polar decomposition is stable in
this case.

Next, suppose that F = R, X is singular and selfadjoint with one-
dimensional kernel, and that X and −X don’t have a common nonzero eigen-
value. Decompose the space Rn as in the previous paragraph, and write X as
above. By considering the spectral decomposition of X we may as well assume
that X is diagonal: X = diag (λ1, λ2, . . . , λn), where λ1 = 0, and λ2, . . . , λn

are not necessarily distinct non-zero numbers such that λ2
i = λ2

j ⇒ λi = λj ,

(i, j = 2, . . . , n). We also assume that the λj are arranged in the non-
decreasing order of their absolute values. We continue to assume that the
unitary factor in the polar decomposition of X is the identity matrix. Let
Y be an arbitrary small perturbation of X . Let B1 be the positive semidefi-
nite square root of Y ∗Y , and write B1 = V1 diag (θ1, θ2, . . . , θn)V ∗

1 , with |θ1|,
|θi − |λi||, (i > 1) small and V1 unitary. Then V1 can be taken to be close
to the identity matrix and actually, we can arrange it so that ‖V1 − I‖ is of
the same order of magnitude as ‖X − Y ‖ (cf. [Bh], Theorem VII.3.2). Also,
|θi − |λi||, (i > 1) are of the same order of magnitude as ‖X − Y ‖; an easy
way to verify this, assuming for simplicity that all the λj are distinct, is to
notice that θi (resp. |λi|) is the distance from Y (resp. X) to the set of all
real matrices having rank at most n − i, the distance being measured in the
operator norm. Let σ1 = ±θ1, and σi = θi signλi for i > 1, where the sign ±
is chosen so that

σ1 · . . . · σn · detY ≥ 0, (3.1)

and put B = V1diag (σ1, . . . , σn)V ∗
1 . Then B is close to X , and as a matter of

fact there is a constant C3 > 0 depending on X only (provided ‖X − Y ‖ is
small enough) such that ‖X −B‖ ≤ C3‖X − Y ‖. Note that B is a selfadjoint
square root of Y ∗Y . Now we determine a matrix U ∈ Rn×n by using the
equality Y = UB. This definition is correct, because Bx = 0 implies Y x = 0.
Moreover, a standard argument shows that

〈Uy1, Uy2〉 = 〈y1, y2〉 for every y1, y2 ∈ RangeB. (3.2)

Thus, if B is invertible, then U is uniquely defined by the equality Y = UB,
and U is necessarily unitary; in addition, (3.1) guarantees that detU = 1. If
B is not invertible, then (for Y sufficiently close to X) dim KerB = 1, the
equality Y = UB determines U uniquely on the range of B, and (3.2) holds.
It is easy to see that U can be extended to a unitary matrix, by requiring
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(in addition to Y = UB) that Uf = ±g, where f (resp., g) is a normalized
vector in the orthogonal complement to RangeB (resp., RangeY ). We adjust
the sign ± so that detU = 1. To summarize: There exists a unitary matrix
U ∈ Rn×n with detU = 1 such that Y = UB.

We now show, under the hypotheses made in the preceding paragraph,
that the matrix U is actually close to I . Denote by e1, . . . , en the standard
unit coordinate vectors in Rn. We have:

Y V1ej = UBV1ej = UV1diag (σ1, . . . , σn)ej = σjUV1ej , (3.3)

and therefore for j ≥ 2:

‖Uej − ej‖ = θ−1
j ‖σjUej − σjej‖

≤ θ−1
j {‖σjUej − λjej‖+ |λj − σj |}

≤ θ−1
j {‖σj(Uej − UV1ej)‖ + ‖σjUV1ej − λjej‖ + |λj − σj |}

(by (3.3))

= θ−1
j {|σj | ‖(V1 − I)ej‖ + ‖Y V1ej −Xej‖ + |λj − σj |}

≤ θ−1
j {|σj | ‖V1 − I‖ + ‖Y V1ej − Y ej‖ + ‖Y ej −Xej‖ + |λj − σj |}

≤ θ−1
j {|σj | ‖V1 − I‖ + ‖Y ‖ · ‖V1 − I‖ + ‖Y −X‖+ |λj − σj |}

= θ−1
j {|σj | ‖V1 − I‖ + ‖Y ‖ · ‖V1 − I‖ + ‖Y −X‖+ |θj − |λj ||}

≤ C4‖X − Y ‖.

