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A CLASS OF 2 × 2–MATRIX FUNCTIONS
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Technische Universität Wien, Austria

Abstract. For a special class 2 × 2–matrix functions Ω operator

representations of Ω(z) and Ω̂(z) := −Ω(z)−1 by means of self-adjoint

linear relations A and Â in a Krein space K are given. Since Â is a 2-
dimensional peturbation of A, results of [LMM] imply that “singularities

of positive type” of Ω remain singularities of positive type of Ω̂ with the
possible exception of isolated points which have a “finite negative index”.

1. Introduction

The 2 × 2–matrix functions considered in this note are of the form

Ω̂(z) = −
(
m1(z) 1

1 −m2(z)

)−1

,(1.1)

where m1(z) and m2(z) are Nevanlinna functions, that is, they are defined
and holomorphic in the upper and lower half plane and

=mj(z)

= z ≥ 0 if = z 6= 0, j = 1, 2.

If we denote by σess(mj) the set of nonisolated singularities ofmj(z), it is clear

that outside of σess(m1)∪σess(m2) the singularities of Ω̂(z) are just poles. The
main result of this note is that e.g. for each point λ0 ∈ σess(m1) \ σess(m2)
there exists an open interval ∆, λ0 ∈ ∆, such that

(1.2) Ω̂(z) = Ω̂∆(z) + Ω̂∆′(z)

where Ω̂∆′(z) is holomorphic in ∆, Ω̂∆(z) is holomorphic outside of the closure

of ∆ and Ω̂∆(z) belongs either to the Nevanlinna class or to a generalized
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Nevanlinna class N 2×2
κ for some positive integer κ (for the definition of this

class see Section 2). In the latter case λ0 is a generalized pole of nonpositive

type of Ω̂∆(z) which can also be characterized analytically, see [BL].

This result is proved by using a realization of the matrix function Ω̂(z).

The main operator Â in this realization, which is selfadjoint in a Krein space,
is a two-dimensional perturbation of the main operator A of the realization
of the original function

Ω(z) :=

(
m1(z) 1

1 −m2(z)

)
.

The second tool for the proof of (1.2) is the classification of the real spectral
points of a self-adjoint operator in a Krein space as those of positive, negative
etc. type, see [LMM]. From [LMM], Theorem 5.1, it is then easy to obtain

the decomposition (1.2). The fact that the operator Â is a two–dimensional
perturbation of A is proved in Section 3 using an operator identity and fol-
lowing the lines of [BGK]. In [KL], Section 1.6, a similar but (in the Krein
space case) weaker result was proved.

Finally we mention, that matrix functions of the form (1.1) arise e.g. with
the study of boundary value problems with eigenvalue–depending boundary
conditions, see, e.g., [DLS].

2. Preliminaries

Let (K, [ · , · ]) be a Krein space, U ∈L(K) be a unitary operator in K and
let Γ : C

n → K be a bounded linear operator. By Γ+ we denote the adjoint
of Γ, defined by the relation [Γx, f ] = (x,Γ+f)Cn for x∈C

n
, f ∈K. We fix

some point z0∈C\R and put λ(z) :=
z − z0
z − z0

. With an arbitrary n×n–matrix

Q0 we define the matrix function

Q(z) := Q∗
0 + (z0 − z0)Γ

+

(
I − 1

λ(z)
U

)−1

Γ(2.1)

on the set D := {z ∈ C : λ(z) ∈ ρ(U)}. Since 0 ∈ ρ(U), the set D contains a
neighbourhood of z0 and a neighbourhood of z0 and Q(z) is holomorphic on
D. Moreover D is symmetric with respect to the real axis and, evidently, Q∗

0 =
Q(z0). Additionally we suppose that also the function Q(z) is symmetric, that
is

Q(z) = Q(z)∗ for z ∈ D.(2.2)

This last relation is equivalent to

Q0 −Q∗
0

z0 − z0
= Γ+Γ.(2.3)

Conversely, suppose that an n × n–matrix function Q(z) is given, which
is holomorphic on a symmetric nonempty open set D and which satisfies the
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relation (2.2). Then Q(z) admits an (essentially unique) minimal representa-
tion of the form (2.1), at least on each open set D′ with sufficiently smooth
boundary, such that the closure of D′ is contained in D, see [DLS]. The
representation (2.1) is called minimal if

K = c.l.s. {(U − λ)−1Γx : λ ∈ ρ(U), x ∈ C
n}.

With the self-adjoint linear relation

A := (z0 − z0U)(I − U)−1,(2.4)

the representation (2.1) becomes

Q(z) = Q∗
0 + (z − z0)Γ

+(I + (z − z0)(A− z)−1)Γ.(2.5)

Here A is a self-adjoint, possibly unbounded operator if and only if 1 6∈ σp(U).
The representation (2.5) simplifies if the condition

ranΓ ⊂ D(A)(2.6)

is satisfied. In fact, in this case with Γ0 := (A−z0)Γ and S := Q∗
0−Γ+(A−z0)Γ

the representation reduces to

Q(z) = S + Γ+
0 (A− z)−1Γ0.(2.7)

Recall, that an n× n–matrix function Q(z) which is meromorphic in the
upper and the lower half plane belongs to the generalized Nevanlinna class
Nn×n

κ if the kernel

KQ(z, ζ) :=
Q(z) −Q(ζ)∗

z − ζ

has κ negative squares. It was shown in [KL] that these are the functions
which allow a minimal representation (2.1) with a πκ-space K.

As a more particular case, consider a function m(z) ∈ N0 := N 1×1
0 , that

is, m(z) is a complex function which is holomorphic in the upper and the
lower half plane and has the property

=m(z)

= z ≥ 0 if = z 6= 0.

It is well known that m(z) admits an integral representation

m(z) = α+ βz +

+∞∫

−∞

(
1

t− z
− t

1 + t2

)
dσ(t),(2.8)

here α ∈ R, β ≥ 0, and σ is a positive measure such that

+∞∫

−∞

1

1 + t2
dσ(t) <

∞. The representation (2.8) of the function m(z) leads in an easy way to



152 HEINZ LANGER AND ANNEMARIE LUGER

an operator representation of m(z). Indeed, the space K and the operators
appearing in (2.1) and (2.5) can be chosen as follows:

K := L2
σ(R) ⊕ Cβ ,

with Cβ :=C, equipped with the inner product (ξ, η)β :=βξ η. We fix some
z0 ∈ C \ R and define the linear operator Γ : C → K by the relation

Γ1 :=




1

t− z0
1


 .

Then the adjoint operator is

Γ+

(
f(t)

ξ

)
= βξ +

∞∫

−∞

f(t)

t− z0
dσ(t).

With the operator U : K → K:

U

(
f(t)

ξ

)
:=




t− z0
t− z0

f(t)

ξ




the representation (2.1) for the function m becomes

m(z) = m(z0) + (z − z0)β +

∞∫

−∞

(
1

t− z
− 1

t− z0

)
dσ(t).

Inserting the point z0 yields

2i=m(z0) = (z0 − z0)β +

∞∫

−∞

(
1

t− z0
− 1

t− z0

)
dσ(t),

and therefore

m(z) = a− (<z0)β + βz +

∞∫

−∞

(
1

t− z
− t− 2<z0

| t− z0 |2
)
dσ(t)

with a := <m(z0) is an operator representation of m(z). If, in particular,
z0 = i this representation coincides with the integral representation (2.8).
Clearly,

1 6∈ σp(U) ⇐⇒ β = 0,

and in this case K = L2
σ(R) and the self-adjoint operator A is the operator of

multiplication by the independent variable. For this example the assumption
(2.6) is satisfied if and only if the measure σ is finite, and then

Γ01 =
t− z0
t− z0

, Γ+
0 f =

∞∫

−∞

f(t)
t− z0
t− z0

dσ(t),
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and the representation (2.7) becomes

m(z) = s+

+∞∫

−∞

dσ(t)

t− z
.

3. Realization of the inverse function

In this section, starting from a representation of the function Q(z) in the
form (2.1), (2.5) or (2.7), we find a corresponding representation of the inverse
function

Q̂(z) := −Q(z)−1, z ∈ D.(3.1)

In the following, a closed linear operator is said to be boundedly invertible, if
its inverse exists and is defined on the whole space (and hence bounded). The
following lemma (in a slightly different form) can be found e.g. in [BGK] and
[CZ].