Here, C4 is a positive constant depending on X only, provided ‖X − Y ‖ is

small enough. Thus, denoting by Û the n × (n − 1) matrix obtained from U

by removing its first column, we see that

∥∥∥∥Û −
(

0
In−1

)∥∥∥∥ is of the same order

of magnitude as ‖X−Y ‖. Now, the first column of U is a normalized vector x

satisfying Û∗x = 0. The condition detU = 1 guarantees that x is close to e1,
with ‖x−e1‖ ≤ C5‖X−Y ‖, where, again, C5 is a positive constant depending
on X only, provided ‖X − Y ‖ is small enough.

This proves that X with one-dimensional kernel in the real case has Lips-
chitz stable polar decompositions; moreover, we have proved that (vi) implies
(v). If X is nonsingular and A is positive definite, the Lipschitz stability of
(1.1) is immediate from (2.3) and (2.4). We have verified that there exist sta-
ble polar decompositions of X if and only if X is nonsingular (in the complex
case), and if and only if the dimension of the kernel of X is at most one (in
the real case).
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Next, we prove (iii) ⇒ (ii). To this end, observe that if X is nonsingular
and (iii) holds, then in fact A = f(X∗X), where f(z) is an analytic function
defined in a neighborhood of the spectrum of X∗X . Now letting B = f(Y GY )
for Y and G = G∗ sufficiently close to X and I , respectively, the Lipschitz
stability of (1.1) is easily verified.

It remains to show that under the conditions on KerX as stated in the
theorem the polar decomposition X = UA is not I-stable if A and −A have
a common non-zero eigenvalue. Again, we assume U = I , i.e., A = X .

Suppose that X = X∗ has an eigenvalue λ 6= 0 and −λ is an eigenvalue as
well. Let x1 and x2 be normalized eigenvectors of X with respect to λ and −λ,
respectively. Then x1 and x2 are orthogonal and we may as well assume that
X is given by X = diag (λ,−λ,X22). Again we may assume that the unitary
matrix in the polar decomposition under consideration is the identity matrix.
Now consider perturbations of X of the form X̃ = X̃11 ⊕X22, where X̃11 =(
λ ε
−ε −λ

)
, with ε 6= 0 such that (λ+ ε)2 and (λ− ε)2 are not eigenvalues of

X2
22. Then the matrices in any polar decomposition of X̃ are block diagonal

with a 2× 2 block in the upper left hand corner. We shall focus our attention

on this 2×2 block. Compute X̃∗
11X̃11 =

(
λ2 + ε2 2ελ

2ελ λ2 + ε2

)
. This matrix has

(
1
1

)
and

(
1
−1

)
as eigenvectors, corresponding to the eigenvalues (λ+ε)2 and

(λ− ε)2, respectively. If we wish to find a polar decomposition X̃11 = Ũ11Ã11

where Ã11 is close to X11 = diag (λ,−λ), then this turns out to be impossible,

because the eigenvectors of Ã11 are

(
1
1

)
and

(
1
−1

)
, independently of ε. By

considering Ũ11 = X̃11Ã
−1
11 it is also easily checked that the unitary factor

in this case does not converge to the identity either, as ε → 0. So the polar
decomposition X = I ·X is not stable. As a matter of fact, neither the unitary
nor the selfadjoint factor is stable.

In [R], Chapter 4, some parts of Theorem 3.1 were proved in a totally
different way. To be precise, it was shown there that, for H = I and F = C,
there exist stable polar decompositions of X if and only if X is invertible, and
in that case (i) and (iii) are equivalent.

The perturbation part of Theorem 3.1 can also be presented in a stronger,
function theoretic form:

Theorem 3.2. Assume that the H-polar decomposition (1.1) is not sta-
ble. Then there exists Y ∈ F n×n such that for every ε 6= 0 sufficiently close
to zero and every H-polar decomposition X + εY = U(ε)A(ε) the unitary
matrices U(ε) do not converge to U , as ε tends to zero. Moreover, Y can be
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chosen so that rankY = 2 if A and −A have a common non-zero eigenvalue,
or rankY = dim KerX if X is singular.