Lemma 3.1. Let X1 and X2 be Banach spaces, and let A and D be densely
defined and boundedly invertible operators in X1 and X2, respectively, and let
B and C be bounded linear operators from X2 into X1 and from X1 into X2,
respectively. Then the relation

(D + CA−1B)−1 = D−1 −D−1C(A+BD−1C)−1BD−1

holds whenever A+BD−1C is boundedly invertible.

Proof. We have for x ∈ D(D)

(D−1 −D−1C(A+BD−1C)−1BD−1)(D + CA−1B)x

= x−D−1C(A+BD−1C)−1Bx

+D−1CA−1Bx−D−1C(A +BD−1C)−1BD−1CA−1Bx

= x−D−1C(A+BD−1C)−1[A− (A+BD−1C) +BD−1C]A−1Bx = x,

since the expression in the square brackets is zero. Also, if x ∈ X2 we obtain

(D + CA−1B)(D−1 −D−1C(A+BD−1C)−1BD−1)x

= x+ CA−1BD−1x− C(A+BD−1C)−1BD−1x

− CA−1BD−1C(A +BD−1C)−1BD−1x

= x+ CA−1[(A+BD−1C) −A−BD−1C](A+BD−1C)−1BD−1x = x,

where again the expression in the square brackets vanishes.

In the following we assume that the domain of holomorphy D of the
function Q(z) consists of at most two components and that for some w0 ∈D
the matrix Q(w0) is invertible. Then, if w0 6= w0, also Q(w0) is invertible,
hence Q(z) is invertible on D with the possible exception of a set of isolated
points. Without loss of generality we can suppose that Q(z) is invertible
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at the point z0 from Section 2. Using Lemma 3.1 we can easily prove the
following theorem.

Theorem 3.2. Suppose that the function Q(z) admits the representation
(2.1),

Q(z) := Q∗
0 + (z0 − z0)Γ

+

(
I − 1

λ(z)
U

)−1

Γ,

with a unitary operator U in a Krein space K, and that the matrix Q0 is

invertible. Then the inverse function Q̂(z) admits the representation

Q̂(z) = −Q−∗
0 + (z0 − z0)Γ̂

+

(
I − 1

λ(z)
Û

)−1

Γ̂,

with Γ̂ := ΓQ−1
0 ∈ L(C

n
,K) and the unitary operator Û := U − (z0 −

z0)ΓQ
−1
0 Γ+U in K. If the representation of Q(z) is minimal, then the repre-

sentation of Q̂(z) is also minimal.

Proof. Lemma 3.1 implies

Q̂(z) = −Q−∗
0 + (z0 − z0)Q

−∗
0 Γ+

(
I − 1

λ(z)
U + (z0 − z0)ΓQ

−∗
0 Γ+

)−1

ΓQ−∗
0 .

The operator B := I + (z0 − z0)ΓQ
−∗
0 Γ+ is boundedly invertible, in fact,

taking into account relation (2.3) we easily get

B−1 = (I + (z0 − z0)ΓQ
−∗
0 Γ+)−1 = I − (z0 − z0)ΓQ

−1
0 Γ+(3.2)

and hence

Q̂(z)−1 = −Q−∗
0 + (z0 − z0)Q

−∗
0 Γ+

(
I − 1

λ
B−1U

)−1

B−1ΓQ−∗
0 .

Further, (2.3) also implies B−1ΓQ−∗
0 = ΓQ−1

0 and, finally,

Û := (I + (z0 − z0)ΓQ
−∗
0 Γ+)−1U = U − (z0 − z0)ΓQ

−1
0 Γ+U.(3.3)

The relation (3.2) shows that B and hence also Û are unitary. In order to show
the minimality of the representation, for every ε > 0, x ∈ C

n
and λ ∈ ρ(U)

we have to find y ∈ C
n

and η ∈ ρ(Û) with

|| (U − λ)−1Γx− (Û − η)−1Γ̂y ||< ε.(3.4)

With the particular choice y := Q0x− (z0 − z0)Γ
+U(U −λ)−1Γx it is easy to

see that η ∈ ρ(Û) can be chosen such that the inequality (3.4) holds.

According to relation (3.3), the unitary operator Û in the representation

of Q̂(z) is an n–dimensional perturbation of U . The analogous result for a
function Q(z) with a representation (2.5) is the following theorem.
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Theorem 3.3. Suppose that the function Q(z) admits a representation
(2.5),

Q(z) = Q∗
0 + (z − z0)Γ

+(A− z0)(A− z)−1Γ,

with a self-adjoint operator A in the Krein space K. If the matrix Q0 is in-
vertible and

(3.5) ker
(
I − ΓQ−1

0 Γ+(A− z0)
)

= {0},
then the inverse function Q̂(z) admits the representation

Q̂(z) = −Q−∗
0 + (z − z0)Γ̂

+(Ã− z0)(Ã− z)−1Γ̂,

where Γ̂ = ΓQ−1
0 and for the self-adjoint operator Ã it holds

(3.6) (Ã− z0)
−1 − (A− z0)

−1 = −ΓQ−1
0 Γ+(A− z0)(A− z0)

−1.

The relation (3.6) implies that the difference of the resolvents of A and Ã
is an n–dimensional operator. The condition (3.5) is needed in order to assure
that the inverse function admits a representation with a self-adjoint operator,

that is that 1 /∈ σp(Û) for the operator Û which exists according to Theorem
3.2. The next theorem is the corresponding result for a function Q(z) with a
representation (2.7).

Theorem 3.4. Suppose that the function Q(z) admits a representation
(2.7),

Q(z) = S + Γ+
0 (A− z)−1Γ0,

with a self-adjoint operator A in the Krein space K. If the matrix S is invert-

ible, then the inverse function Q̂(z) admits the representation

Q̂(z) = −S−1 + Γ̂+
0 (Â− z)−1Γ̂0

with Γ̂0 := Γ0S
−1 and the self-adjoint operator Â := A+ Γ0S

−1Γ+
0 .

In the situation of Theorem 3.4 the difference Â−A is an n–dimensional
operator. The proof of Theorem 3.3 is similar to the proof of Theorem 3.2,
Theorem 3.4 follows immediately from Lemma 3.1. Both proofs are left to
the reader.

4. A matrix function and its inverse

In this section we consider the matrix function

Ω(z) :=

(
m1(z) 1

1 −m2(z)

)
(4.1)

with functions mj ∈ N0, j = 1, 2. Let

mj(z) = αj + βjz +

+∞∫

−∞

(
1

t− z
− t

1 + t2

)
dσj(t), j = 1, 2,(4.2)
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be their integral representations (2.8). As was explained in the paragraph
following formula (2.8), they imply operator representations (2.1) with the
Hilbert spaces Kj := L2

σj
⊕ Cβj and operators Γj , Uj for j = 1, 2:

(4.3) mj(z) = mj(z0) + (z0 − z0)Γ
+
j

(
I − 1

λ(z)
Uj

)−1

Γj ;

and, if the conditions

(4.4) βj = 0, σj(R) <∞, j = 1, 2,

are satisfied, operator representations (2.5) with operators Γj0 and Aj :

(4.5) mj(z) = sj + Γ+
j0(Aj − z)−1Γj0.

Now we introduce the Krein space K := K1[+̇]K2 with the inner product

[x, y] := (x1, y1)K1
− (x2, y2)K2

,

x =

(
x1

x2

)
, y =

(
y1
y2

)
, xj , yj ∈ Kj , j = 1, 2,

and the following operators Γ : C
2 → K and U ∈ L(K):

(4.6) Γ :=

(
Γ1 0
0 Γ2

)
, U :=

(
U1 0
0 U2

)
.

Then Ω(z) admits the operator representation

Ω(z) = Ω(z0)
∗ + (z0 − z0)Γ

+

(
I − 1

λ(z)
U

)−1

Γ.(4.7)

If in the representations (4.2) the assumptions (4.4) are satisfied, then with

the operators Γ0 : C
2 → K, A in K and the 2 × 2–matrix S:

(4.8) Γ0 :=

(
Γ10 0
0 Γ20

)
, A :=

(
A1 0
0 A2

)
, S :=

(
s1 1
1 −s2

)

the operator representation

Ω(z) = S + Γ+
0 (A− z)−1Γ0.(4.9)

holds.
In the following we suppose that det Ω(z)=−1−m1(z)m2(z) 6≡ 0. We are

interested in the structure of the singularities of the inverse matrix function

Ω̂(z) := −Ω(z)−1 =
1

1 +m1(z)m2(z)

(
−m2(z) −1

−1 m1(z)

)
.