Conversely, let D be the open set of invertible n × n matrices if F = C,
or the open set of n × n matrices having rank at least n − 1 if F = R, and
denote by P the set of positive definite Hermitian matrices in F n×n. Then the
H-polar decompositions X = UA, where A and −A have no common non-
zero eigenvalues, are real analytic functions of the pair (X,H) ∈ D×P. More
precisely, let X0 = U0A0 be an H0-polar decomposition, where (X0, H0) ∈
D × P, and A0 and −A0 have no common non-zero eigenvalues. Then for
every (X,H) ∈ D × P in a neighborhood of (X0, H0) there exists an H-polar
decomposition X = UA in which U = U(X,H) and A = A(X,H) are real
analytic functions of the real and imaginary parts of the entries of X and
of the diagonal entries and the real and imaginary parts of the strictly upper
triangular entries of H, and U(X0, H0) = U0, A(X0, H0) = A0. ( If F = R,
the imaginary parts are absent, of course.)

The proof of Theorem 3.2 is obtained by inspection of the proof of The-
orem 3.1.

4. Quadratic Matrix Equations and Invariant Subspaces

The H-polar decompositions (1.1) are closely related to certain matrix
quadratic equations. This relationship was first observed and exploited in
[R]. Here we use this connection to ascertain stability properties of unitary
solutions of such equations.

Indeed, let X = UA be an H-polar decomposition of X ∈ F n×n. Then,
as one readily verifies,

UXHU −X = 0. (4.1)

So U is an H- unitary solution of the matrix quadratic equation (4.1). Con-
versely, if U is an H- unitary solution of this equation, and we put A = U−1X ,
then AH = XHU = U−1X = A, so X = UA is an H-polar decomposition of
X . We say that a unitary solution U of (4.1) is H-stable if for every ε > 0
there is δ > 0 such that every equation V Y HV − Y = 0 with Y ∈ F n×n

admits an H-unitary solution V with ‖U − V ‖ < ε, as soon as ‖Y −X‖ < δ.
An H-unitary solution U of (4.1) is called Lipschitz stable if there exist pos-
itive constants δ and K such that every equation V Y GV − Y = 0 admits a
G-unitary solution V with ‖U − V ‖ + ‖A − B‖ ≤ K (‖X − Y ‖ + ‖G−H‖)
as soon as ‖X − Y ‖ + ‖G−H‖ ≤ δ and G is Hermitian (necessarily positive
definite if δ is sufficiently small). We have the following corollary:

Corollary 4.1. The equation (4.1) has H-stable H-unitary solutions
if and only if dim KerX = 0 ( in case F = C) or dim KerX ≤ 1 ( in case
F = R). In this case an H-unitary solution U of (4.1) is H-stable if and
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only if it is Lipschitz stable if and only if U−1X and −U−1X have no common
non-zero eigenvalues.

Proof. By the remarks before the statement of the corollary, stability of
H-unitary factors in H-polar decompositions translates directly into stability
of H-unitary solutions of (4.1) under perturbations of X only. As we have seen
in the proof of Theorem 3.1, there exists a H-unitary factor that is stable (in
any of the senses introduced in Section 3) if and only if dim KerX = 0 (in
case F = C) or dim KerX ≤ 1 (in case F = R). Now apply Theorem 3.1.

Corollary 4.1 can also be formulated in the function theoretic form, anal-
ogously to Theorem 3.2. We leave this formulation to the interested reader.

The connections between matrix quadratic equations and certain invariant
subspaces are well-known (see, for example, [BGK], Chapter 17 of [GLR], and
Chapters 7 and 8 of [LR]). Applying these ideas to the equation (4.1), we
consider

X̂ =

(
0 XH

X 0

)
∈ F 2n×2n, Ĥ =

(
H 0
0 −H

)
∈ F 2n×2n,

where X,H ∈ F n×n and H is positive definite Hermitian. It is easy to see
that a subspace M ⊂ F 2n is hypermaximal Ĥ-neutral, i. e., dimM = n
and 〈Ĥx, y〉 = 0 for all x, y ∈ M, if and only if it is a graph subspace

M = Im

(
I
U

)
with H-unitary U . Furthermore, such subspace M is X̂-

invariant if and only if U satisfies the equation (4.1). We can therefore apply

Theorems 3.1 and 3.2 to stability problems of X̂-invariant hypermaximal Ĥ-
neutral subspaces. For example:

Corollary 4.2. Let D and P be defined as in Theorem 3.2. Assume that

(X0, H0) ∈ D × P, and let M0 be an X̂0-invariant hypermaximal Ĥ0-neutral

subspace such that the restriction X̂0|M0 has no pairs of non-zero eigenvalues
±λ. Then for every (X,H) ∈ D×P in a neighborhood of (X0, H0) there exists

an X̂-invariant hypermaximal Ĥ-neutral subspace M = M(X,H) which is a
real analytic function of (X,H), and M(X0, H0) = M0.
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