Evidently, this function Ω̂(z) exists and is analytic at least on the comlement
of the set suppσ1 ∪ suppσ2 with possible exception of a sequence of isolated

points which are zeros of the function 1+m1(z)m2(z) and hence poles of Ω̂(z).

An operator representation of the function Ω̂(z) is easily obtained from
the operator representations (4.3) or (4.5) of the functions m1(z) and m2(z).
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To this end we fix z0 ∈ C \ R such that 1 +m1(z0)m2(z0) 6= 0. Then from
Theorem 3.2 we get

Ω̂(z) = Ω̂(z0)
∗ + (z0 − z0)Γ̂

+

(
I − 1

λ(z)
Û

)−1

Γ̂(4.10)

with Γ̂ := ΓΩ(z0)
−1 and Û := U − (z0 − z0)ΓΩ(z0)

−1Γ+U , where Γ and U
are defined in (4.6). If the assumptions (4.4) are satisfied, it follows that also
S is invertible and hence we obtain from Theorem 3.4 the representation

Ω̂(z) = −S−1 + Γ̂+
0

(
Â− z

)−1

Γ̂0(4.11)

with Γ̂0 := Γ0S
−1 and

Â : = A+ Γ0S
−1Γ+

0

=

(
A1 0
0 A2

)
+

1

1 + s1s2

(
s2Γ10Γ

∗
10 −Γ10Γ

∗
20

Γ20Γ
∗
10 s1Γ20Γ

∗
20

)
,

(4.12)

where A, Γ0 and S are given in (4.8).

Lemma 4.1. The spectrum of the operator Â coincides with the set of

singularities of the function Ω̂(z).

Proof. Obviously, the function Ω̂(z) is holomorphic at every point λ0 ∈
ρ(Â). Conversely, let Ω̂(z) be holomorphic at λ0 ∈ C. Then for the inverse
function Ω(z) the point λ0 cannot be a non-isolated singularity. So we know,
by construction, that λ0 /∈ σess(A), hence λ0 is not an accumulation point

of σ(Â). If we consider the Riesz projection of Â at λ0 and observe the

minimality of the representation of Ω̂(z) it follows that λ0 ∈ ρ(Â).

Recall that for a bounded self-adjoint operator B in the Krein space
(K, [ · , · ]) the point λ0 ∈ R ∩ (σc(B) ∪ σp(B)) is called a spectral point
of positive type, if for each sequence (xn) ⊂ K with the properties ‖xn‖ =
1, ‖(B − λ0)xn‖ → 0 it follows that lim inf

n→∞
[xn, xn] > 0. The set of all spec-

tral points of positive type of B is denoted by σ+(B). The set σ−(B) of all
spectral points of negative type of B is defined similarly. Further, the point
λ0 ∈ R belongs by definition to the set σ−,f (B), if there exists an interval
(a, b), such that λ0∈(a, b),

{λ : a < Reλ < b, 0 < |=λ| < η} ⊂ ρ(B) for some η > 0,(4.13)

(a, b)\{λ0} ⊂ σ+(B) ∪ ρ(B),(4.14)

and for each interval [α, β] with a < α < λ0 < β < b on the maximal spectral
subspace L[α,β](B) of the operator B the inner product [ · , · ] has only finitely
many negative squares (see [LMM], Section 5). In this case λ0 is an eigenvalue
of B with a nonpositive eigenvector. The set σ+,f (B) is defined analogously.
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Now we return to the operators A and Â from (4.8) and (4.12), which

correspond to the functions Ω(z) and Ω̂(z) according to (4.9) and (4.11),
respectively. We assume in the sequel, that the conditions (4.4) are satisfied.

Lemma 4.2. For the operator A the relations σ(A) = suppσ1 ∪ suppσ2,

(4.15) σ+(A) = suppσ1 \ suppσ2, σ−(A) = suppσ2 \ suppσ1

and σess(A) = σess(A1) ∪ σess(A2) hold; σess(A1) is the set of non-isolated
points of suppσ1, σess(A2) is the set of non-isolated points of suppσ2. Fur-
ther, λ ∈ σ−,f (A) if and only if λ is an isolated point of suppσ2, λ ∈ σ+,f (A)
if and only if λ is an isolated point of suppσ1.

Proof. The first and the last claims are clear, only the relations in (4.15)
need to be proved. We prove the first one, the proof of the second one is
analogous. Consider λ0 ∈ suppσ1 \ suppσ2. Then λ0 ∈σ(A1)\σ(A2). If (xn)
is a sequence of elements of K such that ‖xn‖2 = 1 and (A − λ0)x

n → 0 if
n → ∞, then (A2 − λ0)x

n
2 → 0 and, since λ0 ∈ ρ(A2), x

n
2 → 0. It follows

that lim [xn, xn] = lim ‖xn
1‖2 = 1 and hence λ0 ∈ σ+(A). Conversely, if

λ0 ∈ suppσ2, then there exists a sequence (xn
2 ) ∈ K2 such that ‖xn

2‖ = 1 and
(A2 − λ0)x

n
2 → 0. Then (A − λ0)(0 x

n
2 )t → 0 and lim [xn

2 , x
n
2 ] = −1, hence

λ0 6∈ σ+(A).

Since the difference Â − A is finite–dimensional, the results of Section 5
of [LMM] yield the following theorem.

Theorem 4.3. Suppose that the assumptions (4.4) are satisfied. Then
the following inclusions hold:

R \ σess(A2) ⊂ σ+(Â) ∪ σ−,f (Â) ∪ ρ(Â),

R \ σess(A1) ⊂ σ−(Â) ∪ σ+,f (Â) ∪ ρ(Â),

in particular

σ+(A) ∪ (ρ(A) ∩ R) ⊂ σ+(Â) ∪ σ−,f (Â) ∪ ρ(Â),

σ−(A) ∪ (ρ(A) ∩ R) ⊂ σ−(Â) ∪ σ+,f (Â) ∪ ρ(Â).

The non-real spectrum of Â can accumulate only at points of σess(A1) ∩
σess(A2).

If a point λ0 belongs to σ±(Â) or to σ∓,f (Â), the singularities of the

function Ω̂(z) can be described more precisely. We formulate this result for

points of σ+(Â) and of σ−,f (Â).

Theorem 4.4. Suppose that the assumptions (4.4) are satisfied. If

λ ∈ σ+(Â), then there exist an open interval ∆ around λ0 and functions
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Ω̂∆(z) and Ω̂∆′(z), such that Ω̂∆(z) belongs to the Nevanlinna class N0 and

is holomorphic outside of the closure of ∆, Ω̂∆′(z) is holomorphic in ∆ and

(4.16) Ω̂(z) = Ω̂∆(z) + Ω̂∆′(z).

If λ ∈ σ−,f (Â), then there exist an open interval ∆ around λ0 and functions

Ω̂∆(z) and Ω̂∆′(z), such that Ω̂∆(z) belongs to a generalized Nevanlinna class

N 2×2
κ for some κ > 0 and is holomorphic outside of the closure of ∆, Ω̂∆′(z)

is holomorphic in ∆ and the relation (4.16) holds.

Proof. If λ0 ∈ σ+(Â), there exists an open interval ∆ with λ0 ∈ ∆,

∆ ⊂ σ+(Â) ∪ ρ(Â) and

{λ ∈ C : <λ ∈ ∆, 0 <| =λ |< η} ⊆ ρ(Â) for some η > 0.

The corresponding maximal spectral subspace (L∆(Â), [ · , · ]) is a Hilbert
space. Therefore in the Krein space K there exists an orthogonal projec-

tion P∆ onto L∆(Â), and with the representation (4.11) the function Ω̂(z)
can be decomposed as

Ω̂(z) = −S−1 +
(
P∆Γ̂0

)+ (
Â− z

)−1 (
P∆Γ̂0

)

+
(
(I − P∆)Γ̂0

)+ (
Â− z

)−1 (
(I − P∆)Γ̂0

)
.

Since L∆(Â) is a Hilbert space, σ
(
Â|L∆(Â)

)
is contained in the closure

of ∆ and σ
(
Â| (I − P∆)K

)
∩ ∆ = ∅, the decomposition (4.16) follows. If

λ0 ∈ σ−,f (Â) the proof is analogous, we have only to observe that now the

subspace
(
L∆(Â), [ · , · ]

)
is a πκ-space.
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